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On modelling wave motion in microstructured solids
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Abstract. The Mindlin-type model is used for describing the longitudinal deformation waves in microstructured solids. The
evolution equation (one-wave equation) is derived for the hierarchical governing equation (two-wave equation) in the nonlinear
case using the asymptotic (reductive perturbation) method. The evolution equation is integrated numerically under harmonic as
well as localized initial conditions making use of the pseudospectral method. Analysis of the results demonstrates that the derived
evolution equation is able to grasp essential effects of microinertia and elasticity of a microstructure. The influence of these effects
can result in the emergence of asymmetric solitary waves.
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1. INTRODUCTION

In general terms, macrobehaviour of materials depends
on properties of the material structure. This is
extremely important in contemporary materials science
where functionally graded materials, alloys, ceramics,
composites, granular materials, etc. are widely used.
Proper modelling brings in the scales and hierarchies [6],
and the conventional theory of continuous homogeneous
media should be considerably enlarged [2,4,11]. The
scale dependence involves dispersive effects as shown
already in [19]. The hierarchical behaviour in the
Whitham sense means that, depending on the ratio
of wave characteristics (wavelength) to scales in the
material (characteristic scale of a microstructure), the
weight of wave operators will be shifted from one to
another [21].

One of the ideas to describe the effects of the
microstructure is based on Mindlin’s model [12]. This
model has recently been extensively studied [2,3],
mostly in the 1D setting which explicitly explains
the main features of the process. It has been shown
that such modelling describes well the influence of
the microstructure on dispersion and the existence of
hierarchies [2,3]. The model permits, for example,
understanding the emergence of solitary waves in

microstructured materials, both analytically [9] and
numerically [17,18]. In addition, there is a wide area of
possible applications in nondestructive testing by solving
the corresponding inverse problem for determining the
material properties [8,10].

Our final interest is to analyse 2D problems.
However, a common approach when solving multi-
dimensional hyperbolic problems is to apply dimensional
splitting, i.e., to iterate on 1D problems and to understand
the accuracy of possible approximations.

The model equation in the studies mentioned above
is in the 1D case a typical hierarchical wave equation
with the leading operator of the 2nd order and the
higher-order operators (4th, 6th orders) describing the
influence of the microstructure [2,3]. This is the two-
wave equation, i.e., it describes waves propagating in
two directions. The powerful analytic methods [20]
show explicitly how in this case evolution equations
that govern the propagation of one wave only could be
derived. The best example of such an evolution equation
is the celebrated Korteweg–de Vries (KdV) equation.
The evolution equations may also include hierarchies
like in granular materials [7]. If we are interested in
wave propagation along a certain coordinate without
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reflection from boundaries, then the concept of evolution
equations is preferable. However, the transformations
from a two-wave model to an evolution equation should
bring over all the essential features that could influence
the velocities or the distortions of the wave profile. It is of
great interest to understand how the hierarchies in basic
Mindlin-type models are reflected in the corresponding
evolution equations and how the solutions describe the
dispersive effects. It must be stressed that once we use
nonlinear models, the balance between nonlinearity and
dispersion is of interest.

The main goals of the present paper are (i) to
derive the evolution equation that governs one-wave
propagation for Mindlin’s model; (ii) to find numerical
solutions to the evolution equation, and (iii) to compare
the results with those of the two-wave equation.

2. BASIC MODEL AND THE EVOLUTION
EQUATION

One-dimensional wave propagation in a microstructured
material has been studied by Engelbrecht et al. [1–3]
on the basis of Mindlin’s model [12], augmented by
nonlinear terms. The motion is described by two scalar
functions, the macrodisplacement u(x, t) and the micro-
deformation ϕ(x, t), both depending on the material
coordinate x and time t. The functions u and ϕ are
governed by two coupled partial differential equations of
the form

ρutt = auxx +Aϕx +
1
2

N
(
u2

x
)

x ,
(2.1)

Iϕtt = Cϕxx−Aux−Bϕ +
1
2

M
(
ϕ2

x
)

x ,

where ρ and I denote the macrodensity and the micro-
inertia, respectively, and the constants a, A, B, C, N,
and M are material parameters specifying the strain
energy function. The last two constants, N and M,
are responsible for nonlinear effects on the macro- and
microscale, respectively.

The main interest is focused on longitudinal waves
modified by the presence of the microstructure. For this
purpose a single partial differential equation is extracted
from the system (2.1), which describes a motion in which
the macrodisplacement prevails and the influence of the
microstructure is retained in a first approximation. The
so-called ‘slaving principle’ is explained in detail in
papers [1–3]. A modified version leading to the same
result is presented in [14]. By keeping the original
variables and parameters, the resulting equation has the
form
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It is an approximate equation extracted from the original
system (2.1) by means of the slaving principle.

Equation (2.2) can still be condensed by introducing
normalized variables and parameters. First, a reference
length l is chosen. From the original material constants
an inherent length can be extracted, which represents the
size of the microstructure. It is considered to be small
compared to the reference length l and is introduced by

(δ l)2 =
IA2

ρB2 , (2.3)

where the small number δ ¿ 1 characterizes the small-
ness of the microstructure. In addition, the characteristic
velocities c, c1, cN , and cM are defined by

c2 =
1
ρ

(
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B

)
, c2

1 =
C
I
, c2
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N
ρ

, c2
M =

MA
IBl
(2.4)

in terms of the basic model parameters and, in the case
of c2

M , also of the standard length l.
The original variables x, t, u are finally replaced by

nondimensional variables

X =
x
l
, T =

ct
l

, εU =
u
l
. (2.5)

The normalization of the displacement uses another
small number ε ¿ 1, which emphasizes that the
displacement u is small compared to the reference
length l. Using the new dimensionless variables, the
governing equation (2.2) assumes the form
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(2.6)

If omitting dispersive and nonlinear terms in the
governing equation (2.6), a simple wave equation would
remain, whose general solution would be a left- or right-
going wave of arbitrary shape travelling undisturbed.
Due to the normalization, their speed would be unity.
Let us concentrate on waves propagating to the right.
To include the influence of the additional terms of the
governing equation, we allow the wave profile to change
slowly in time.

In selecting a right-going wave, the solution of the
evolution equation is assumed in the form as suggested
in [13, p. 6]:

U = f (ξ ,τ), ξ = X −T, τ =
1
2

εT, (2.7)

where ξ and τ denote moving space and time
coordinates, respectively. Inserting this ansatz into the
recent form of the governing equation (2.6) and discard-
ing the higher-order terms, one obtains the equation
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Evidently, the influences of dispersion and macro-
nonlinearity, controlled by the two small parameters δ
and ε , are balanced only if the quotient δ 2/ε is of the
order of unity. Without loss of generality we may assume
that ε is equal to δ 2.

If we denote fξ = α , the evolution equation assumes
the form

ατ +q
(
α2)

ξ + zαξ ξ ξ +w
(

α2
ξ

)
ξ ξ

= 0, (2.9)

where the parameters

q =
c2

N
2c2 , z =

c2− c2
1

c2 , w = ε
c2

M
2c2 (2.10)

characterize the nonlinearity of macroscale, the dis-
persion, and the nonlinearity of microscale, respect-
ively. Equalizing the micro-nonlinearity parameter w
to zero yields the well-known KdV equation. Thus,
compared with the standard KdV equation, equation
(2.9) includes an additional complicated term which
reflects the nonlinearity on the macroscale.

3. NUMERICAL SIMULATION

The evolution equation (2.9) is solved under harmonic
and localized initial conditions

α(ξ ,0) = sinξ , α(ξ ,0) = A0 sech2 ξ −ξ0√
12z/A0

,

(3.1)
respectively, where A0 is the amplitude, ξ0 the initial
phase-shift, and

√
12z/A0 the width of the initial pulse.

For numerical integration the FFT-based pseudospectral
method is used and the periodic boundary conditions are
applied [5].

The crucial question is the proper choice of
parameters because not much is known about the values
of physical constants of Mindlin’s model [12]. We
choose here the values of parameters comparable with
the standard KdV equation which has been studied in
detail (see, for example [15,16]). One of the important
features of the standard KdV equation is the emergence
of a soliton train. The number of solitons in a train
depends on the values of q and z. Widely used values
are q = 1 and z = 10−2.5 [15,16]. Then the soliton train
develops at τ ≈ 30. Another important feature for the
KdV equation is the existence of a single stable soliton.

On the basis of the argumentation above, we take
here q = 1 and vary the other parameters in the following
domains: 10−2.5 ≤ z ≤ 1 and 0 ≤ w ≤ 1. The localized
initial wave (3.1)2 is the analytical solution for equation
(2.9) in the case of w = 0, i.e., it represents the KdV
soliton.

3.1. Localized initial excitation

Janno and Engelbrecht [9] have shown that for the two-
wave equation (2.6) there exists an asymmetric travelling
wave solution, i.e., the nonlinearity in microscale leads to
asymmetry of the wave profile. Numerical experiments
by Salupere et al. [17,18] have demonstrated that
in the case of equation (2.6), an initially symmetric
localized wave is deformed to an asymmetric wave
during propagation. Here we show that the same effect
takes place in the case of the evolution equation (2.9).

The evolution of the initial symmetric sech2 pulse
can be traced in Fig. 1. It is clear that the shape of the
wave is altered during propagation and an oscillating tail
is formed. In Fig. 2 the initial wave profile and the altered
shape of the wave profile at the end of the integration
interval are plotted against ξ . In order to characterize the
asymmetry of the last wave profile more explicitly, αξ is
plotted against α in Fig. 3.

Fig. 1. Time-slice plot for z = 10−2, w = 10−2.5.

Fig. 2. The initial (dashed line) and the deformed (solid line)
wave profile from Fig. 1 (z = 10−2, w = 10−2.5).
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Fig. 3. Asymmetry of the wave profile at the end of the integra-
tion interval: αξ against α for z = 10−2, w = 10−2.5.

In applying localized initial conditions the value of
the micro-nonlinearity parameter w = 10−2.5 is chosen
quite big compared to the macro-nonlinearity parameter
q and the dispersion parameter z in order to demonstrate
the effect of asymmetry more clearly.

3.2. Harmonic initial excitation

It is of interest to start with the case w = 0 which
corresponds to a standard KdV equation. This means that
micro-nonlinearity is neglected. As typical of the KdV
case, a train of solitons will emerge from a harmonic
initial excitation (Fig. 4.) The interaction picture is
complicated but solitons preserve their shape and speed
over long time intervals. The soliton amplitudes fluctuate
in the interval that is dictated by the interaction
rules [15,16]. When the micro-nonlinearity is taken into
account, the interaction pattern is altered – speeds of
solitons are higher than in the KdV case (cf. Figs 4
and 5). Like in the case of localized initial conditions,

Fig. 4. Time-slice plot over two space periods for the KdV case,
z = 10−1.5, w = 0.

the emerged solitons (Fig. 6) are asymmetric, as can
be observed from the phase plane, i.e., the (α,αξ )
plot (Fig. 7). This is a clear sign of the influence of

Fig. 5. Time-slice plot over two space periods for z = 10−1.5,
w = 10−2.621.

Fig. 6. Initial harmonic wave (dashed line) and wave profile
(solid line) at τ = 14.3 for z = 10−1.5,w = 10−2.621.

Fig. 7. Asymmetry of solitons: αξ against α at τ = 14.3 for
z = 10−1.5,w = 10−2.621.
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micro-nonlinearity. The chosen time instant τ = 14.3
corresponds to the formation of the soliton train at given
values of z and w.

4. CONCLUDING REMARKS

The evolution equation (2.9) that governs one-wave
propagation in microstructured solids according to
Mindlin’s model is derived and solved numerically
under harmonic and localized initial conditions. Analysis
of numerical results demonstrates that (i) for both
the governing equation and the evolution equation
nonlinearity in microscale leads to asymmetry of the
wave profile; and (ii) the stronger the influence of micro-
nonlinearity, the more the solutions of the evolution
equation differ from those of the KdV model. In
conclusion, the derived evolution equation (2.9) –
notwithstanding that it is a simplified model equation
compared to the two-wave equation (2.6) – is able to
grasp essential effects of microinertia and elasticity of
a microstructure. However, we stress that the values of
parameters used above are chosen for the comparison
with the standard KdV equation in order to demonstrate
the influence of the microstructure. Studies with other
parameters are in progress. A real challenge is to find an
analytical solution to equation (2.9).
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Lainelevi modelleerimisest mikrostruktuuriga materjalides

Merle Randrüüt, Andrus Salupere ja Jüri Engelbrecht

On tuletatud mikrostruktuuriga materjali (näiteks komposiidid, metallisulamid, granuleeritud materjalid jne) hierar-
hilise põhivõrrandi jaoks evolutsioonivõrrand ehk nn ühe laine võrrand, mis kirjeldab mittelineaarsust nii makro- kui
mikrotasandil, kusjuures dispersiooniefekt on taandatud Kortewegi-de Vriesi tüüpi dispersioonile. See võimaldab
kirjeldada laineleviprotsessi piisava füüsikalise täpsusega, jättes kõrvale algse liikumisvõrrandi. Klassikaline KdV-
mudel teist järku mittelineaarsuse ja kuupdispersiooniga viib sümmeetrilise üksiklaine tekkeni makrostruktuuri
mittelineaarsuse ja dispersiooni tasakaalu korral. Mikrostruktuuri mittelineaarsus aga häirib seda tasakaalu. Nii
põhivõrrandit [8–10] kui sellele vastavat evolutsioonivõrrandit on analüüsitud numbriliselt ja näidatud, et mikro-
struktuuri mittelineaarsuse tõttu on üksiklaine ebasümmeetriline.


