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Abstract. Several aspects of the convergence of a double series in the sense of Pringsheim are considered in analogy with some
well-known results for single series. They include various tests for absolute convergence and also criteria for convergence of the
Cauchy product. Some errors in the works of earlier authors are corrected.

Key words: summability theory, double series, convergence test, Pringsheim convergence, boundedly convergent, regularly
convergent, Cauchy product, matrix transformation.

1. INTRODUCTION

Since Pringsheim introduced the notion of convergence of a numerical double series in terms of the
convergence of the double sequence of its rectangular partial sums in [9], several authors have contributed
to this topic during the last century. However, an exhaustive treatment giving analogues of all well-
known convergence aspects of single series seems to be unavailable. The purpose of this article is to
fill in some of the gaps in such a treatment, and also to point out some errors in previous attempts to
obtain results exactly analogous to those of a single series. In Section 2, we give some tests for absolute
convergence of a double series including analogues of Cauchy’s Condensation Test, Abel’s kth Term Test,
Limit Comparison Test, Ratio Test, Ratio Comparison Test, and Raabe’s Test. In Section 3, we give
necessary and sufficient conditions on a double sequence (ak,`) in order that the Cauchy product double
series ∑k,` ak,` ∗ bk,` would be convergent/boundedly convergent/regularly convergent whenever a double
series ∑k,` bk,` is convergent/boundedly convergent/regularly convergent. We also show that if two double
series are boundedly convergent, then the Cauchy product double series is Cesàro summable and its Cesàro
sum is equal to the product of the sums of the given double series. We compare our results with those
obtained previously and give several examples to which our results apply. Although we shall consider, for
simplicity, only double series whose terms are real numbers, the treatment carries over to multiple series
whose terms may be complex numbers.

Throughout this article, N, N2, N0, N2
0 , and R will denote the set of all positive integers, of all pairs of

positive integers, of all nonnegative integers, of all pairs of nonnegative integers, and of all real numbers,
respectively. We shall use the partial order on N2

0 given by ‘(k1, `1) ≤ (k2, `2) if and only if k1 ≤ k2 and
`1 ≤ `2’. Monotonicity of a double sequence is defined in terms of this partial order. We shall adopt
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Pringsheim’s definition of convergence of a double series ∑k,` ak,` of real numbers: If Am,n := ∑m
k=1 ∑n

`=1 ak,`

for (m,n) ∈ N2, then ∑k,` ak,` is said to be convergent if the double sequence (Am,n) of its partial sums is
convergent in the sense of Pringsheim, that is, there is A∈R such that for every ε > 0, there is (m0,n0)∈N2

satisfying (m,n)≥ (m0,n0) =⇒ |Am,n−A|< ε . When every ak,` is nonnegative, ∑k,` ak,` is convergent if and
only if (Am,n) is bounded above. For each fixed k ∈ N, the series ∑` ak,` is called a row-series, and for each
fixed ` ∈ N, the series ∑k ak,` is called a column-series corresponding to the double series ∑k,` ak,`.

2. ABSOLUTE CONVERGENCE

If a double series is absolutely convergent, then evidently the corresponding row-series and the column-
series are all absolutely convergent. However, the converse is not true, as can be seen by considering ∑k,` ak,`,
where ak,k := 1 and ak,` := 0 for k 6= `. The following result gives necessary and sufficient conditions for
the absolute convergence of a double series.

Lemma 2.1. A double series ∑k,` ak,` is absolutely convergent if and only if the following conditions hold:
(i) There are (k0, `0) ∈ N2 and α0 > 0 such that

m

∑
k=k0

n

∑
`=`0

|ak,`| ≤ α0 for all (m,n)≥ (k0, `0).

(ii) Each row-series as well as each column-series is absolutely convergent.

We shall provide a variety of conditions each of which imply condition (i) of the above lemma. These
yield convergence tests for double series which are analogous to well-known convergence tests for single
series. (See, for example, Chapter 9 of [6] and the exercises therein.)

The following test shows that we can study the convergence of certain double series by considering only
some of its terms.

Theorem 2.2 (Cauchy’s Condensation Test). Let (ak,`) be a monotonically decreasing double sequence of
nonnegative numbers. Then ∑∞

k,`=1 ak,` converges if and only if ∑∞
k,`=0 2k+`a2k,2` converges.

Proof. Given (m,n) ∈ N2, let i, j ∈ N0 be such that 2i ≤ m < 2i+1 and 2 j ≤ n < 2 j+1. Since ak,` ≥ 0 for all
(k, `) ∈ N2, we have

i−1

∑
k=0

j−1

∑̀
=0

(
2k+1−1

∑
u=2k

2`+1−1

∑
v=2`

au,v

)
≤

m

∑
k=1

n

∑̀
=1

ak,` ≤
i

∑
k=0

j

∑̀
=0

(
2k+1−1

∑
u=2k

2`+1−1

∑
v=2`

au,v

)
,

and since (ak,`) is monotonically decreasing, we obtain

1
4

i

∑
k=1

j

∑̀
=1

2k+`a2k,2` =
i−1

∑
k=0

j−1

∑̀
=0

2k+`a2k+1,2`+1 ≤
m

∑
k=1

n

∑̀
=1

ak,` ≤
i

∑
k=0

j

∑̀
=0

2k+`a2k,2` .

This shows that if the partial sums of ∑∞
k,`=0 2k+`a2k,2` are bounded, then so are the partial sums of ∑∞

k,`=1 ak,`,
and if the partial sums of ∑∞

k,`=1 ak,` are bounded, then so are the partial sums ∑∞
k,`=1 2k+`a2k,2` . Further, if

∑∞
k,`=1 ak,` is convergent, then the row-series ∑∞

`=1 a1,` and the column-series ∑∞
k=1 ak,1 are convergent, where

(ak,1) and (a1,`) are monotonically decreasing sequences of nonnegative numbers. In this case, the series
∑∞

k=0 2ka2k,1 and ∑∞
`=0 2`a1,2` are convergent by Cauchy’s Condensation Test for single series. Hence the

desired result follows.
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Example 2.3. Let p ∈ R and ak,` := 1/(k + `)p for (k, `) ∈ N2. By Theorem 2.2, ∑∞
k,`=1 ak,` converges if

and only if the double series ∑∞
k,`=0 bk,` converges, where bk,` := 2k+`/(2k +2`)p. If p≤ 2, then

bk,k =
22k

(2 ·2k)p =
1
2p 2k(2−p) ≥ 1

2p for k ∈ N,

and so the double series ∑∞
k,`=0 bk,` diverges. If p > 2, then

bk,` =
2k+`

(2k +2`)p ≤
2k+`

2p(2k+`)p/2 =
1
2p

(
2(2−p)/2

)k+`
for (k, `) ∈ N2,

and so the double series ∑∞
k,`=0 bk,` converges. It follows that the double series ∑∞

k,`=1 1/(k + `)p converges
if and only if p > 2.

If ∑k,` ak,` is convergent, then ak,` → 0 as k, `→ ∞. This (k, `)th Term Test is useful for establishing the
divergence of a double series. The following variant of this test is analogous to Abel’s kth Term Test for a
single series.

Theorem 2.4 (Abel’s (k, `)th Term Test). Suppose (ak,`) is a monotonically decreasing double sequence of
nonnegative numbers. If the double series ∑k,` ak,` is convergent, then k`ak,` → 0 as k, `→ ∞.

Proof. Given (k, `) ∈ N2, let ik, j` ∈ N0 be such that 2ik ≤ k < 2ik+1 and 2 j` ≤ ` < 2 j`+1, and note that

0≤ k`ak,` ≤ 2ik+12 j`+1a2ik ,2 j` = 4 ·2ik 2 j`a2ik ,2 j` .

By Theorem 2.2, ∑∞
i, j=0 2i+ ja2i,2 j is convergent, and so 2i+ ja2i,2 j → 0 as i, j → ∞. Hence k`ak,` → 0 as

k, `→ ∞.

Examples 2.5.

(i) Let p,q∈R satisfy p > 0, q > 0 and (1/p)+(1/q)≥ 1, and define ak,` := 1/(kp +`q) for (k, `)∈N2.
For k ∈ N and ` = [kp/q], the integer part of kp/q, we have

k`ak,` =
k`

kp + `q >
k(kp/q−1)
kp +(kp/q)q =

1
2

k1−p+(p/q)(1− k−p/q),

which does not tend to 0 as k → ∞ since 1− p+(p/q)≥ 0 and p/q > 0. Hence by Theorem 2.4, the
double series ∑k,` 1/(kp + `q) diverges.

(ii) The converse of Theorem 2.4 does not hold. Define ak,` := 1/k`(lnk)(ln`) for (k, `)∈N2. Then (ak,`)
is a monotonically decreasing double sequence of nonnegative numbers and k`ak,` → 0 as k, `→ ∞.
However,

m

∑
k=1

n

∑̀
=1

ak,` =

(
m

∑
k=1

1
k(lnk)

)(
n

∑̀
=1

1
`(ln`)

)
→ ∞ as m,n→ ∞.

Theorem 2.6 (Limit Comparison Test). Let (ak,`) and (bk,`) be double sequences such that ak,` > 0, bk,` > 0
for all (k, `)∈N2, each row-series as well as each column-series corresponding to both ∑k,` ak,` and ∑k,` bk,`
is convergent, and limk,` ak,`/bk,` = r, where r ∈ R and r 6= 0. Then ∑k,` ak,` is convergent if and only if
∑k,` bk,` is convergent.
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Proof. Let the double series ∑k,` bk,` be convergent. Then there is β > 0 such that ∑m
k=1 ∑n

`=1 bk,` ≤ β for
all (m,n) ∈ N2. Since ak,`/bk,` → r as k, ` → ∞, there is (k0, `0) ∈ N2 such that ak,` ≤ (r + 1)bk,` for all
(k, `)≥ (k0, `0). Hence for all (m,n)≥ (k0, `0), we have

m

∑
k=k0

n

∑
`=`0

ak,` ≤ (r +1)
m

∑
k=k0

n

∑
`=`0

bk,` ≤ (r +1)β .

By Lemma 2.1, it follows that the double series ∑k,` ak,` is convergent.
Conversely, let the double series ∑k,` ak,` be convergent. Since limk,` bk,`/ak,` = 1/r, the convergence of

the double series ∑k,` bk,` follows from the first part of the proof by interchanging ak,` and bk,`.

We shall now develop several convergence tests involving ratios of ‘consecutive’ terms of a double
series.

Theorem 2.7 (Ratio Test). Let (ak,`) be a double sequence of nonzero numbers such that either
|ak,`+1|/|ak,`| → a or |ak+1,`|/|ak,`| → ã as k, `→ ∞, where a, ã,∈ R∪{∞}.

(i) Suppose each row-series as well as each column-series corresponding to ∑k,` ak,` is absolutely
convergent. If a < 1 or ã < 1, then ∑k,` ak,` is absolutely convergent.

(ii) If a > 1 or ã > 1, then ∑k,` ak,` is divergent.

Proof.

(i) Assume that a < 1. Then there are α ∈ (0,1) and (k0, `0) ∈ N2 such that |ak,`+1| ≤ α|ak,`| for all
(k, `)≥ (k0, `0). Hence

|ak,`| ≤ α|ak,`−1| ≤ · · · ≤ α`−`0 |ak,`0 | for all (k, `)≥ (k0, `0 +1).

Since α < 1, we have ∑n
`=1 α` ≤ 1/(1−α) for all n ∈ N. Also, since the series ∑k ak,`0 is assumed to

be absolutely convergent, there is β > 0 such that ∑m
k=1 |ak,`0 | ≤ β for all m ∈ N. Hence we obtain

m

∑
k=k0

n

∑
`=`0+1

|ak,`| ≤ α−`0β
1−α

for all (m,n)≥ (k0, `0 +1).

By Lemma 2.1, it follows that ∑k,` ak,` is absolutely convergent. A similar argument holds if ã < 1
instead of a < 1.

(ii) Assume that a ∈ R with a > 1 or a = ∞. Then there are α ∈ (1,∞) and (k0, `0) ∈ N2 such that
|ak,`+1|/|ak,`| ≥ α for all (k, `)≥ (k0, `0). Hence

|ak,`| ≥ α|ak,`−1| ≥ · · · ≥ α`−`0 |ak,`0 |> 0 for all (k, `)≥ (k0, `0 +1).

For a fixed k ∈ N with k ≥ k0, there is `1 ∈ N such that |ak,`| ≥ α`−`0 |ak,`0 | ≥ 1 for all `≥ `1. Hence
ak,` 6→ 0 as k, `→ ∞, so that ∑k,` ak,` is divergent. The same conclusion holds if ã ∈ R with ã > 1 or
ã = ∞.

Remarks 2.8.

(i) The proof of part (ii) of Theorem 2.7 shows that if a > 1, then the row-series ∑` ak,` diverges for each
(fixed) large k. Hence if each row-series converges and the limit a exists, then a ≤ 1. Similarly, if
ã > 1, then the column-series ∑k ak,` diverges for each (fixed) large `. Hence if each column-series
converges and the limit ã exists, then ã≤ 1.

(ii) Suppose each row-series as well as each column-series corresponding to ∑k,` ak,` is absolutely
convergent. If a = ã = 1, then the double series may converge or may diverge, as Example 2.3
shows.
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(iii) For a double sequence (ak,`) of positive numbers, consider the limits bk := lim` ak,`+1/ak,` for a fixed
k ∈ N, and c` := limk ak+1,`/ak,` for a fixed ` ∈ N, whenever they exist. Biermann (page 123 of [2])
and Vorob’ev (§4 of Chapter 13 in [11]) claimed that if bk exists and is less than 1 for each k ∈N, and
if c` exists and is less than 1 for each ` ∈ N, then the double series ∑k,` ak,` is absolutely convergent.
Although the Ratio Test for single series shows that each row-series as well as each column-series
corresponding to ∑k,` ak,` is absolutely convergent, the double series ∑k,` ak,` may not be absolutely
convergent. For example, define ak,` := 1/(2k2`/2k

) for (k, `) in N2. Then bk < 1 for each k ∈ N and
c` < 1 for each ` ∈ N. However, since for each fixed k ∈ N,

∞

∑̀
=1

ak,` =
1
2k

∞

∑̀
=1

( 1
21/2k

)`
=

1
2k(21/2k −1)

,

and since 1/2k(21/2k − 1)→ 1/ ln2 as k → ∞, we see that the iterated series ∑k ∑` ak,` diverges, and
so the double series ∑k,` ak,` also diverges. Thus the claims of Biermann and Vorob’ev are incorrect.

(iv) Suppose ak,` > 0 for all (k, `) ∈N2, and each row-series as well as each column-series corresponding
to ∑k,` ak,` is convergent. A rather involved version of the Ratio Test is given by Baron in §2 of [1] as
follows. If limk,` ak,` exists and if the limit

d := lim
k,`

ak+1,` +ak,`+1−ak+1,`+1

ak,`

exists with d < 1, then the double series ∑k,` ak,` is convergent. Let us compare Baron’s version of the
Ratio Test with our Theorem 2.7. Suppose both the limits a and ã stated in Theorem 2.7 exist and are
in R. Then the limit d exists and

d = lim
k,`

(
ak+1,`

ak,`
+

ak,`+1

ak,`
− ak+1,`+1

ak+1,`

ak+1,`

ak,`

)
= ã+a−aã.

Since, in view of (i) above, we have a ≤ 1 and ã ≤ 1, and since 1− d = (1− a)(1− ã), we see that
d < 1 if and only if a < 1 and ã < 1. Thus if one of a and ã is equal to 1 and the other is not, then
d = 1, and hence Theorem 2.7 is applicable, but Baron’s version of the Ratio Test is not. For example,
if ak,` := 1/k22` for (k, `) ∈ N2, then a = 1/2, ã = 1, and d = 1. Now suppose that the limit a exists
and it is a real number other than 1. If the limit d exists, then it can be seen that the limit ã exists
and is equal to (d− a)/(1− a). Thus if a < 1 and ã does not exist, then the limit d cannot exist,
and hence Theorem 2.7 is applicable, but Baron’s version of the Ratio Test is not. For example, if
ak,` := 1/2(k2+k`+`)/k, then a = 1/2, while the limits ã and d do not exist.

Now we consider an analogue of the Ratio Comparison Test for single series. (See, for example,
Theorem 6 in Chapter 5 of [4].)

Theorem 2.9 (Ratio Comparison Test). Let (ak,`) and (bk,`) be double sequences with bk,` > 0 for all
(k, `) ∈ N2.
(i) Suppose each row-series as well as each column-series corresponding to ∑k,` |ak,`| is convergent. If

|ak,`+1|bk,` ≤ |ak,`|bk,`+1 and |ak+1,`|bk,` ≤ |ak,`|bk+1,` whenever k and ` are large, and if ∑k,` bk,` is
convergent, then so is ∑k,` |ak,`|.

(ii) If |ak,`+1|bk,` ≥ |ak,`|bk,`+1 > 0 whenever ` is large and k ∈ N, and |ak+1,`|bk,` ≥ |ak,`|bk+1,` > 0
whenever k is large and ` ∈ N, and if ∑k,` bk,` is divergent, then so is ∑k,` |ak,`|.
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Proof.
(i) Let k0, `0 ∈ N be such that |ak,`+1|bk,` ≤ |ak,`|bk,`+1 and |ak+1,`|bk,` ≤ |ak,`|bk+1,` for all (k, `) ≥

(k0, `0). Then

|ak,`|
bk,`

≤ |ak,`−1|
bk,`−1

≤ ·· · ≤ |ak,`0 |
bk,`0

≤ |ak−1,`0 |
bk−1,`0

≤ ·· · ≤ |ak0,`0 |
bk0,`0

for (k, `)≥ (k0, `0).

Let ∑k,` bk,` be convergent. Since β := sup
{

∑m
k=1 ∑n

`=1 bk,` : (m,n) ∈ N2
}

< ∞, we obtain

m

∑
k=k0

n

∑
`=`0

|ak,`| ≤ |ak0,`0 |
bk0,`0

m

∑
k=k0

n

∑
`=`0

bkl ≤ β
|ak0,`0 |
bk0,`0

for all m≥ k0 and n≥ `0.

Hence by Lemma 2.1, the double series ∑k,` |ak,`| converges.
(ii) Suppose k0 ∈ N is such that |ak+1,`|bk,` ≥ |ak,`|bk+1,` > 0 for k ≥ k0 and ` ∈ N, and `0 ∈ N is such

that |ak,`+1|bk,` ≥ |ak,`|bk,`+1 > 0 for ` ≥ `0 and k ∈ N. Let ∑k,` bk,` be divergent. If ∑k bk,` diverges
for some ` ∈ N, then by the Ratio Comparison Test for single series, ∑k |ak,`| also diverges for that
`. Similarly, if ∑` bk,` diverges for some k ∈ N, then ∑` |ak,`| also diverges for that k. In these
cases, condition (ii) of Lemma 2.1 is not satisfied, and so the double series ∑k,` |ak,`| diverges. In
the remaining case, the set

{
∑m

k=k0 ∑n
`=`0

bk,` : (m,n) ∈ N2
}

is unbounded. Reversing the inequality
signs in (i) above, we obtain

m

∑
k=k0

n

∑
`=`0

|ak,`| ≥ |ak0,`0 |
bk0,`0

m

∑
k=k0

n

∑
`=`0

bkl,

which tends to ∞ as m,n→ ∞. Hence by Lemma 2.1, ∑k,` |ak,`| diverges.

Remarks 2.10.

(i) The following example shows that both the inequalities |ak,`+1|bk,` ≤ |ak,`|bk,`+1 and |ak+1,`|bk,` ≤
|ak,`|bk+1,` are needed in part (i) of Theorem 2.9. Define

ak,` :=
1

(k + `)2 and bk,` =
1

2k(k + `)2 for (k, `) ∈ N2.

Although each row-series as well as each column-series converges, the double series ∑k,` ak,` diverges,
as we have seen in Example 2.3. However, the double series ∑k,` bk,` converges, since 1/(2k(k+`)2)≤
1/(2k`2) for all (k, `) ∈ N2. Here the first inequality mentioned above holds but the second does not.
To see that both the inequalities |ak,`+1|bk,` ≥ |ak,`|bk,`+1 and |ak+1,`|bk,` ≥ |ak,`|bk+1,` are needed in
part (ii) of Theorem 2.9, we just interchange the roles of ak,` and bk,` in (i) above.

(ii) The requirement ‘|ak,`+1|bk,` ≤ |ak,`|bk,`+1 and |ak+1,`|bk,` ≤ |ak,`|bk+1,` whenever k and ` are
large’, in part (i) of Theorem 2.9, is less stringent than the requirement ‘|ak+p,`+1+q|bk+r,`+s ≤
|ak+p,`+q|bk+r,`+1+s and |ak+1+p,`+q|bk+r,`+s≤ |ak+1+p,`+q|bk+1+r,`+s for all k, `, p,q,r,s∈N’ imposed
by Biermann for a similar result in [2], page 124.

As a consequence of the Ratio Comparison Test, we obtain an analogue of Raabe’s Test for single series.
It is useful in some cases when a = ã = 1 in Theorem 2.7.

Theorem 2.11. Let (ak,`) be a double sequence.

(i) Suppose each row-series as well as each column-series corresponding to ∑k,` |ak,`| is convergent. If
there is p > 1 such that

|ak,`+1| ≤
(

1− p
`

)
|ak,`| and |ak+1,`| ≤

(
1− p

k

)
|ak,`|

whenever k and ` are large, then ∑k,` |ak,`| is convergent.
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(ii) If |ak,`+1| ≥ (1−1/`)|ak,`|> 0 for some k ∈N and all large ` ∈N, or if |ak+1,`| ≥ (1−1/k)|ak,`|> 0
for some ` ∈ N and all large k ∈ N, then ∑k,` |ak,`| is divergent.

Proof.
(i) Suppose there is p > 1 with the stated properties. Using the inequality 1− px≤ (1−x)p for x ∈ [0,1],

we obtain
|ak,`+1| ≤

(
1− p

`

)
|ak,`| ≤

(
1− 1

`

)p
|ak,`| ≤

( `

`+1

)p
|ak,`|

whenever k and ` are large, and hence

|ak,`+1| 1
kp`p ≤ |ak,`| 1

kp(`+1)p .

Similarly, we obtain

|ak+1,`| 1
kp`p ≤ |ak,`| 1

(k +1)p`p

whenever k and ` are large. By part (i) of Theorem 2.9 with bk,` := 1/(kp`p) for (k, `)∈N2, we obtain
the desired result.

(ii) Suppose the assumption in (ii) holds. Then by Raabe’s Test for single series, ∑k |ak,`| diverges for
some ` ∈ N or ∑` |ak,`| diverges for some k ∈ N. In any case, condition (ii) of Lemma 2.1 is not
satisfied, and so the double series ∑k,` |ak,`| is divergent.

Examples 2.12.
(i) Let a1,1 := 1, ak+1,1 := (2k− 1)ak,1/(2k + 2) for k ∈ N and ak,`+1 := (2`− 1)ak,`/(2` + 2) for

(k, `) ∈ N2. By part (i) of Theorem 2.11 with p = 5/4, we see that the double series ∑k,` ak,` is
convergent.

(ii) Let a1,1 := 1, ak+1,1 := kak,1/(k +1) for k ∈N and ak,`+1 := `ak,`/(`+1) for (k, `) ∈N2. By part (ii)
of Theorem 2.11, we see that the double series ∑k,` ak,` is divergent.

In both examples, Theorem 2.7 is not applicable, since a = ã = 1.

We deduce the following ‘limit’ version of Raabe’s Test from Theorem 2.11.

Theorem 2.13. Let (ak,`) be a double sequence of nonzero numbers.
(i) Suppose `(1−|ak,`+1/ak,`|)→ α and k (1−|ak+1,`/ak,`|)→ α̃ as k, `→ ∞, where α, α̃ ∈ R∪{∞}.

Suppose each row-series as well as each column-series corresponding to ∑k,` |ak,`| is convergent. If
α > 1 and α̃ > 1, then ∑k,` |ak,`| is convergent.

(ii) If for some k ∈ N, the limit lim`→∞ `(1−|ak,`+1/ak,`|) exists and is less than 1, or if for some ` ∈ N,
the limit limk→∞ k(1−|ak+1,`/ak,`|) exists and is less than 1, then ∑k,` |ak,`| is divergent.

Remark 2.14. Suppose ak,` > 0 for all (k, `) ∈ N2, and each row-series as well as each column-series
corresponding to ∑k,` ak,` is convergent. A rather involved version of Raabe’s Test for double series is given
by Baron in §3 of [1] as follows. If limk,` ak,` exists and if the limit

r := lim
k,`

[
(k + `)

(
1− ak+1,` +ak,`+1−ak+1,`+1

ak,`

)
+

ak+1,`+1

ak,`

]

exists with r > 1, then the double series ∑k,` ak,` is convergent. Let us compare Baron’s version of Raabe’s
Test with our Theorem 2.13. Suppose both the limits α and α̃ stated in Theorem 2.13 exist and are in R.
Then since ak,`+1/ak,` → 1 and ak+1,`/ak,` → 1 as k, `→ ∞, we see that the limit r exists and

r = lim
k,`

[
k
(

1− ak+1,`

ak,`

)
+ `

(
1− ak,`+1

ak,`

)
− ak+1,`

ak,`
`
(

1− ak+1,`+1

ak+1,`

)

−ak,`+1

ak,`
k
(

1− ak+1,`+1

ak,`+1

)
+

ak+1,`+1

ak,`+1

ak,`+1

ak,`

]

= α̃ +α−α− α̃ +1 = 1.

In all such cases, Theorem 2.13 is applicable, but Baron’s version of Raabe’s Test is not. For instance, in
Example 2.12 (i), we have α = 2 = α̃ , but r = 1.
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3. CAUCHY PRODUCT

The Cauchy product of sequences (ak) and (bk) with k ∈ N0 is defined to be the sequence (ak ∗bk), where
ak ∗bk := ∑k

i=0 aibk−i for k ∈ N0, and the Cauchy product of single series ∑∞
k=0 ak and ∑∞

k=0 bk is defined to
be the double series ∑∞

k=0 ak ∗ bk. Analogously, the Cauchy product of double sequences (ak,`) and (bk,`)
with (k, `) ∈ N2

0 is defined to be the sequence (ak,` ∗bk,`), where

ak,` ∗bk,` :=
k

∑
i=0

`

∑
j=0

ai, jbk−i,`− j for (k, `) ∈ N2
0 ,

and the Cauchy product of double series ∑∞
k,`=0 ak,` and ∑∞

k,`=0 bk,` is defined to be the double series
∑∞

k,`=0 ak,` ∗ bk,`. A classical result of Mertens states that if one of the given single series is absolutely
convergent and the other is convergent, then their Cauchy product series is convergent. Another result due
to Abel states that if both the given single series and their Cauchy product series are convergent, then the
sum of the Cauchy product series is equal to the product of the sums of the given series. It has been known
for long that the exact analogue of Mertens’ result does not hold for double series. (See the examples given
on page 1036 of [10] and on page 190 of [5].) The example below shows that the exact analogue of Abel’s
result does not hold for double series.

Example 3.1. Consider double sequences (ak,`) and (bk,`) defined by a0,` := 1 and a1,` := −1 for ` ∈ N0,
whereas ak,` := 0 for k ∈N0 \{0,1} and ` ∈N0, while bk,0 := 1 and bk,1 :=−1 for k ∈N0, whereas bk,` := 0
for ` ∈ N0 \{0,1} and k ∈ N0. Then ∑k,` ak,` and ∑k,` bk,` are convergent and the sum of each is equal to 0.
Also, it is easy to see that a0,0∗b0,0 = 1 and ak,`∗bk,` = 0 for all (k, `)∈N2

0 \{(0,0)}, so that ∑∞
k,`=0 ak,`∗bk,`

is convergent and its sum is 1.

We shall now prove analogues of the theorems of Mertens and Abel for double series which are
boundedly convergent, that is, which are convergent and their partial sums are bounded. In fact, we shall
show that Mertens’ result admits a converse for such double series in respect of absolute convergence. Our
proofs will be based on the following result for a transformation of a double sequence by a 4-fold infinite
matrix. It is an analogue of the well-known Kojima–Schur Theorem (given, for instance, in Theorem 2.3.7
of [3]) for boundedly convergent double sequences.

Let αm,n,k,` ∈R and consider the matrix A := (αm,n,k,`). We say that A maps a double sequence x := (xk,`)
to the double sequence Ax defined by

[Ax]m,n := ∑
k,`

αm,n,k,`xk,`,

provided the double series on the right side converges for each fixed (m,n).

Lemma 3.2. A matrix A := (αm,n,k,`) maps each bounded convergent double sequence to a bounded
convergent double sequence if and only if
(i) sup

m,n
∑k,` |αm,n,k,`|< ∞,

(ii) the limit α := lim
m,n

∑k,` αm,n,k,` exists,

(iii) the limit αk,` := lim
m,n

αm,n,k,` exists for each fixed (k, `), and

(iv) lim
m,n

∑k |αm,n,k,`−αk,`|= 0 for each fixed `,

lim
m,n

∑` |αm,n,k,`−αk,`|= 0 for each fixed k.

In this event, the double series ∑k,` αk,` is absolutely convergent, and for any bounded convergent double
sequence (xk,`), we have the limit formula

lim
m,n

[Ax]m,n =
(
α−∑k,`αk,`

)
lim
m,n

xm,n +∑k,`αk,`xk,`.
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See [8], especially conditions (c1),(d3), and (d4) in §3, condition 20. S.BC → BC and limit formula (11.1)
in §6, and a remark in §7 about the necessity of S. conditions. (See also Theorem 4.1.2 of [12].)

Theorem 3.3. Let (ak,`) be a double sequence. Then the Cauchy product double series ∑∞
k,`=0 ak,` ∗ bk,`

is boundedly convergent for every boundedly convergent double series ∑∞
k,`=0 bk,` if and only if the double

series ∑∞
k,`=0 ak,` is absolutely convergent. In this event, we have ∑∞

k,`=0 ak,`∗bk,` =
(
∑∞

k,`=0 ak,`
)(

∑∞
k,`=0 bk,`

)
.

Proof. For m,n ∈ N0, let

Am,n :=
m

∑
k=0

n

∑̀
=0

ak,`, Bm,n :=
m

∑
k=0

n

∑̀
=0

bk,`, and Cm,n :=
m

∑
k=0

n

∑̀
=0

ak,` ∗bk,`.

Then

Cm,n =
m

∑
k=0

n

∑̀
=0

( k

∑
i=0

`

∑
j=0

ak−i,`− jbi, j

)
=

m

∑
k=0

n

∑̀
=0

am−k,n−`

( k

∑
i=0

`

∑
j=0

bi, j

)

=
m

∑
k=0

n

∑̀
=0

am−k,n−`Bk,` for (m,n) ∈ N2
0 .

Now the double series ∑∞
k,`=0 ak,` ∗ bk,` (respectively, ∑∞

k,`=0 bk,`) is boundedly convergent if and only
if the double sequence (Cm,n) (respectively, (Bm,n)) is boundedly convergent. Consider the matrix A :=
(αm,n,k,`), where

αm,n,k,`, :=
{

am−k,n−` if 0≤ k ≤ m and 0≤ `≤ n,
0 otherwise.

Then [A(Bk,`)]m,n = Cm,n for all (m,n) ∈ N2
0 . It is clear that the matrix A satisfies condition (i) of Lemma

3.2 if and only if
sup
m,n

∑m
k=0 ∑n

`=0|am−k,n−`|= sup
m,n

∑m
k=0 ∑n

`=0|ak,`|< ∞,

that is, if and only if the double series ∑k,` ak,` is absolutely convergent, and in that case, we have

α := lim
m,n

∑k,`αm,n,k,` = lim
m,n

∑m
k=0 ∑n

`=0ak,` = ∑k,`ak,`,

αk,` := lim
m,n

αm,n,k,` = lim
m,n

am,n = 0 for each fixed (k, `) ∈ N2
0 ,

lim
m,n

∑k|αm,n,k,`−αk,`|= lim
n

∑∞
k=0|ak,n−`|= 0 for each fixed ` ∈ N0,

lim
m,n

∑`|αm,n,k,`−αk,`|= lim
m

∑∞
`=0|am−k,`|= 0 for each fixed k ∈ N0,

that is, conditions (ii), (iii), and (iv) of Lemma 3.2 are automatically satisfied. Hence the
desired result follows from Lemma 3.2 with ∑∞

k,`=0 ak,` ∗ bk,` =
(
∑∞

k,`=0 ak,`−0
)

limm,n Bm,n + 0 =(
∑∞

k,`=0 ak,`
)(

∑∞
k,`=0 bk,`

)
.

Remark 3.4. It is interesting to compare the above analogue of Mertens’ theorem with the following
result stated by Sheffer in Theorem 3 of [10]. Let ∑∞

k,`=0 bk,` be a convergent double series. Then the
Cauchy product double series ∑∞

k,`=0 ak,` ∗ bk,` is convergent for every absolutely convergent double series
∑∞

k,`=0 ak,` if and only if the partial sums of ∑∞
k,`=0 bk,` are bounded, and in that event, ∑∞

k,`=0 ak,` ∗ bk,` =(
∑∞

k,`=0 ak,`
)(

∑∞
k,`=0 bk,`

)
.

We proceed to prove an analogue of Abel’s theorem for boundedly convergent double series. Its proof
is based on the following result which uses a matrix transformation considered in Lemma 3.2.
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Lemma 3.5. Let (am,n) with (m,n) ∈ N2
0 be a bounded convergent double sequence and a := limm,n am,n.

If ãm,n :=
(

∑m
k=0 ∑n

`=0 ak,`
)
/(m + 1)(n + 1), then (ãm,n) is a bounded convergent double sequence and

limm,n ãm,n = a. Further, if (bm,n) is a bounded convergent double sequence and b := limm,n bm,n, then

lim
m,n

am,n ∗bm,n

(m+1)(n+1)
= ab.

Proof. Consider the matrix L := (λm,n,k,`), where

λm,n,k,`, :=
{

1/(m+1)(n+1) if 0≤ k ≤ m and 0≤ `≤ n,
0 otherwise.

Then [L(ak,`)]m,n = ãm,n for all (m,n) ∈ N2
0 . Also,

sup
m,n

∑k,`|λm,n,k,`|= lim
m,n

∑k,`λm,n,k,` = lim
m,n

∑m
k=0 ∑n

`=0λm,n,k,` = 1,

λk,` := lim
m,n

λm,n,k,` = lim
m,n

1
(m+1)(n+1)

= 0 for each fixed (k, `) ∈ N2
0 ,

lim
m,n

∑k|λm,n,k,`−λk,`|= lim
n

1
(n+1)

= 0 for each fixed ` ∈ N0 and

lim
m,n

∑`|λm,n,k,`−λk,`|= lim
m

1
(m+1)

= 0 for each fixed k ∈ N0,

that is, conditions (i)–(iv) of Lemma 3.2 are satisfied, and so by the limit formula, we obtain limm,n ãm,n =
(1−0)a+0 = a.

Next, let (bm,n) be a bounded convergent double sequence and b := limm,n bm,n. Consider the matrix
A := (αm,n,k,`), where

αm,n,k,`, :=
{

am−k,n−`/(m+1)(n+1) if 0≤ k ≤ m and 0≤ `≤ n,
0 otherwise.

Then [A(bk,`)]m,n = (am,n ∗ bm,n)/(m + 1)(n + 1) for all (m,n) ∈ N2
0 . Also, since β :=

sup
{|am,n| : (m,n) ∈ N2

0
}

< ∞, we obtain

sup
m,n

∑k,`|αm,n,k,`|= sup
m,n

∑m
k=0 ∑n

`=0αm,n,k,` ≤ β ,

α := lim
m,n

∑k,`αm,n,k,` = lim
m,n

∑m
k=0 ∑n

`=0αm,n,k,` = lim
m,n

ãm,n = a,

αk,` := lim
m,n

αm,n,k,` = lim
m,n

am,n

(m+1)(n+1)
= 0 for each fixed (k, `) ∈ N2

0 ,

lim
m,n

∑k|αm,n,k,`−αk,`| ≤ lim
n

β
(n+1)

= 0 for each fixed ` ∈ N0 and

lim
m,n

∑`|αm,n,k,`−αk,`| ≤ lim
m

β
(m+1)

= 0 for each fixed k ∈ N0,

that is, conditions (i)–(iv) of Lemma 3.2 are satisfied, and so by the limit formula, we obtain limm,n(am,n ∗
bm,n)/(m+1)(n+1) = (a−0)b+0 = ab.

A double series ∑∞
k,`=0 ak,` is said to be Cesàro summable if

lim
m,n

1
(m+1)(n+1)

m

∑
k=0

n

∑̀
=0

Ak,`

exists, where Ak,` is the (k, `)th partial sum of the double series. In that event, the above limit is called the
Cesàro sum of the double series. It follows from Lemma 3.5 that a boundedly convergent double series is
Cesàro summable, and its Cesàro sum is equal to its sum.
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Theorem 3.6. Let ∑∞
k,`=0 ak,` and ∑∞

k,`=0 bk,` be boundedly convergent double series. Then the Cauchy
product double series ∑∞

k,`=0 ak,` ∗bk,` is Cesàro summable and its Cesàro sum is equal to AB, where A and
B are the sums of the given double series. In particular, if the double series ∑∞

k,`=0 ak,` ∗ bk,` is boundedly
convergent, then its sum is equal to AB.

Proof. We use the notation introduced in the proof of Theorem 3.3. We have

Cm,n =
m

∑
k=0

n

∑̀
=0

ak,` ∗bk,` = am,n ∗Bm,n = Am,n ∗bm,n for (m,n) ∈ N2
0 .

Replacing ak,` and bk,` by Am,n and bm,n, we obtain

p

∑
m=0

q

∑
n=0

Cm,n =
p

∑
m=0

q

∑
n=0

Am,n ∗bm,n = Ap,q ∗Bp,q for (p,q) ∈ N2
0 .

Hence by Lemma 3.5, we have

lim
p,q

1
(p+1)(q+1)

p

∑
m=0

q

∑
n=0

Cm,n = lim
p,q

Ap,q ∗Bp,q

(p+1)(q+1)
= AB.

Thus ∑∞
k,`=0 ak,` ∗ bk,` is Cesàro summable and its Cesàro sum is equal to AB. The last sentence in the

statement of the theorem follows easily.

Remark 3.7. In Theorem 1 of [5], Cesari gives the following analogue of Abel’s theorem. Let ∑∞
k,`=0 ak,`

and ∑∞
k,`=0 bk,` be convergent double series such that

lim
k+`→∞

ak,` = 0 = lim
k+`→∞

bk,`.

Then the double series ∑∞
k,`=0 ak,` ∗ bk,` is restrictedly Cesàro summable to AB in the following sense: For

any positive real numbers r, s with r < s,

lim
m,n→∞

nr<m<ns

σm,n = AB, where σm,n :=
1

(m+1)(n+1)

m

∑
k=0

n

∑̀
=0

Ck,`.

We shall now consider a notion of convergence which is stronger than bounded convergence. Let us
recall that a double sequence (ak,`) is said to be regularly convergent if it is convergent, and further, for each
fixed k ∈ N, the sequence given by ` 7→ ak,` is convergent and for each fixed ` ∈ N, the sequence given by
k 7→ ak,` is convergent. A double series is regularly convergent if the double sequence of its (rectangular)
partial sums is regularly convergent, that is, the double series is convergent, and further, each corresponding
row-series as well as each corresponding column-series is convergent. It is easy to see that a regularly
convergent double sequence is bounded, and a regularly convergent double series is boundedly convergent.
We have the following analogue of Theorem 3.3 for regularly convergent double series.

Theorem 3.8. Let (ak,`) be a double sequence. Then the Cauchy product double series ∑∞
k,`=0 ak,` ∗ bk,` is

regularly convergent for every regularly convergent double series ∑∞
k,`=0 bk,` if and only if the double series

∑∞
k,`=0 ak,` is absolutely convergent. In this event, we have ∑∞

k,`=0 ak,` ∗bk,` =
(
∑∞

k,`=0 ak,`
)(

∑∞
k,`=0 bk,`

)
.

Proof. An argument along the lines given in the proof of Theorem 3.3 yields the desired result if we note
the following. A matrix A := (αm,n,k,`) maps each regularly convergent double sequence to a regularly
convergent double sequence if and only if conditions (i)–(iii) of Lemma 3.2 hold, and also the following
condition holds:
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(iv)’ the limit βk := lim
m,n

∑` αm,n,k,` exists for each fixed k,

the limit γ` := lim
m,n

∑k αm,n,k,` exists for each fixed `,

where the convergence indicated in each of the conditions (ii), (iii), and (iv)’ is regular. In this event, the
double series ∑k,` αk,` is absolutely convergent, the series ∑k βk and ∑` γ` are absolutely convergent, and for
any regularly convergent double sequence (xk,`), we have the limit formula

lim
m,n

[Ax]m,n =
(
α +∑k,`αk,`−∑kβk−∑`γ`

)
lim
m,n

xm,n +∑k,`αk,`xk,`

+∑k

[(
βk−∑`αk,`

)(
lim

`
xk,`

)]
+∑`

[(
γ`−∑kαk,`

)(
lim

k
xk,`

)]
.

See [8], especially conditions (c1),(d1),(d2),(d3),(f1),(f2), and (f3) in §3, condition 132. S.RC → RC and
limit formula (9.1) in §6. (See also Theorem 4.1.1 of [12].) In our case, with the matrix A as defined in the
proof of Theorem 3.3, we have αk,` = βk = γ` = 0 for all (k, `) ∈ N2

0 and α = ∑k,` ak,`.

Remarks 3.9.
(i) The ‘if’ part of the above theorem was proved in Theorem 3 of [5]. The ‘only if’ part of the above

theorem as well as of Theorem 3.3 can be strengthened as follows. If the Cauchy product double
series ∑∞

k,`=0 ak,`∗bk,` is boundedly convergent for every regularly convergent double series ∑∞
k,`=0 bk,`,

then the double series ∑∞
k,`=0 ak,` is absolutely convergent. To see this, one only has to note that

condition (i) of Lemma 3.2 is a necessary condition for a matrix A to map each regularly convergent
double sequence to a bounded convergent double sequence. (See condition (c1) in §3, condition
134. S.RC → BC of §6, and a remark in §7 about the necessity of S. conditions.)

(ii) In view of (i) above, it is worthwhile to observe that if ∑∞
k,`=0 ak,` is an absolutely convergent double

series not all of whose terms are equal to zero, then there is a boundedly convergent double series
∑∞

k,`=0 bk,` such that the double series ∑∞
k,`=0 ak,` ∗ bk,` is not regularly convergent. To see this, let

∑∞
k,`=0 ak,` be absolutely convergent and ak0,`0 6= 0 for some (k0, `0) ∈ N2

0 . Define ak := ak,`0 for
k ∈ N0. We note that ∑∞

k=0 ak is an absolutely convergent series and ak0 6= 0, so that there is a series
∑∞

k=0 bk having bounded partial sums such that the series ∑∞
k=0 ak ∗bk is divergent. Now define

bk,` :=





bk if k ∈ N0 and ` = 0,
−bk if k ∈ N0 and ` = `0 +1,

0 if k ∈ N0 and ` ∈ N0 \{0, `0 +1}.
Then

ak,`0 ∗bk,`0 =
k

∑
i=0

`0

∑
j=0

ai, jbk−i,`0− j =
k

∑
i=0

ai,`0bk−i,0 = ak ∗bk.

Hence ∑∞
k=0 ak,`0 ∗bk,`0 diverges, and so ∑∞

k,`=0 ak,` ∗bk,` is not regularly convergent.

Examples 3.10.
(i) Let x,y ∈ (−1,0) with x+ y =−1. Define

ak,` := xky` and bk,` :=
(

k + `

k

)
for (k, `) ∈ N2

0 .

Then ∑∞
k,`=0 ak,` converges absolutely and ∑∞

k,`=0 bk,` converges regularly (but not absolutely). The
Cauchy product series is ∑∞

k,`=0 ck,`, where

ck,` =
k

∑
i=0

`

∑
j=0

(
i+ j

i

)
xky` =

[(
k + `+2

k +1

)
−1

]
xky` for (k, `) ∈ N2

0 ,

the last equality being a consequence of Pascal’s 3rd identity.
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(ii) Let x, y ∈ (−1,1], a, ã > 0, and b, b̃ ∈ (−1,0]. Define

ak,` :=
(a

k

)(
ã
`

)
xky` and bk,` :=

(
b
k

)(
b̃
`

)
xky` for (k, `) ∈ N2

0 .

Then ∑∞
k,`=0 ak,` converges absolutely and ∑∞

k,`=0 bk,` converges regularly (but not absolutely when
x = 1 or y = 1). The Cauchy product series is ∑∞

k,`=0 ck,`, where

ck,` =
k

∑
i=0

`

∑
j=0

(a
i

)(
b

k− i

)(
ã
j

)(
b̃

`− j

)
xky` =

(
a+b

k

)(
ã+ b̃

`

)
xky`,

for (k, `) ∈ N2
0 , the last equality being a consequence of Vandermonde’s Convolution Formula.

(iii) Let p ∈ (0,2]. Define ak,` := 1/2k+` and bk,` := (−1)k+`/(k+`+1)p for (k, `) ∈N2
0 . Then ∑∞

k,`=0 ak,`
converges absolutely and ∑∞

k,`=0 bk,` converges regularly (but not absolutely). The Cauchy product
series is ∑∞

k,`=0 ck,`, where

ck,` =
k

∑
i=0

`

∑
j=0

(−1)i+ j

2k−i+`− j(i+ j +1)p =
1

2k+`

k

∑
i=0

`

∑
j=0

(−2)i+ j

(i+ j +1)p

for (k, `) ∈ N2
0 .

In each of the above cases, the Cauchy product double series ∑∞
k,`=0 ck,` is regularly convergent by

Theorem 3.8.

As we have seen at the beginning of this section, absolute convergence of ∑∞
k,`=0 ak,` and convergence of

∑∞
k,`=0 bk,` do not guarantee convergence of the Cauchy product double series ∑∞

k,`=0 ak,` ∗ bk,`. In fact, the
next result gives precise conditions on the double sequence (ak,`) for such convergence.

Theorem 3.11. Let (ak,`) be a double sequence. Then the Cauchy product double series ∑∞
k,`=0 ak,` ∗ bk,`

is convergent for every convergent double series ∑∞
k,`=0 bk,` if and only if the set {(k, `) ∈ N2

0 : ak,` 6= 0} is
finite.

Proof. As in the case of Theorem 3.8, an argument along the lines given in the proof of Theorem 3.3
yields the desired result if we note the following. One of the six necessary and sufficient conditions for
a matrix A := (αm,n,k,`) to map each convergent double sequence to a convergent double sequence is the
following: For each fixed k ∈ N0, there is p0 ∈ N0 such that αm,n,k,` = 0 whenever m,n, ` ≥ p0, and for
each fixed ` ∈ N0, there is q0 ∈ N0 such that αm,n,k,` = 0 whenever m,n,k ≥ q0. In our case, with the
matrix A as defined in the proof of Theorem 3.3, this condition entails that the set {(k, `) ∈ N2

0 : ak,` 6= 0}
is finite, and then the remaining five conditions are automatically satisfied. See [8], especially conditions
(a1),(a2),(b1),(b2),(d1), and (d3) in §3, condition 14. S.C→C in §6. (See also Theorem 4.1.3 of [12].)

Remark 3.12. We conclude this section by making some comments about the companion problem
of determining conditions on a double sequence (ak,`) (with (k, `) ∈ N2) in order that, for every
convergent/boundedly convergent/regularly convergent double series ∑∞

k,`=1 bk,`, the double series
∑∞

k,`=1 ak,`bk,` would be convergent/boundedly convergent/regularly convergent, as per the assumption
on ∑∞

k,`=1 bk,`. For this purpose, let us say that a sequence (ak) is of bounded variation if the series
∑∞

k=1 |ak − ak+1| is convergent, and that a double sequence (ak,`) is of bounded bivariation if the double
series ∑∞

k,`=1 |ak,`− ak+1,`− ak,`+1 + ak+1,`+1| is convergent. In the case of regular convergence, necessary
and sufficient conditions on (ak,`) are as follows: (ak,`) is of bounded bivariation and (ak,1) as well as
(a1,`) is of bounded variation. In the case of bounded convergence, necessary and sufficient conditions
on (ak,`) are as follows: (ak,`) is of bounded bivariation, limk(ak,`− ak,`+1) = 0 for each fixed ` ∈ N, and
lim`(ak,`−ak+1,`) = 0 for each fixed k ∈ N. In the case of convergence, necessary and sufficient conditions
on (ak,`) are as follows: (ak,`) is of bounded bivariation, for each fixed ` ∈ N, there is k` ∈ N such that
ak,` = ak,`+1 for all k ≥ k`, and for each fixed k ∈ N, there is `k ∈ N such that ak,` = ak+1,` for all ` ≥ `k.
See [7] for these results.
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(in Russian).
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Koonduvustunnused kahekordsete ridade jaoks

Balmohan V. Limaye ja Maria Zeltser

On tõestatud ühekordsete ridade hästi tuntud koonduvustunnuste analoogid Pringsheimi mõttes koonduvate
kahekordsete ridade jaoks. Muuhulgas on tuletatud absoluutse koonduvuse eri tunnused ja Cauchy korrutise
koonduvuse kriteerium. Samuti on täpsustatud mõnede teiste autorite tulemusi antud valdkonnas.


