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Abstract. The systemic description of fluid motion sets the description to a certain system of interlinked node theories. The goals 
of the systemic description are systematization of the node theories and interconnecting links and explanation of common features 
of formulations of the node theories and links by similarities of their position in the system organization. 
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1. INTRODUCTION 

 
The multiplicity of problems associated with the descrip-
tion of fluid motion calls fourth a variety of particular 
descriptions focusing on different aspects of motion and 
related to different branches of science (mechanics, 
statistics, mathematics, informatics, synergetics, the 
theories of chaos, etc.). The formulated descriptions can 
be aggregated into groups differing in the comple-
mentary nature of the constituted medium properties. 
These properties, simultaneous presence of which from 
different groups is excluded, ascribe a sense of 
complementarity to the theories belonging to different 
groups. The systemic description [1,2] considers the 
theories of every particular group as different versions 
of a single node theory and treats the medium motion 
through a set of interlinked node theories. The links 
ascribe a sense of system of theories to the set. The 
main task of the systemic description is to reveal the 
node theories’ systemic properties, formulate the links 
between the node theories, and identify invariance pro-
perties of the systemic descriptions reflecting the fluid 
motion in different details by using different sets of 
node theories. 

Section 2 explains the essence of the systemic 
description on an example of an arbitrary object behaving 
stochastically. Section 3 particularizes the approach for 
the description of fluid motion accounting for molecular, 
viscous, and turbulent levels of the motion organization. 
Some systemic aspects of formulations of the conven-
tional turbulence mechanics and of the turbulence 

mechanics discussed in [2–5] are commented. Section 4 
discusses two expansions of the systemic descriptions 
discussed in Section 3. The first expansion makes use of 
the hierarchic structure of turbulence and the other is 
supposed to explain the systemic essence of certain 
commonness observed in formulations of descriptions of 
fluid motion and of some physical fields [6–9]. 

 
 

2. SYSTEMIC  DESCRIPTION  OF  OBJECTS  
BEHAVING  STOCHASTICALLY 

 

2.1. Elementary  level  of  systemic  description 
 
Consider an arbitrary object behaving stochastically. 
The description of such object [1] presumes the 
determination of its particular states, the probability 
distribution of the particular states, and the conditions of 
the probability distribution formation. The conditions 
are specified as determining the object’s average state. 
Let A  denote the set of quantities the values of which 
fix the object’s average state, let a  denote the set of 
quantities the values of which fix the object’s particular 
states, and let ( )f f= a A  denote the probability 
distribution determined on a family of the object’s 
particular states formed under the conditions determined 
as the object’s average state. We shall call ,a  ,A  and 
f  the codes and the quantities determining them the 

signs. Each code determines a particular description of 
the object called the node theory (denoted by the same 
notation as the codes on which they are set up). 
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The codes and the node theories corresponding to 
them are organized according to the code grid in Fig. 1. 
The determination levels differ in their predictability 
horizons in describing the object’s behaviour, the 
structural levels differ in the presentation of the object’s 
structure, and the information coding levels characterize 
the type of presentation of information on the object’s 
state. Besides comprising three node theories ,a  ,A  
and f  the code grid in Fig. 1 comprises also three 
recoding theories ,⊕a A  ,f⊕a  and f⊕A  
(expressed in Fig. 1 by lines connecting the node 
theories) linking the pairs of node theories. The 
recoding theories are formulated by expressions 
connecting the codes and the velocities of the change of 
the object’s states on the codes. 

The theory ⊕a A  treats an object’s behaviour in a 
phase space aV  of the code a  as presented by a phase 
trajectory characterized as a stochastic function of time. 
It determines A  and t∂ ∂A  through a  and t∂ ∂a  as 

*A  and 
 

d
,

dt t

∗∂ ∂=
∂ ∂
A A a

a
                            (1) 

 

where ( )∗ ∗=A A a  is a set of functions of a  and the 
overbar denotes averaging over time intervals 

2 2, ,T Tt t− +    or, equivalently, statistical averaging 
with the probability distribution ( , )p p t= a  determined 
for the same time intervals by applying the Poincaré 
sections technique. The dependence ( ),∗ ∗=A A a  the 
duration of the time interval, and the specification of the 
integral on the right side of (1) as expressed through the 
code A  (the closure problem) cannot be deduced from 
the theory .a  The situation characterizes the theory 

⊕a A  as harmonizing the formulations of node theories 
a  and A  but not as a deduction of theory A  from 
theory .a  

The theory f⊕a  treats the object’s behaviour in 
the phase space aV  as presented by an infinite amount  
 
 

 
 

Fig. 1. The code grid of an elementary level of systemic 
description. The description comprises three particular 
descriptions specified by codes ,a  ,A  and .f  The descrip-
tions are classified as belonging to different combinations of 
structural, determination, and information coding levels of the 
description. 

of virtual phase trajectories formed due to the split of 
any fixed phase trajectory in time. The object’s states 
after the split are treated as random events not predicted 
by the object’s state before the split. Due to the ongoing 
sequence of splitting the number of the object’s possible 
states increases unboundedly in time and forms a 
statistical ensemble characterized by the probability 
distribution .f  For a steady ensemble we have 
d d 0f t =  or 
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The theory f⊕a  (similar to )⊕a A  just harmonizes 
the formulations of the node theories a  and f  but does 
not deduce theory f  from theory .a  The latter requires 
additional information about the formation conditions of 

,f  formulated in terms of .A  
The theory f⊕A  specifies f  as ( )f f= a A  and 

determines A  and t∂ ∂A  through f  and f t∂ ∂  as 
 

( ) ( )df= ∫
�A A a a A a  

 

and 
 

d ,
f

t t

∂ ∂=
∂ ∂∫

�
A

A a                          (3) 

 

where ( )�A a  is a set of functions on signs of code .a  
The expression ( )f f= a A  interrelates specifications 
of f  and :A  the code A  characterizes not only the 
properties of the probability distribution f  in averaged 
terms but also the conditions under which these 
properties are formed. 

On the systemic description level the formulations of 
recoding theories ,⊕a A  ,f⊕a  and f⊕A  are 
harmonized by declaring 

 

∗=�A A  and ( , ) ( ).p t f=a a A                (4) 
 

Using (4) it is easy to be convinced that each of the 
relations (1)–(3) can be presented as a corollary of the 
other two. 

 
2.2. Systemic  description  of  higher  order 
 
In general [1], the systemic description may contain 
more than two structural, determination, and/or 
information coding levels. A code grid of such systemic 
description is presented in Fig. 2. Unlike the elementary 
level of the systemic description containing three node 
theories, systemic descriptions contain in general 
( 1)( 2) 2N N+ +  node theories, where N  is called the 
range of the systemic description. (For the elementary 
level of systemic description 1.)N =  

Let us define the operations of expansion and 
reduction of the systemic description correspondingly as  



Proceedings of the Estonian Academy of Sciences, 2009, 58, 3, 184–189  
 

186

 
 

Fig. 2. The code grid of a systemic description with an 
arbitrary number of structural levels; ( 0, 1, , )n n N= …a  
denote the codes of the lowest information coding levels  
and 1 1( ), , ( )n n n m n m n nf f f f f− −= =

… …

…a a a  (m n< =  
1, , )N…  denote the probability distributions specifying the 
codes of the higher information coding levels. 

 
 

an increase and a decrease of the range of the systemic 
description. In particular, the systemic description corres-
ponding to the code grid in Fig. 2 can be reduced to any 
of the node theories of the lowest information coding 
level, to the elementary level of systemic descriptions 
presented by the code grid in Fig. 1, with a  and A  
identified with arbitrary na  and ,ma  where n m< =  
1, ..., N  etc. All systemic descriptions of the same object 
are considered as equivalent in the metatheoretical sense. 
The equivalency is formulated as the property of 
metatheoretical invariance stating the reducibility of any 
particular systemic description of the object to some other 
by the reduction and/or the expansion operations of the 
systemic description. The metatheoretical invariance 
comprises all particular systemic descriptions of the same 
object into a unique description. 

 
 

3. SYSTEMIC  DESCRIPTION  OF  FLUID  
MOTION 
 

Let us specify now the introduced systemic description 
for the description of fluid motion. Figure 3 presents a 
code grid of the specification of range 2 including (as 
the node theories) canonical mechanics (CM), classical 
hydromechanics (CHM), turbulence mechanics (TM), 
statistical mechanics (SM), statistical hydromechanics 
(SHM), and an additional statistical theory of the second 
order denoted as SM2, required to make the systemic 
description complete. In addition to the nine node 
theories, the systemic description corresponding to the 
code grid in Fig. 3 embraces also nine recoding theories. 
Let us treat the situation presented in Fig. 3 together 
with the situations in Fig. 4 presenting two different 
reductions of the situation in Fig. 3 down to the 
elementary level of the systemic description. 

Consider first the recoding theories CM SM⊕  and 
CHM SHM⊕   coinciding by the  type  with f⊕a  dis- 

 
 

Fig. 3. A code grid for a systemic description of fluid motions 
embracing classical mechanics (CM), statistical mechanics 
(SM), classical hydromechanics (CHM), statistical hydro-
mechanics (SHM), turbulence mechanics (TM), and the 
statistical theory of second order denoted as SM2. 
 

 
             (a)                                 (b) 

 
 

Fig. 4. Examples of reductions of a systemic description with 
the code grid in Fig. 3 down to the elementary level of the 
systemic description comprising CM, SM, and CHM (a) and 
CHM, SHM, and TM (b). 
 

 
cussed in 2.1. The splitting of the phase trajectories 
within CM SM⊕  is explained by the analytical integrals 
of energy, momentum, moment of momentum, and 
centre of gravity forming only part of the integrals of 
the medium motion within the CM. The additional 
integrals are, as a rule, non-algebraic functions from 
canonical variables behaving irregularly in space and 
time. At the time instant when these integrals become 
essential the medium state is characterized as instable 
and the listed ten classical integrals become insufficient 
to determine the motion uniquely. One single phase 
trajectory is followed after this time instant by a bunch 
of (virtual) phase trajectories (the Poincaré explosion). 
Every phase trajectory in this bunch is possible and 
independent of the others, which founds the probabilistic 
description of the medium behaviour within SM by the 
probability distribution formed in the course of an 
unbounded increase of the number of Poincaré explosions 
in time. The situation with CHM SHM⊕  is similar. In 
this case the probability distribution characterizing the 
motion within SHM is formed in the course of an 
unbounded sequence of bifurcations of realizations of 
medium behaviour described within CHM (which are 
analogues to the Poincaré explosions of the medium 
behaviour on the canonical structural level). Let us 
emphasize that similarly to ,f⊕a  discussed in 2.1, 
CM SM⊕  and CHM SHM⊕  only found the formation 
of the probability distributions retaining their specific 
properties, formed under the conditions formulated as the 
medium average states determined within CHM and 
TM, correspondingly, unspecified. 
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The situation with the recoding theories CM CHM⊕  
and CHM TM⊕  is analogous to the theory ⊕a A  and 
the situation with the recoding theories SM CHM⊕  and 
SHM TM⊕  is analogous to the theory f⊕A  discussed 
in 2.1. The first analogy declares an impossibility to treat 
CHM and TM as deduced from CM and CHM, 
respectively, and the second analogy declares a coupling 
of statistical properties of the medium expressed in terms 
of SM and SHM with the medium average properties 
fixed in terms of CHM and TM, respectively. 

Everything said above with respect to the node 
theories embraced by the systemic descriptions cor-
responding to the code grids in Figs 3 and 4 spreads 
equally to all particular realizations of the node theories. 
Consider, for example, two formulations of TM specified 
as the conventional formulation of TM (henceforth, 
conventional turbulence mechanics or CTM) and the 
formulation of TM as discussed in [2–5] (henceforth, the 
theory of rotationally anisotropic turbulence or the RAT 
theory). The formulations are founded on two different 
classical turbulence conceptions – the Reynolds concep-
tion [10], which disregards the effects of the preferred 
orientation of eddy rotation, and the Richardson–Kolmo-
gorov conception [11,12] just stressing the preferred 
rotation orientation as an essential attribute of the large-
scale eddies immediately interacting with the average 
flow. The RAT theory formalizes the difference by 
defining quantity ,′= ×Μ v R  where ′v  is the velocity 
fluctuation, R  denotes curvature radius of the ′v  
streamline, and the angular brackets denote statistical 
averaging. Quantity M  has the physical sense of the 
density of moment of momentum per unit mass and a 
dynamic measure of the preferred orientation of eddy 
rotation. In terms of M  the CTM and the RAT theories 
become specified as treating the situations with 0≡M  
and 0,≠M  respectively. Within SHM the difference 
results in two formulations of SHM. The first formulation 
specifies the probability distribution (determining the 
medium state within SHM) as depending on the velocity 
fluctuations only while the second formulation considers 
R  included to the set of arguments of the probability 
distribution. The inclusion means distinguishing the 
velocity fluctuations at flow field points (in addition to 
their magnitude and direction, as it is assumed within the 
setup of CTM) by the curvature of the velocity fluctua-
tion streamlines passing the points. 

 
 

4.  EXPANSIONS  OF  THE  INITIAL  SYSTEMIC  
DESCRIPTION 
 

The systemic description corresponding to the code grid 
in Fig. 3 can be not only reduced but also expanded. 
Figures 5 and 6 represent the code grids of two examples 
of expansion. The systemic description founded on the 
code  grid  shown in  Fig. 5  accounts for  the  multi-scale  

 
 

Fig. 5. The code grid of an expansion of the systemic descrip-
tion with the code grid in Fig. 3 to account for the multi-scale 
structure of turbulence. 

 
 

structure of turbulence (Fig. 5) and the systemic descrip-
tion founded on the code grid in Fig. 6 accounts for the 
physical structural levels of the medium, represented in 
Fig. 6 by electrodynamics (ED) (the Maxwell’s theory), 
quantum mechanics (QM) (formulated in the form of the 
Schrödinger equation disregarding the spin effects), the 
statistical theory of strong interactions (SSI), and a theory 
denoted as SI, although not formulated yet. 

Let us consider the systemic description founded on 
the code grid in Fig. 6 in a greater detail. The node 
theories of the mechanical levels of the systemic descrip-
tion presented in the code grid in Fig. 6 have their 
counterparts on the physical levels located symmetrically 
to the CM as to a common theoretical origin of the setups 
of descriptions of the medium on the mechanical and on 
the physical structural levels. The theories specified as 
counterparts have also some similarities in their mathe-
matical formulations. The similarities in mathematical 
formulations of CHM and ED [6] and of SM and QM 
represent the most familiar examples. Unlike the con- 
 
 

 
 

Fig. 6. The code grid for a conjoint systemic description of 
fluid motion and of some physical fields. Besides the 
abbreviations specifying the node theories included into the 
systemic description explained in the caption of Fig. 3 the 
following abbreviations are used: ED – electrodynamics; 
QM – quantum mechanics; SI – phenomenological theory of 
strong interaction; SSI – statistical theory of strong interaction. 
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sidered pairs of theories describing the fields without 
spin or its mechanical equivalent, spin appears to play a 
crucial role within SHM and SSI. (The role of spin 
within SHM is performed by .)M  Let us list some other 
similarities in the formulation of SHM and SSI (in 
addition to the essentiality of spin in both cases). Firstly, 
SHM allows a mathematical formulation in the form of 
an equation resembling the Schwinger equation of the 
theory of fields with a strong interaction [7] (with the 
Reynolds number in the role of the measure of the 
interaction ‘strength’; the similarity is the closest for the 
systems of photon-type particles, i.e. of the quantums of 
the electromagnetic field). Secondly, the characteristic 
of the turbulent motion field scaling property is treated 
as a property common to all fields with a strong interac-
tion [8]. Thirdly, consideration of transmutations as a 
physical form of motion, declared in [9] in the context 
of relativistic quantum theory of fields with a strong 
interaction, is inherent also to the understanding of 
turbulence in the sense expressed by the Richardson–
Kolmogorov turbulence conception. 

 
 

5. CONCLUSIONS 
 

The discussed systemic description of fluid motion 
presents a meta-level of the fluid motion description. On 
this description level the fluid motion is described 
through a certain system(s) of interlinked particular 
theories with divided competence. Divided competence 
means that each particular theory embraced by the 
systemic description solves tasks that cannot be solved by 
the others. Classical hydromechanics (CHM), statistical 
hydromechanics (SHM), and turbulence mechanics (TM) 
are examples of this kind of particular theories. 

The discussed systemic description was induced  
by the need to oppose the position considering the 
turbulence description reducible to integration of equa-
tions of CHM, to demonstrate the coupling of formula-
tions of the turbulent medium statistical and average 
descriptions realized within SHM and TM and to found 
the fundamentality of the specification of the turbulence 
quality prior to any setup of turbulence description. The 
need rises in the context of explaining the methodo-
logical background of the theory of rotationally aniso-
tropic turbulence introducing to the turbulence problems 
discussion a novelty not fitting into the familiar frames 
of turbulence treatment. 

One specific feature of the discussed systemic 
description is the enrichment of the characterization of 
particular theories embraced by the systemic description 
with their systemic properties not revealing whether 
these theories are treated outside the system(s) they 
belong to. The coupling of the characterization of 
medium properties within SHM and TM is an example 
of this. 

An essential property of the formulated systemic 
description is its ability to be reduced and/or expanded, 
explained respectively as a decrease or an increase of 
the number of structural levels of the medium 
simultaneously accounted for in the systemic 
description setup. (All systemic descriptions reducible 
to each other by the operations of expansion and/or 
reduction are considered as equivalent in the meta-
theoretical sense.) As an example, the systemic descrip-
tion comprising CHM, SHM, and TM can be expanded 
to embrace also classical mechanics (CM) and statistical 
mechanics (SM). The expansion founds, in particular, 
the analogy between the recording theory CHM SHM,⊕  
linking CHM and SHM, and the recoding theory 
CM SM,⊕  linking CM and SM. It follows from the 
analogy that SHM cannot be replaced by methods of 
direct numerical simulation founded on CHM. Similarly 
to the expansion of the systemic description comprising 
CHM, SHM, and TM accounting for the medium 
molecular level, the expansion can be also realized to 
account for the levels reflecting the medium properties 
in terms of physical fields. 

Finally, the discussed systemic description is an 
alternative to the point of view treating a science field 
achieving its perfection as a universal theory from 
which all other theories of the field follow as special 
cases. Unlike this point of view, the systemic approach 
considers the theoretical perfection achievable on the 
systemic description level. Each particular theory 
embraced by the systemic description treats an object or 
a phenomenon under investigation within its own 
competence while a complete description is achieved by 
using the competence of all particular theories 
organized by the systemic description. The discussed 
setup of the systemic description of fluid motion is an 
example. 
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Vedelike  liikumise  süsteemkirjeldus 

 
Jaak Heinloo 

 
On formuleeritud vedelike liikumise süsteemkirjelduse struktuur ja põhimõtted. Süsteemkirjeldus delegeerib 
vedelike liikumise kirjelduse omavahel seotud, kuid vastandlikke omadusi (diskreetsus ja pidevus, determineeritus ja 
juhuslikkus) eeldatavate teooriate kogule. Süsteemkirjelduse eesmärgiks on selles osalevate teooriate (kui teooriate 
süsteemi elementide) süsteemsete omaduste väljaselgitamine ja nende süstematiseerimine nimetatud süsteemsete 
omaduste sarnasuste ning erinevuste alusel. 

 
 


