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Abstract. In the mesoscopic theory a distribution of different crack sizes and crack orientations is introduced. A scalar damage
parameter, a second order damage tensor, and a vectorial damage parameter are defined in terms of this distribution function. As
an example of a constitutive quantity the free energy density is given as a function of the damage tensor. This equation is reduced
in the uniaxial case to a function of the damage vector and in the case of a special geometry, to a function of the scalar damage
parameter.
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1. INTRODUCTION
1.1. Phenomenological definitions of damage parameters

Numerous damage models have incorporated scalar, vectorial, or tensorial damage variables that can be
characterized at the macro-scale, for example, by the change in compliance. A scalar damage parameter was
introduced [1-4] to account for the decrease in the stiffness of the material with progressing damage. Two
scalar damage parameters were proposed [5] to account independently for the change in hydrostatic energy
and the remaining part of the elastic energy with increasing damage. A different reason for introducing
two scalar damage parameters was the healing of cracks under compression [6]. In composites and fibre
reinforced materials it is reasonable to introduce independent scalar order parameters for the prescribed
directions, given by the fibre orientation.

A second order damage tensor was defined [7], accounting for the reduction of the effective surface
area that transmits forces. The resulting effective stress is expressed in terms of the damage tensor [7]. For
definitions of a second order damage tensor see also [3,8—11]. For parallel microcracks a second order
damage tensor was associated with the dyadic product of crack orientation with itself times a scalar para-
meter [12]. This definition coincides with our definition from the mesoscopic point of view in the special
case of parallel microcracks.

A fourth order damage tensor has been introduced. It can be understood as mapping the elastic tensor (in
a linearized strain theory) of the virgin material to the elastic tensor of the damaged material, or as mapping
the respective stiffness tensors. For a summary of damage parameters of different orders see also [13,14].
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For a constitutive theory of damaged materials with a thermodynamic background see [2,15]. A thermo-
dynamic theory of damage, including the interpretation of failure as loss of thermodynamic stability, can be
found in [16]. For a comparison to experimental results see [17].

An alternative choice of damage variable is one that incorporates salient aspects of damage morphology
in its definition. Such ‘micro-mechanically inspired’ damage models involving scalar, tensor, or ‘Fabric
tensor’ representations of damage were introduced in the study of heterogeneous materials containing voids
or various crack-like surface discontinuities [18-23].

Our aim here is to show how damage parameters of different tensor order can be defined from the
mesoscopic background. The different damage parameters correspond to different levels of macroscopic
approximation of the mesoscopic distribution of crack sizes and orientations. As it was shown in [24,25]
in the case of a scalar damage parameter, the mesoscopic theory leads not only to the definition of damage
parameters, but also to equations of motion for them. On the example of the free energy density we will
show the general form of a constitutive equation for the different choices of a damage parameter. In the case
of a rotation symmetry of crack orientations, the different forms of the constitutive equation can be reduced
to a form with two scalar parameters: the average crack size and a scalar orientational order parameter.

1.2. Mesoscopic theory of complex materials and application to material damage

The mesoscopic theory was developed in order to deal with complex materials within continuum

mechanics [26]. The idea was to enlarge the domain of the field quantities by an additional variable,

characterizing the internal degree of freedom connected with the internal structure of the material. In a

simple model the microcrack is described as a flat, rotation symmetric surface, a so-called penny-shaped

crack. The single crack is characterized then by the crack radius / and the orientation of the crack surface
normal, a unit vector n, see Fig. 1. In the mesoscopic theory / and n are the additional variables, i.e. meso-
scopic field quantities depend on position x of the continuum element, time ¢, crack radius /, and crack
orientation n. We will abbreviate this set of mesoscopic variables with (-).

In addition we make here the following simplifying assumptions:

1. The diameter of the cracks is much smaller than the linear dimension of the continuum element. Under
this assumption the cracks can be treated as an internal structure of the continuum element. The cracks
are assumed to be small enough so that there is a whole range of crack sizes and orientations in the
volume element.

2. The cracks are fixed to the material. Therefore their motion is coupled to the motion of representative
volume elements.

3. The cracks cannot rotate independently of the material, i.e. the rotation velocity is determined by the
antisymmetric part of the time derivative of the deformation gradient of the surrounding material.

4. The number of cracks is fixed, there is no production of cracks, but very short cracks preexist in the

virgin material.

5. The cracks cannot decrease in area, but can only enlarge, meaning that cracks cannot heal.

Distribution of crack
Orientations n and
Diameters 2/: f(x,t,n,/)

Volume element at x,t

Fig. 1. Distribution of microcracks in a volume element.
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To summarize our model, the microcrack is characterized by a unit vector n representing the orientation
of the surface normal and by the radius [ of the spherical crack surface. These parameters will be taken as
the additional variables in the mesoscopic theory.

Beyond the use of additional variables the mesoscopic concept introduces a statistical element, the so-
called mesoscopic distribution function. In our case this is a distribution of crack lengths and orientations
in the continuum element at position x and time ¢, called here crack distribution function (CDF). The dis-
tribution function is the probability density of finding a crack of length / and orientation » in the continuum
element. The elements are material elements, including the same material and the same cracks for all
times. Macroscopic quantities are calculated from mesoscopic ones as averages over crack sizes and crack
orientations.

1.3. Mesoscopic balance equation of crack number

Field quantities such as mass density, momentum density, angular momentum density, and energy density
are defined on the mesoscopic space. For distinguishing these fields from the macroscopic ones we add the
word ‘mesoscopic’. In addition to mass density we introduce the crack number density N as the density of
an extensive quantity. The mesoscopic crack number density N(/,n,x,t) is the number density, counting
only cracks of length / and orientation n.

1.3.1. Balance of crack number

In our model the cracks move together with the material element. Therefore their flux is a convective flux,
having a part in position space, a part in orientation space, and a part in the length interval. There is no
production and no supply of crack number. Therefore we have for the crack number density N:

) 10 ,,.;
SN+ Vi N0} + Vi NG} + 555 (PING)) = 0, (1)

We have used spherical coordinates for the mesoscopic variables crack length I € [0,e0] and crack
orientation n € 2, and we represent the divergence with respect to the mesoscopic variables in spherical
coordinates. The covariant derivative on the unit sphere is denoted by V,, and the material velocity by v. In
our model all cracks within the continuum element move with this velocity. We designate by u(-) = i the
orientation change velocity, which is not the same for all cracks in the continuum element. It is related to
the angular velocity m(x,¢) by the relation

u() = 0 xn. (1.2)

This angular velocity is the same for all cracks in the element. It is determined by the rotation of the
surrounding material.

1.4. Definition of the distribution function and equation of meotion

Because of its definition as probability density the distribution function is the number fraction

N(l,n,x,t)

f(l7n7x7t) = N(x t) )

(1.3)

in volume elements, where the number density N(x,7) is non-zero. Here N(x,) is the macroscopic number
density of cracks of any length and orientation. As the distribution function in equation (1.3) is not well
defined if N(x,r) = 0, we define in addition that in this case f(I,n,x,t) = 0. As there is no creation of



C. Papenfuss and P. Vdn: Scalar, vectorial, and tensorial damage parameters 135

cracks in our model the distribution function will be zero for all times in these volume elements. In all other
volume elements with a nonzero crack number it is normalized

/ f(l,n,x,0)Pd*nndl = 1. (1.4)
0 S2

With respect to crack length it is supposed that the distribution function has a compact support, meaning
that in a sample there cannot exist cracks larger than the sample size.

We obtain from the mesoscopic balance of crack number density a balance of the CDF f(/,n,x,t), by
inserting its definition:

& P o) £V (06, 0) (L .0)) 4 V-l )L ,0) o (P mx) =0 (15

The right hand side is equal to zero, as for the co-moving observer the total number of cracks in a volume
element does not change in time.

A growth law for the single crack / is needed in equation (1.5). For example the Rice-Griffith dynamics,
which is motivated from macroscopic thermodynamic considerations, can be applied.

In [27] the mesoscopic theory was specialized to damaged material with penny-shaped cracks. The
balance equations and the differential equation for the crack size distribution function were derived. Using
the Rice—Griffith differential equation for the size of a single crack, the time evolution of the whole
distribution of cracks under load, as well as the evolution of the average crack size, was investigated [28].
In [29] two different growth laws for the single crack under load were considered. Finally, the dynamics of
a second order damage tensor was derived in [25] under the assumption of a simplified single crack growth
law under an effective stress.

2. MESOSCOPIC DEFINITIONS OF DAMAGE PARAMETERS OF DIFFERENT ORDERS

Definitions of a scalar damage parameter, a vectorial damage parameter, and a damage tensor are given,
based on the mesoscopic distribution function. A possible choice of a scalar damage parameter is the
average crack length. However, a scalar parameter is not sufficient, because the crack growth introduces an
anisotropy into the material. In order to account for this anisotropy, it is necessary to define a vectorial or a
tensorial damage parameter. Starting from the mesoscopic distribution function, the more natural way is to
define a damage tensor of second order. This second order tensor is the second moment of the orientation
distribution function, depending on the crack orientation vector. A case of special interest is a distribution
with a rotation symmetry, the uniaxial case. In this case the damage tensor can be expressed in terms of a
scalar quantity and a unit vector, which is the orientation of the rotation symmetry axis. In this case we can
define easily a damage vector from the second order damage tensor. This damage vector has the orientation
of the rotation symmetry axis. A representation of the second order damage tensor in the general case
without rotation symmetry is also given. It is shown how a vectorial damage parameter can be defined in
general without rotation symmetry in terms of eigenvectors of the damage tensor.

2.1. Damage parameter of second order

We define the second order damage tensor as the second orientational moment of the distribution function:

D(x,t) = <[ 'nn'>= / Szf(l n,x,t) nn d*nl’dl
= //ﬂﬁfmxz)dndz (2.1)
S2

where mn' denotes the symmetric traceless part of the dyadic product, and D is a second order symmetric
traceless tensor. This definition of the second order damage parameter accounts for the crack length distribu-
tion as well as for the orientation distribution.
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2.2. Vectorial damage parameter defined from the second order tensor

Due to the symmetry the second order tensor damage parameter D has a spectral decomposition with ortho-
normal eigenvectors d, e, and f, and eigenvalues 8, € and ¢:

D = 8dd + ee + off. (2.2)

Because D is traceless we have
0+e+¢=0. (2.3)

Therefore, not all eigenvalues can have the same sign. The following cases concerning the signs of the
eigenvalues are possible:
1. One eigenvalue is positive and two eigenvalues are negative, for instance

6>0, €<0, ¢<O0. 2.4)

In this case we chose the eigenvector (here d) corresponding to the single positive eigenvalue as the unit
vector defining the orientation of the vector damage parameter.
2. One eigenvalue is negative and two eigenvalues are positive, for instance

6>0, €>0, ¢<O0. (2.5)

In this case we chose the eigenvector (here f) corresponding to the single negative eigenvalue as the unit
vector defining the orientation of the vector damage parameter.
3. All eigenvalues are zero:
6=0, €=0, ¢=0. (2.6)

In this case D = 0 and we have an isotropic orientation distribution. In this case no vector damage
parameter can be defined.
4. One eigenvalue is zero, and the two others have opposite signs, for instance:

§=0, £€>0, ¢=—-£<0. 2.7)

In this very special case we could define a vector damage parameter, having the orientation of the

wedge-product of the two eigenvectors.

The length of the damage vector can be defined as the absolute value of the corresponding eigenvalue.
The definition of the damage vector in terms of an eigenvector naturally leads to the symmetry of an
orientation, namely the damage vector and the reversed one cannot be distinguished.

2.3. Special case of the uniaxial distribution function

If there exists a rotation symmetry axis of the distribution function, two eigenvalues coincide, either the two
positive ones, or the two negative ones. In both cases the tensor damage parameter is of the form:

D = (1S(1)) dd = (IS(])) (dd - ;1> = (1S(1)) (dd - % (dd + ee + ff)) (2.8)

with the unit tensor 1 and a scalar parameter S, denoted as scalar orientational order parameter. The unit
vector d is the orientation of the rotation symmetry axis. S(/) is a measure of the degree of parallel order
of the cracks. It is zero if the orientations are distributed isotropically and has the value 1 in the case all
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%

Fig. 2. Different cases of rotation symmetric crack orientation distributions, corresponding to different values of the orientational

order parameter.

cracks are oriented parallel. The orientational order can be different for different crack sizes, therefore S is
a function of crack radius /. The average ( ) here is the average over all crack lengths:

(mﬂ»:iémfﬂxJﬂﬂmﬂdL (2.9)

For the eigenvalues this corresponds to

5 = (IS(1) (1 _ ;) _ %(15(1», 2.10)

e = —§<zs(1)>, @.11)
o= —%<1S(l)>. (2.12)

For positive values of S we have one positive eigenvalue and two negative ones. For negative values of §
two eigenvalues are positive and one is negative. In both cases the definition of the vector damage parameter
given in the previous section leads to the eigenvector d as the orientation of the damage vector. In the case
of rotation symmetric orientation distributions this is the orientation of the rotation symmetry axis. The case
of positive values of S corresponds to a distribution where the crack-normals are more or less parallel to the
rotation symmetry axis. For negative values of S crack orientations are concentrated in a plane perpendicular
to the rotation symmetry axis (see Fig. 2).

For the damage vector we find in the uniaxial case:

Dzéwmw. (2.13)

It depends on the degree of orientational order and on the average crack length.

24. Case of a small deviation of the distribution function from rotation symmetry

If the deviation of the orientation distribution from rotation symmetry is small, the two eigenvalues of equal
sign differ only by a small amount s, and the damage tensor is of the form:

D= <§(S(l)l>dd+ (—;«5(1) —s(l))l}) ce + <—;<(S(l) —s(z))z>> ff) . (2.14)

In this case we can still define the damage vector the same way as in the uniaxial case:

5 2
D= §<ZS(Z)>d. (2.15)
The scalar order parameter S is a measure of the degree of order and the biaxiality parameter s is a measure

of the deviation of the orientation distribution from rotation symmetry.
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2.5. Scalar damage parameters

One possible definition of a scalar damage parameter is the average crack length:

D= /wlf(l,x,t)ﬂdl. (2.16)
0

In the rotation symmetric case another scalar measure of damage is

Ds = (1S(1)) = /0 ) IS()f(L,x,0)%dl. (2.17)

It is the average crack radius, projected onto the plane perpendicular to the rotation symmetry axis.
Under the assumption that only a load applied perpendicular to the crack surface causes crack growth and
that a stress vector component in the crack plane has no effect, it is reasonable that the damage parameter
(2.17) is relevant for describing the progressive damage under external load in the case of an anisotropic
crack distribution.

Another possible choice of a scalar damage parameter would be the number fraction of cracks with
radius /, exceeding a certain critical length L, |, L°° fI2dl. A comparison of results obtained with the different
choices of scalar damage parameters is left for a future work.

3. EXAMPLES OF CONSTITUTIVE FUNCTIONS FOR THE DIFFERENT DAMAGE
DESCRIPTIONS

As an example of a constitutive function we will consider the free energy density. We will start out with
a representation theorem for the free energy depending on the second order damage tensor. Then we will
show how the constitutive equation simplifies in the case of a rotation symmetric distribution function.

We will assume that constitutive quantities depend on the equilibrium variables strain tensor S and
temperature and in addition on the damage parameter. The temperature dependence will not be denoted
explicitly, as it is a scalar quantity. All material coefficients may depend on temperature.

3.1. Free energy as a function of strain and damage in the case of a second order damage
tensor

The most general polynomial form of the energy density up to second order in each variable is given by a
representation theorem [30,31]:

F(S,D,D) = a,D+ %IDZ +bytr(D D) + (a1 +baD + c:D* + cstr(D - D)) tr(S)
+ (b3 +c4D)tr(S-D) +cstr(D-D-S) + (g +¢1D+d\D* +dstr(D ~D)> (tr(S))?
+ (u +c6D +drD* +datr(D D)) tr(S - S) + (c3tr(S) + dstr(S - D) +dgtr(S)D) tr(S - D)
+(c7+dsD)tr(S-S-D)+dqitr(S)tr(D-D-S)+dotr(D-D-S-S). (3.1)
This form is the simplest and natural extension of linear elasticity considering the damage. The

coefficients still can be arbitrary functions of temperature.
In the case of rotation symmetry we have:

D=Ds dd (3.2)
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and the scalar products can be calculated as:
I ) 1 1 A 1
D-D =D dd - dd = Dj dd—§1 . dd—gl =Dy gdd—|—§l (3.3)
and
2.9
tr(D-D) = §DS. 34
The expression for the free energy simplifies to:

b 2 1 1 2 1 \?
F(S,Ds,d,D) = a;D+ —D*+ gszg +1r(S) <a1 +byD + c,D? — —b3Dg — ~c4DDg + <3c5 + 9c8> D§>

2 3 3

1

1 1 2 1 1
+ (trS)? | A +c1D+d\D? — ~c3Ds — —dgDD, Zdy+ ~ds+ —d; | D?
(tr > +ciD+d; 3¢30s = 3do S+<3 3+9 5+9 7) s>

, 1 1 2. 1 )

—|—tI”S S) U—+ceD+doD —§C7Ds—§C8DDs—|— §d4—|-§d9 DS

1 1
+S :dd ( b3Dg + c4DDs + 3c8D§) + (S :dd)* dsDs+ (trS)S : dd <(d5 +¢3)Ds + deDDs + 3d7trSD§>
1
+d-S-S-d <C7D5 +dgDDs + 3d91)§> . (3.5)

The free energy density is expressed here in terms of the vector d (the rotation symmetry axis) and the
scalar damage parameter Ds.

3.2. Special case of uniaxial strain in the z-direction and symmetry axis of the distribution
in the same direction

This situation occurs (approximately) in a uniaxial tension experiment (see Fig. 3).
The assumption that in all volume elements the CDF is rotation symmetric with the z-direction as
symmetry axis is an approximation, valid for small deformations. In the case of large deformations, the

Fig. 3. Schematic view of an experiment with uniaxial loading.
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rotation of the volume element cannot be neglected, and the cracks rotate with the material element. This
leads to a rotation of the symmetry axis of the orientation distribution function in the volume element, which
depends on the position of the volume element. The (local) symmetry axis of the CDF does not coincide
with the direction of the applied strain anymore.

In the geometry with the global rotation symmetry around the z-axis the only interesting components of
tensors are the z-z-components and traces. For the strain and the damage vector we have:

S =¢.e.e.=: €cee,, (3.6)
d=e, (3.7)

and the free energy density reduces to a function of three scalar quantities €, D, Dg, where D is the average
crack length (in any direction) and Dy is the average crack length in a plane orthogonal to the z-direction.
Its value depends on the anisotropy of the average crack length distribution.

b 2 2 2 2 4
F(s,DS,D) =a)D+ ?IDZ + gbgD% +£ <a1 +b4D+02D2 + <3b3 + 3C4D> Dg+ <3C5 + 9Cg> Dg)

A 2 2 2 2
x €? (2 4+ (c1 +c6) D+ (dy + dr) D*Ds <3C3 + 367 +D <3d6 + 3d8>)

2 2 4 4 4
Di( Zds+Zdy+ —ds+ ~d7 + ~dy | | €2. 3.8
+ s<3 3+2 4+9 5+9 7+9 9>) (3.8)
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Mesoskoopse taustaga skalaarsed, vektoriaalsed ja tensoriaalsed purunemisparameetrid

Christina Papenfuss ja Péter Van

Mesoskoopsusteoorias on esitatud pragude eri modtmete ja orientatsioonide jaotus. Selle jaotusfunkt-
siooni alusel on defineeritud skalaarne purunemisparameeter, teist jarku purunemistensor ja vektoriaalne
purunemisparameeter. Oleku iseloomustamise nditena on esitatud vabaenergia tihedus purunemistensori
funktsioonina. Uhemddtmelisel juhul on saadud vérrand taandatud purunemisvektori funktsiooniks ja
spetsiaalse geomeetria juhul skalaarse purunemisparameetri funktsiooniks.



