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Abstract. We reflect highlights of studies into a variety of phenomena reflecting the complexity of underlying nonlinear pro-
cesses in a selection of research disciplines in the Centre of Nonlinear Studies (CENS), presented in the International Conference 
on Complexity of Nonlinear Waves, 5–7 October 2009, Tallinn, Estonia. We emphasize the similarity of mathematical description 
of and potential synergy arising from complementary studies in general soliton science, wave propagation in microstructured and 
functionally graded materials, related inverse problems, issues of nondestructive testing, weak resonant interactions of water 
waves, wave transformation and run-up, soliton interactions in shallow water, and selected problems of passive scalar turbulence. 
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INTRODUCTION 

 
The theory of nonlinear complex systems is related to 
interdisciplinary studies which enable us to understand 
macroscopic phenomena via nonlinear interactions of 
constituents of a whole. The contemporary understand-
ings of complex systems stem from the fundamental ideas 
of Prigogine (Prigogine and Stengers, 1984; Mainzer, 
1997). Nowadays clear signatures of complex phenomena 
are known: multiplicity, emergence, nonlinearity, inter-
action of constituents and/or processes, etc. (Nicolis and 
Nicolis, 2007; Érdi, 2008). Mechanics is full of such 
examples, starting from studies of the movement of 
planets, movement of a pendulum, waves on a free sur-
face of fluids and so on. Nonlinear dynamics has greatly 
influenced a dynamic view of the world not only in 
mechanics but also in physics in a broad sense, in 
chemistry, biology and lately also in physiology and 
social sciences (West, 1985; Strogatz, 1994; Scott 1999). 

During the last decade the Centre for Nonlinear 
Studies (CENS) of the Institute of Cybernetics (IoC) at 
Tallinn University of Technology (TUT) has been active 
in many subfields of nonlinear dynamics. Launched in 
1999 by the Department of Mechanics and Applied 
Mathematics of the IoC, the Biomedical Engineering 
Centre of TUT and the Chair of Geometry of the 

Institute of Pure Mathematics and the wave research 
group of the Estonian Marine Institute at the University 
of Tartu, CENS meets further challenges as a vibrant 
international centre. Its strength is built on a multi-
disciplinary approach, involving wave motion, fractality, 
biophysics, signal processing, etc. In this special issue of 
the Proceedings of the Estonian Academy of Sciences 
attention is focused on wave motion and general 
dynamic processes. To facilitate the understanding of 
the results, some earlier studies are briefly described. 
Out of the full range of research in CENS, which now 
involves also control theory and proactive systems (for 
Annual Reports see http://cens.ioc.ee), here we briefly 
summarize highlights of studies of deformation waves in 
solids, water waves, and fractal processes, which were 
the key topics of the International Conference on 
Complexity of Nonlinear Waves (CNLW), held on  
5–7 October 2009 in Tallinn, Estonia. 

 
 

WAVES  IN  SOLIDS 
 

The concept of nonlinearity in mechanics is not new (cf., 
for example, the three-body system). In introducing 
nonlinearities into the governing equations of wave 
motion in solids, other effects of the same order must 
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also be taken into account. The dispersive effects 
together with nonlinearity may lead to the emergence of 
solitary waves and the interaction of various fields may 
greatly influence the wave motion. The emergence of 
soliton trains is known from the analysis of the 
celebrated Korteweg–de Vries (KdV) equation. But it is 
not only the emergence of solitons which is of interest. 
The striking pattern of soliton trajectories emerging for 
the KdV solitons is described by Salupere et al. (2003) 
and the possibility of amplifying the ‘hidden’ solitons is 
shown by Engelbrecht and Salupere (2005). 

Nonlinear interaction of ultrasonic waves with pre-
stress fields or inhomogeneous distribution of material 
properties opens new possibilities for nondestructive 
evaluation of material properties or residual stresses 
(Braunbrück and Ravasoo, 2005; Ravasoo, 2007). Proper 
modelling of microstructured materials draws attention to 
hierarchies of waves where dispersive effects are 
described over multiple scales (Engelbrecht et al., 2005). 
Such full models (two-wave models in the 1D case) 
permit better analysis of the formation and interaction of 
solitary waves than one-wave evolution equations (Salu-
pere et al., 2008). They also open new ways to solve the 
inverse problems in order to determine the properties of 
microstructure (Janno and Engelbrecht, 2005, 2008). The 
models of microstructured solids are analysed from 
various viewpoints (Berezovski et al., 2009), including 
the concept of internal variables which weaves all the 
models into the thermodynamic framework. On the other 
hand, the thermodynamically consistent numerical 
algorithms are derived for solving the wave problems 
(Berezovski et al., 2008). Such algorithms enable solution 
of various problems, including the propagation of fronts 
and cracks and waves in functionally graded materials 
(Berezovski et al., 2003). For example, for waves in a 
material where the microstructure is formed of piecewise 
homogeneous layers, the role of nonlinearity is crucial in 
order to match experimentally measured results (Bere-
zovski et al., 2006). 

 
 

SIMILARITY  OF  WAVES  IN  FLUIDS  AND  
SOLIDS 

 
Waves on the water surface form a fascinating medium 
of studies of complexity and associated emerging 
features. The relevant phenomena are familiar to every-
body and can be easily visualized and verified against 
simple experiments. This environment, however, is one of 
the few fields of physical oceanography that has sub-
stantially contributed to cutting edge fundamental 
research. For example, Hasselmann’s theory of resonant 
interactions of surface waves (Hasselmann, 1962) pre-
ceded by a few years the discovery of solitons and served 
as one of the first rigorously derived Boltzmann-type 
equations. Recently, surface soliton interactions in deep 

ocean have initiated a completely new field of research 
concerning optical rogue waves (Solli et al., 2007). 

Studies of water waves in CENS focus on wave–
wave and soliton interaction, anomalies of wave fields, 
ship wakes, and extreme waves. The essence of all these 
studies is the possibility of energy exchange between 
different components of multi-componential wave fields. 
This feature becomes evident in a range of different 
phenomena, from slow changes in the spectral com-
position of complex wave fields to almost explosive 
formation of unexpectedly high and steep wave humps 
in nonlinear interactions of solitons. 

From the viewpoint of complexity, a striking feature 
for waves in solids and waves in fluids is the conceptual 
similarity of models which stresses the interaction 
between the constituents. Leaving aside the standard 
balance of momentum as a basis for equations of motion 
in continua, there is a possibility of interpreting the 
interactive forces and/or fields in a similar way for both 
cases. In solids, Maugin (1993) has shown that on the 
material manifold, the governing wave equation based 
on the balance of the canonical (material) momentum 
reads (see Engelbrecht, 2010, eq. (1)): 
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where P  is the material momentum (pseudo-
momentum), b  is the material Eshelby stress, and inh ,f  

ext ,f  intf  are the material inhomogeneity force, the 
material external (body) force, and the material internal 
force, respectively. 

For water surface waves, the slow energy exchange 
within resonance quartets is described by the so-called 
kinetic equation (Hasselmann, 1962; see also Onorato et 
al., 2009), which today is the core of spectral wave 
prediction models: 
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usually characteristic of the Boltzmann equation (where 
it describes collisions between particles), integrates the 
contribution from nonlinear interactions into changes in 
the wave fields, 1234T  is the interaction coefficient, 

,∆ =k 0  0ω∆ =  are the resonance conditions for the 
wave vectors and angular frequencies, respectively, 

diss ( ) ( )DS Nγ= − k k  reflects dissipation of wave energy 
due to different reasons and In ( ) ( )S Nβ= k k  expresses 
the wind input to the wave systems. 
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In Eqs (1) and (2) the forcing term (the r.h.s.) for the 
linear part (the l.h.s.) of the governing equation reflects 
the interaction features associated with changes in certain 
properties of the counterparts. This way of description of 
processes is generic and universal almost everywhere in 
our world when nonlinearity gives birth to situations 
where the whole has new features compared to simple 
addition of the counterparts. True, the variables are 
different but the idea is the same: an action is driven by a 
combination of (possibly a continuum of) several forces 
which describe the complicated nature of constituents or 
processes. From the viewpoint of complexity science, this 
is essential for emerging macroprocesses. 

The part of the research, based of which CENS was 
formed, focuses on the theory of double resonance in a 
sister system of resonantly interacting Rossby waves 
(Soomere, 1993) which is governed by a three-wave 
kinetic equation. This is a fascinating case when energy 
exchange between certain wave components is sub-
stantially (by up to two orders of magnitude) faster than 
for the rest of the waves. Similar effects were addressed 
in the CNLW conference by S. Badulin for the classical 
Hasselmann’s equation applied to spectra that consider-
ably deviated from the equilibrium solutions to this 
equation (Soomere, 2001). 
 
 
WATER  WAVES  AND  TURBULENCE 

 
The associated almost explosive (occurring within the 
time scale comparable to a few or a few dozens of wave 
periods) energy exchange, transformation of the wave 
shape or the pattern of wave crests is typical of non-
linear processes on the water surface. It becomes evident 
in a variety of situations, from propagation of a single 
wave over a certain generic type of coastal profiles 
(Didenkulova et al., 2009) to crossing of highly non-
linear waves (Peterson and van Groesen, 2000). The 
fundamental importance of the wave shape has become 
clearly evident in studies into the changes in waves in 
the coastal zone (Didenkulova, 2009). Didenkulova et 
al. (2006) demonstrate that even small deviations of the 
shape of the incident wave from the ideal one may 
increase the run-up height several times. This effect may 
be even more drastic in non-plane geometry (Diden-
kulova et al. 2009). 

The most spectacular phenomena occur during non-
linear interactions of shallow-water solitons. These are 
one of the few processes that can lead to the emergence 
of new structures merging the energy and momentum of 
the counterparts. A fascinating and somewhat un-
expected feature of such interactions is that many of 
their properties can be studied analytically by means of 
classical calculus. Soliton interactions constitute a 
fundamental feature of soliton science because the 
definition of a soliton involves its resilience with respect 

to interactions with similar structures. Rapid progress in 
understanding the details of such interactions and the 
first attempts to use them in practical applications, how-
ever, started only a decade ago, largely driven by studies 
in the CENS (Peterson and van Groesen, 2000). 

A drastic increase in surface elevation in interactions 
of shallow-water solitons (which was theoretically 
known in the 1970s in the context of Mach reflection 
and generalized to the case of interacting solitons of 
arbitrary amplitude by Peterson et al. (2003) and Soo-
mere (2004)) is accompanied by an even larger increase 
in the slope of wave fronts (Soomere and Engelbrecht, 
2005, 2006). This effect is the core of a new mechanism 
for the formation of long-living rogue (freak or giant) 
waves in shallow water (Kharif et al., 2009). Their 
sudden appearance is of paramount importance and a 
generic source of danger for navigation in shallow 
channels and certain areas of strong currents, and 
specifically in coastal and offshore engineering. These 
effects may be particularly pronounced in the case of 
ship wakes that often approach seawalls or breakwaters 
from other directions than wind waves do (Soomere, 
2007). The contribution of CENS into the study of 
soliton interactions was recognized by an invitation to 
summarize the developments for a recent encyclopaedia 
of complexity and systems science (Soomere, 2009). 

Further increase in the complexity of motions and 
their interactions becomes evident in turbulence studies. 
The kinetic theory (also known as the theory of wave 
turbulence) and strongly nonlinear interactions of a few 
wavelike counterparts may be treated as simple special 
cases of turbulence that generally constitute an extremely 
complex system of continuously interacting virtual 
components with rapidly varying properties. In fluid 
dynamics, turbulence has a particular role in explaining 
many phenomena like flows, currents, diffusive fields, 
etc. and certainly a vast range of applications. However, 
what is more important in the context of complexity 
studies, is that turbulence is extremely well suited for 
investigating and understanding the generic laws of 
complex systems. Indeed, the physical building blocks 
of turbulent systems are, as a rule, very simple; yet, 
there are a large number of qualitatively different 
scenarios, in which turbulence can evolve, depending on 
the specific features of the system. 

One of the foci of the studies at CENS is to under-
stand passive scalar turbulence. In the case of smooth 
velocity fields (e.g. fluid flows below the Kolmogorov 
scale and geostrophic flows), the evolution of tracer 
blobs leads to multifractal dissipation fields (Kalda, 
2000). Next, the behaviour of tracer fields in com-
pressible flows (such as the surface flows at the free-slip 
surface of the turbulent fluid) depends on the stickiness 
of tracer particles and leads to clusterization (formation 
of tracer patches) as shown by Kalda (2007). Further, 
stationary mixing in non-smooth velocity fields (e.g. in 
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the case of hydrodynamic turbulence, above the Kolmo-
gorov scale), the tracer fields evolve into everywhere – 
discontinuous fields, characterized by a spectrum of 
fractal discontinuity fronts (Kalda and Morozenko, 
2008). Although the list of examples could be much 
longer, it shows already now the complexity and rich-
ness of turbulence in general, and that of turbulent 
mixing, in particular. 

 
 

CENS:  FOSTERING  COMPLEXITY  
RESEARCH 

 
In recent years there has been an increased interest in 
advanced mathematical models and computational 
methods of solving wave problems, which cross the 
borders of specific applications. Despite an extreme 
variety of physical appearances of wave phenomena, 
different problems share many mathematical models and 
numerical methods. CENS has supported the idea of 
interdisciplinarity through all studies, contracts, and 
cooperative projects. The main goal of recent coopera-
tion in 2005–2009, related to the Marie Curie Transfer 
of Knowledge Project ‘Collaboration of Estonian and 
Norwegian Centres within Mathematics for Applica-
tions’ (CENS–CMA) with two partners: CENS and the 
Centre of Mathematics for Applications (CMA) of the 
University of Oslo, was to reach synergy between 
various fields. The importance of applied mathematics 
in the modelling of wave motion has been highlighted 
by Quak and Soomere (2009). 

Actually, the ideas of synergy have been fostered by 
CENS throughout its existence. The communication 
between various fields means that a breakthrough in one 
discipline may trigger similar successful studies in other 
areas. For example, the studies of soliton interactions 
(Peterson and van Groesen, 2000) have generated 
intensive research of freak waves (Soomere and Engel-
brecht, 2005, 2006). The analysis of nonlinear waves in 
the 1990s initiated studies in biophysics and cell 
energetics which were not exposed at this conference. 
Nevertheless, it should be mentioned that the ideas of 
mathematical modelling and theory of continua (the 
concept of internal variables) have been successfully used 
and generalized by, e.g., Vendelin et al. (2004, 2007) 
within the framework of a fast developing discipline 
called systems biology (Saks, 2007). 

An important step in understanding and formulation 
of synergy emerging from parallel and complementary 
treatment of problems in complexity in different 
research fields was the CNLW Conference (5–7 October 
2009) held in Tallinn, Estonia. Its purpose was to foster 
research into theoretical, computational, and applied 
aspects of nonlinear wave phenomena through promot-
ing transfer of competence over the existing borders of 
classical research disciplines for solids and fluids. Its 

central outcome and an important message to the 
scientific community is deep similarity of processes over 
a wide range of physical and biological phenomena – a 
feature that becomes evident only frequently because the 
relevant parties meet not so often. 

This special issue of the Proceedings includes papers 
on analysis of complicated mathematical models, 
innovative ideas of computing, and novel applications. 
The conference gathered together 40 participants from 
13 countries. Among 32 presentations at the conference, 
it is possible to distinguish the following areas: 
(i) complexity of nonlinear waves in solids and fluids 
including solitons and discontinuities; (ii) multiscale 
phenomena in heterogeneous media; (iii) propagation, 
interaction, properties, and statistics of ocean waves; 
(iv) numerical simulation of nonlinear wave propaga-
tion. Within this issue of the Proceedings, 18 papers are 
collected. 

The conference marked 10 years of activities of 
CENS. The organizers would like to thank the Institute  
of Cybernetics at TUT, the Estonian Academy of 
Sciences, the FP6, Marie Curie Research and Training 
Network SEAMOCS (MRTN-CT-2005-019374) 
‘Applied stochastic models for ocean engineering, climate 
and safe transportation’, the FP7 Future and Emerging 
Technologies network GSD ‘Global System Dynamics 
and Policies’ and the Frens Conference Services for the 
support. 
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On antud lühiülevaade Mittelineaarsete Protsesside Analüüsi Keskuse viimase kümnendi olulistest edusammudest 
keerukate lainesüsteemide käsitlemisel rahvusvahelise konverentsi “Keerukad mittelineaarsed lainesüsteemid” 
valguses. On näidatud, kuidas erinevates valdkondades sarnaste meetoditega tehtud uuringud on viinud uute ideede 
ja valdkondadevahelise sünergiani. On toodud näiteid solitonide teooriast, lainelevi ülesannetest mikrostruktuuriga 
materjalides ja nendega seotud pöördülesannetest, mittepurustava katsetamise vallast, pinnalainete vastasmõju ning 
uhtekõrguse arvutamise küsimustest, madala vee solitonide interaktsiooni ja turbulentsi valitud küsimustest. 


