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Abstract. In this short note we give an exact characterization of C∗-algebras that have the class of convex functions. More precisely,
we give a convexity characterization of subhomogeneous C∗-algebras. We use these results to generalize the single function based
convexity conditions for commutativity of a C∗-algebra to the single function based convexity conditions for subhomogeneity.
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As for operator monotone matrix functions over C∗-algebras considered in [9], we denote by KA(I) the
set of all A-convex functions (defined on the interval I) for a C∗-algebra A. If A = B(H), the standard
C∗-algebra of all bounded linear operators on a Hilbert space H, then KA(I) = KB(H)(I) is called the set
of all operator convex functions. If A = Mn, then Kn(I) = KA(I) = KMn(I) is called the set of all matrix
convex functions of order n on an interval I. The set Kn(I) consists of continuous functions on I satisfying
f (λx +(1−λ )y) ≤ λ f (x)+ (1−λ ) f (y) for pairs (x,y) of self-adjoint n×n matrices with their spectra in
I and any 0 ≤ λ ≤ 1. For each positive integer n, the proper inclusion Kn+1(I) ( Kn(I) holds [3]. For an
infinite-dimensional Hilbert space, the set of operator convex functions on I can be shown to coincide with
the intersection

K∞(I) =
∞⋂

n=1

Kn(I),

or in other words a function is operator convex if and only if it is matrix convex of order n for all positive
integers n [5, Chap. 5, Proposition 5.1.5 (ii)].

In this short note we show that for general C∗-algebras the classes of convex functions are the standard
classes of matrix and operator convex functions. For every such class we give an exact characterization
of C∗-algebras that have this class of convex functions. This can be also used to give a convexity
characterization of subhomogeneous C∗-algebras as discussed in the case of monotone functions by [2,
Theorem 5; 9, Theorem 2.3]. We use these results to generalize the single function based convexity
conditions for commutativity of a C∗-algebra, obtained by Ogasawara [7], Pedersen [10], Wu [15], and
Ji and Tomiyama [6], to single function based convexity conditions for subhomogeneity.

It could be also appropriate to mention here that further inspiration for the present work comes
from [1,8,11,12] indicating possibilities for a deep interplay of our results with analytic continuation and
function spaces, interpolation, moment problems, complete positivity, and order structure in C∗-algebras.
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Lemma 1. Let A be a C∗-algebra and I be an open interval.
(1) If A has an irreducible representation of dimension n, then any A-convex function becomes n-matrix

convex, that is KA(I)⊆ Kn(I).
(2) If dimπ ≤ n for any irreducible representation π of A, then Kn(I)⊆ KA(I).
(3) If the set of dimensions of finite dimensional irreducible representations of A is unbounded, then every

A-convex function is operator convex, that is KA(I) = K∞(I).
(4) If A has an infinite dimensional irreducible representation, then every A-convex function is operator

convex, that is KA(I) = K∞(I).

Proof.
(1) Let π : A → Mn be an n-dimensional irreducible representation of A. Then irreducibility implies that

π(A) = Mn. Thus for any pair c,d ∈Mn of self-adjoint elements with spectra in I there exist self-adjoint
elements a,b ∈ A with spectra in I such that π(a) = c and π(b) = d. Then for any 0≤ λ ≤ 1

f (λa+(1−λ )b)≤ λ f (a)+(1−λ ) f (b)

and hence
π( f (λa+(1−λ )b))≤ λπ( f (a))+(1−λ )π( f (b))

for any f ∈ KA(I). By continuity, π( f (x)) = f (π(x)) for any x ∈ A. Thus

f (λc+(1−λ )d) = f (λπ(a)+(1−λ )π(b))

= f (π(λa+(1−λ )b))

= π( f (λa+(1−λ )b))

≤ π(λ f (a)+(1−λ ) f (b))

= λπ( f (a))+(1−λ )π( f (b))

= λ f (π(a))+(1−λ ) f (π(b))

= λ f (c)+(1−λ ) f (d)

and therefore f ∈ Kn(I). Hence, we have proved that KA(I)⊆ Kn(I).
(2) Let f ∈ Kn(I). For any pair a,b ∈ A of self-adjoint elements with spectra in I and for any irreducible

representation π : A → Mm, where m ≤ n, we have π(λa +(1−λ )b) = λπ(a)+ (1−λ )π(b) in Mm.
Then for any 0≤ λ ≤ 1

π( f (λa+(1−λ )b)) = f (π(λa+(1−λ )b))

= f (λπ(a)+(1−λ )π(b))

≤ λ f (π(a))+(1−λ ) f (π(b))

= λπ( f (a))+(1−λ )π( f (b))

= π(λ f (a)+(1−λ ) f (b)).

Hence
f (λa+(1−λ )b)≤ λ f (a)+(1−λ ) f (b).

Thus, f ∈ KA(I) and we proved that Kn(I)⊆ KA(I).
(3) Let {π j | j ∈ N \ {0}} be a sequence of irreducible finite dimensional representations of A such that

n j = dimπ j → ∞ when j → ∞. By (1) we have inclusion KA(I)⊆ Knk(I) for any k ∈ N\{0}. Hence

KA(I)⊆
⋂

k∈N\{0}
Knk(I) =

⋂

k∈N\{0}
Kk(I) = K∞(I),

and since always K∞(I)⊆ KA(I) holds, we get the equality KA(I) = K∞(I).
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(4) Let π : A → B(H) be an irreducible representation of A on an infinite dimensional Hilbert space H.
By Kadison’s transitivity theorem (see [13, Ch. 2, Theorem 4.18]), π(A)p = B(H)p for every projection
p : H → H of a finite rank n = dim pH < ∞. Let B = {a ∈ A | π(a)pH ⊆ pH,π(a)∗pH ⊆ pH} be the
C∗-subalgebra of A consisting of elements mapped by π to operators that, together with their adjoints,
leave pH invariant. The restriction of π : B → pB(H)p to B is an n-dimensional representation of B
on pH. Thus (1) yields KA(I)⊆ KB(I)⊆ Kn(I), since B is a C∗-subalgebra of A. As the positive integer
n can be chosen arbitrary, we get the inclusion

KA(I)⊆
⋂

n∈N\{0}
Kn(I) = K∞(I).

Combining it with K∞(I)⊆ KA(I) yields the equality KA(I) = K∞(I).

Theorem 2. Let A be a C∗-algebra and I be an open interval. Then
(1) KA(I) = K∞(I) if and only if either the set of dimensions of finite-dimensional irreducible

representations of A is unbounded, or A has an infinite-dimensional irreducible representation.
(2) KA(I) = Kn(I) for some positive integer n if and only if A is n-subhomogeneous.

Recall that A is said to be subhomogeneous if the dimensions of its irreducible representations are
bounded and in particular we call A n-subhomogeneous if the highest dimension is n.

Proof. By Lemma 1 the only part of (1) left to prove is that KA(I) = K∞(I) implies that either the set
of dimensions of finite dimensional irreducible representations of A is unbounded, or A has an infinite-
dimensional irreducible representation. Suppose on the contrary that

n1 = sup{dim(π) | π is an irreducible representation of A}< ∞.

Then KA(I)⊆ Kn1(I) by (1) of Lemma 1, and Kn1(I)⊆ KA(I) by (2) of Lemma 1. Thus KA(I) = Kn1(I). But
there is a gap between K∞(I) and Kn(I) for any n [3]. Hence KA(I) 6= K∞(I), in contradiction to the initial
assumption KA(I) = K∞(I).

In part (2), since a C∗-algebra A has sufficiently many irreducible representations, the order a ≤ b is
equivalent to say that π(a) ≤ π(b) for every irreducible representation of A. Therefore, by (1), (2) of
Lemma 1 and the definition of an n-subhomogeneous C∗-algebra we obtain the conclusion.

Corollary 3. If a C∗-algebra A is n-homogeneous and I is an open interval, then KA(I) = Kn(I).

Let fc(x) = xc for c > 2 on the positive axis. Then fc is a continuous convex function, but not 2-convex
function by [4, Proposition 3.1].

Theorem 4. Let A be a C∗-algebra. Then A is commutative if and only if there exists a convex function on
the positive axis I = [0,∞) which is not a 2-convex function f but an A-convex function.

Proof. Suppose that A is commutative. Let f = fc (c > 2). Then f is a convex function which is not
2-convex.

Since A is commutative, there is a locally compact Hausdorff space X such that A ∼= C0(X). For any
x ∈ X evx( f ) = f (x) for f ∈C0(X).

Then for any x ∈ X , real-valued functions a,b ∈C0(X) with a(X),b(X)⊂ I, and any 0≤ λ ≤ 1 we have

evx( f (λa+(1−λ )b)) = f (λa(x)+(1−λ )b(x))

≤ λ f (a(x))+(1−λ ) f (b(x))

= λ f (evx(a))+(1−λ ) f (evx(b))

= evx(λ f (a)+(1−λ ) f (b)),

and f (λa+(1−λ )b)≤ λ f (a)+(1−λ ) f (b). Hence f is an A-convex function.
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Conversely, suppose that there exists a convex function on the positive axis I = [0,∞) which is not 2-
convex function f but an A-convex function. We will show that A is commutative. We assume that A is not
commutative. There exists an irreducible π : A → B(H) such that dimH ≥ 2. Take a projection p ∈ B(H)
such that dim pH = 2. Then we have π(A)p = B(H)p by Kadison’s transitivity theorem.

Let B = {a ∈ A | π(a)pH ⊆ pH,π(a)∗pH ⊆ pH} be the C∗-subalgebra of A consisting of elements
mapped by π to operators that, together with their adjoints, leave pH invariant. Then B⊆ A. The restriction
of π : B 7→ pB(H)p to B is a 2-dimensional representation of B on pH. Since B ⊆ A, f ∈ KB f is B(pH)-
convex, that is, 2-convex. This is a contradiction to the property of f . Therefore, A is commutative.

Let gn(x) = t + 1
2 t2 + 1

3 t3 + · · ·+ 1
2n t2n for n ∈ N. Then there exists αn > 0 such that

gn ∈ Kn((−αn,αn))\Kn+1((−αn,αn)).

Let I be a finite open interval such that I = (t0− c, t0 + c) for some t0 ∈ R and a positive number c. Then
fn(t) = gn(αnc−1(t− t0)) is in Kn(I)\Kn+1(I). (See [4, Proposition 1.4].)

Corollary 5. If fn is an A-convex function on I for a C∗-algebra A, then A is k-subhomogeneous for some
1≤ k ≤ n.

Proof. From Lemma 1 and Theorem 2 we have KA(I)⊆ Kn(I) or Kn(I)⊆ KA(I).
If KA(I) ⊆ Kn(I), then there exists n0 ≥ n such that KA(I) = Kn0(I). Since fn ∈ Kn(I)\Kn+1(I), n = n0.

Hence A is n-subhomogeneous by (2) in Theorem 2.
If Kn(I)⊆ KA(I), then KA(I) = Kn0(I) for some n≥ n0. Then A is n0-subhomogeneous.

To conclude, we stress that a subhomogeneous C∗-algebra is characterized in both linear versions and non-
linear versions of matricial structure of a C∗-algebra by the above results, [9], and [14] as follows.

Theorem 6. Let I be an open interval. For a C∗-algebra A the following properties are equivalent.

1. Every n-matrix convex function on I is A-convex.
2. Every n-matrix monotone on I is A-monotone.
3. The dimension of every irreducible representation of A is less than or equal to n.
4. All n-positive linear maps φ : A→ B and ψ : B→ A are completely positive.

Here a linear positive map φ : A→ B is said to be n-positive if the multiplicity maps

φn = φ ⊗1n : A⊗Mn → B⊗Mn

are positive. A linear map φ is said to be completely positive if for any n ∈ N φn is positive.
Incidentally, one may moreover easily deduce from this result the corresponding characterizations of an

n-homogeneous C∗-algebra. A C∗-algebra A is n-subhomogeneous if and only if every n-convex function
on I is A-convex and there exists an (n−1)-convex function on I which is not A-convex.
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Operaator-kumerad funktsioonid üle C∗-algebrate

Sergei Silvestrov, Hiroyuki Osaka ja Jun Tomiyama

On kirjeldatud C∗-algebrat A, mille korral A-kumerate funktsioonide klass ühtib operaator-kumerate
funktsioonide klassiga või mingi maatriks-kumerate funktsioonide klassiga. Osutub, et C∗-algebra A korral
langevad A-kumerate funktsioonide klass ja n järku maatriks-kumerate funktsioonide klass kokku parajasti
siis, kui A on n-subhomogeenne.

Autorid on näidanud, et teatud tingimustel A-kumera funktsiooni olemasolu kindlustab C∗-algebra A
kommutatiivsuse või subhomogeensuse.


