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Abstract. In the introductory part (Section 1) some aspects of the large deformation analysis in holographic interferometry are
briefly outlined. The calculus there may also serve as an introduction for a link to the principal part afterwards. Modifications of
the set-up at the reconstruction should recover the previously invisible fringes. Their spacing and the contrast are characterized by
the fringe and visibility vectors. The relevant derivative of the path difference involves the polar decomposition of the
deformation gradient into strain and rotation and the image aberration implies further changes of the geodesic curvature and of
surface curvatures. In the principal part (sections 2, 3, 4) these considerations lead then to similar aspects for hypersurfaces, above
all to an interpretation of gravitation by two virtual deformations for the Schwarzschild solution. This is further useful for non-
spherical gravitationa fields, for the invariants there, and for the TOV relation between pressure and density. The null-geodesics
or light rays can aso be interpreted by these virtual deformations. An approach towards the Kerr solution for rotating stars is
added. Asto linearization, a connection is outlined, which confirms the non-existence of gravitational waves if they are described
by pure geometrical considerations of the field equations. Detailed equations for calculations are presented in Section 4.
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1. DERIVATIVES OF THE OPTICAL PATH DIFFERENCE, STRAIN, ROTATION,
CHANGES OF CURVATURE, FRINGE AND VISIBILITY VECTORS

The basic expression in holographic interferometry is the optical path difference D =ul{k —h) =Av.
Here u isthe displacement, h and k are unit vectors, A isthe Wavelength and v thefringe order. In
the case of alarge deformation, when two modified holograms are used [], the exact expression becomes
D=(A/2m)(p-@) - (L -L"), where L, L' denote the distances from the image points P, P’ to apoint K
of frlngelocallzatlon (see Fig. 1). Thephasesat P, P are ¢ = 2/ A)(L; +Lg+p—q -0 —P +G +G;) +
T+, @' =...+ Ay, soweobtainin genera

D=Ls-Ls—(L+p) +(L' +B) +(p -a) (¥ —d) 44 4 A /2 (D

Many authors [e.g. %] have studied the recovering of fringes. The contrast depends on the derivative of
D, and the spacing leads to the strains. Therefore the differential dD = dLg —dLg —d(L +p) +d(L" +§') +
d(p-q) -d(p" —-q) +dq —dq isprimary.

We insert now some elements with convenient notations for the geometry and deformation of
2D-surfaces in the 3D-space. In the principal part these concepts will be generalized to 4D-hypersurfaces,
embedded in an 8D-space or in a 4D-complex space. We write in particular for the distance Lg in Fig. 1
left: dLg =dr INUOLg drJNh with the normal projector N =1 —n On [note that for any dyadic allb
the rules x(@aO by (XJa)b, (a0b)y a(fly) hold]. The operator NCEO = &9/ & (a summed

Thisisan expanded version of the paper published in Speckie06 (Slangen, P. & Cerruti, C., eds), Proceedings of SPIE, Vol. 6341.
Nimes, 2006. The layout has been dlightly modified and Section 4, an extended appendix, has been added.
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Fig. 1. Recording of alarge surface deformation. Modification at the reconstruction to recover fringes.

from 1 to 2) appears as a formal prOJectlon of 0 and the bases on the surface require a” (&, = J;,
aﬁ—ar/ae a, [ =a,5, and N =a,;a" Oa’. Wewritealso

(LH mN- B, 2
OO0 N B+niB nJ. (3)

The tensor B = B,,a” Da’= (U/r)el] & (Ir,)& e, describesthe exterior curvature of a surface
with principal values J/ r, 1/r,. Equations (2) and (3) correspond to the Frenet-relations dn/ds=—e/r,
de/ds n/r in the case of a plane curve. The bracket ]* marks a transposition so that B n]'=
B, a Om a®. Equations (2) and (3) help to decompose the derivative of a vector u=v+wn into an
|nter|or and a semi-exterior part, namely O = OO, ¥N +Bw {BY 0Ow) n. The deformations
resad N'dr' =FNdr, Ndf = FNdf... where only the semi-projection FN =N +(00 u)" of the 3D-
deformation gradient F =1 + (00 u)" intervenes. The polar decomposition is F =QU with the
(orthogonal) rotation tensor Q [Q'Q = 1] and the symmetric dilatation U, defined by the Cauchy—Green
tensor F'F =UU. At the surface the decomposition is with a rotation Q, [n'=Q,n=Qn] and the in-
plane dilatation V. [NFTFN =VV]

FN =Q\V =QQy\V. (4)
For small values, astrain tensor )/, an |ncI|nat|on vector {/, ap-rotation scalar 2, and the permutation
tensor E =E,za” Daﬁ (E., =0, E,=-E,, =0), the decomposition FN =N + )/ -QE +n 0y is

additive and QN=N+nl¢, Q,=N- QE V=N+), EE=-N. At an isotropic, €lastic
surface )= (T +V,ETE)/E, holds with factors V,, Ey, thestresstensor 7, and aninvolution —E(...)E.
Next, the equation of a geodesic curve, relative to the arc s, can be written as Ndzr/ds =0, because the
osculating plane contains the unit normal n. More generaly, for any curve and its image we obtain with
VDV =N thetransformation backwards

Nd?r =V “P[Q] N'd?r' —(drD,dr)], (5)
Dy =[(0F V)N]IN [T, Q,)VIINGQ,, (6)

where |N marks a projection of the middle factor in a triadic. Finally, dr'l0 = dr D=
dr' [@,V Y0, gives the change of surface curvature forwards

B'=-QV (00 mN- QVTI[BQT I, Q)nIN. (7)

Again in holography: Theimage <P > is defined by dH =0 (orEq. (9)) of 6, =2n(p-G-p+0q)/ 1
for the rays through the aperture. Thus we find with V'Q) =Q, AR

dD =dr' IN'[(K —H) -Q,V ™ (k —h)] +dp K, (k -K), (8)

NIVQ; (k=€) - (k —c)] = 9)
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Consider now &, =271(( +q - -7 Q)//l The condition dg, =0 leads adso to Eq. (9). Therefore we
get from ne|ghbour|ng rays d*((+q-7—-q) =0, d’q= (Ndzr)m:+dr [B(A [¢) +NCN /q]df .... For

Nd?f we apply Eq. (5) so that the total term Nd27(...) is cancelled because of Eq. (9). We use alsothe
affine connection df = —¢/M Tdk with the obligue projector M=1-A Ok/Adk. Resolvmg diN [dk =
—-d*¢+..., we get a linear transformation dk =¢Tdk, where the tensor T = M{B(n [(k —c)) -
NCN /q—Qﬁ\ﬂ'l) [B(Ak —€)) -NCN/g- D, [V (k-€)-K/IIVPQI}IM™ shows the curvature
of the non-spherical wavefront and the astigmatic interval <R >. The ray aberration reads
Kdr = Kdf - pdk; thus the bridge ¢dk = 7KV “?QIMTdk gives with V™Q] =Q.V the virtual image
deformation Kdr =G (Kdr), where G, =7(pT +K)QVM /(7 +p). If the small areas projected by the
aperture overlap suff|C|entIy for the correlatlon we have k-k'= —Ku/ L'. To apply Eq. (8) we use
M'=1-n' OK/iOK aswell as dk' =-m'df with a unit vector M’ and an angle df'. We write then
dDg, /df =1 (f;, and dDy /dB’ =-rif (f;. The fringe vector [ (indicating the spacing) and the
visibility vector [*] (marking the distance of the homologous rays) are therefore

fi=(0+P)Gy M [K —h —-QV P (k -h)] -Ka(Z +p +L)/L, (10)

—y
Ri~

5 MK —B —QV ™ (k -h)]. (11)

2. ASPECTS OF DEFORMATION AT SPHERICAL AND NONSPHERICAL
GRAVITATIONAL FIELDS, GRAVITATIONAL LENS, AND ROTATING BODIES

This section is only indirectly related to the previous subject. An extension should iIIustrate Eqgs (2)(7).
Equation (7) gives the curvature B' of adeformed surface A? D Rs For ahypersurface A¥OR", n>k
this Iea(jli to the RicCi tensor R, in components R, =70 5~/ 4ps +7 51 15 = “[ e wh%re
I = (aﬂ ap T&5a ~845,)/2 ae Christoffel symbols. However, the prolector N'=a, a’ 0a’=
| —n" on (a,f from 0 to =% i from 1to n-k) implies both the ‘metric tensor’ a,; and the
exterior orthonormal vectors n'' = =n;, which are at the moment supposed to be real. For the complex
version see Section 3, Eqgs (40)—(43). If we use these vectors, the Riemann—Christoffel tensor can be
written (see also Section 4.1, Eqs (A1)—(Ab5)) as

RT=N'IN[0,@D0O, -NOOO ( , N)IN|N
T T
=B/ 0B™ BO B"TH+ Bl ¢ B )M (12)

according to Eq. (3) and B" =B =-QV (00 n)N BiT (Eq. (7)). The bracket ]]T indicates a
transposition of the factors2 and 4. The Ricci tensor is the contraction of R, aternatively
R=B/"B"' —(B IN')B'". For a spherical gravitational field first one uses the Schwarzschild radius
2M = 2GM/C the mass M, the radius a, the velocity of light ¢, and polar coordinates r, 8, ¢. We
definean angle ¢ — siny = 2M/r where 2M =2M, for r>a and 2M =« [ p(F)F%df for r <a, with
k =871G/c? and the ‘density’ p. Writing r2d6° +r2sin 26d¢” = dr [K,dr “the fundamental form [’]
reads

2
(605
do2 =-S5 ¥ 22

dr® +dr [K,dr, (13)
w cos” Y

where w 1for r>a. Theprojector K, =N —k Ok refersto the radial unit vector k(8, ¢). The space
part ds?=dr [{k Ok/cos? K, )dr =dr Wvdr gives VP =k 0k cosy# K,. We obtain with a
vector r'=rk+wn a deformatlon gradient FN =(k +w.n) Ok- K, and ds? =dr [F "Fdr
=dr [[](1+vv?)k Okt K,]dr, so that w, =dw/dr =tany |mpI|es an |ncI|nat|on and k'=kcosy +
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nsny, n'=-ksing +ncosy. If we use the key relation (sing), =-{sing/2r with
=1-kpr®/2M, wefind 00 & @® k') Jtany /2r - K, sing /r and curvatures

B'=-QV™(O0 MmN (Sng/m ({/2K K K, =@/n)k' Ok* (1/r)K,, (14)

Ry, =B'B' -B (B IN) =(sin’y/r?)[{(K Ok} ({/2 DK,]
==(2/nr,)K Ok= @/nr+ Yrn)K,, (15)

as well as the known vase-like surface [?]. Second, as for the time-radial termsin Eq. (13), we introduce a
vector ' '=2Mkcosy/w+wn, which gives with icdt=>@2M/r)drth a read V=
hOh(wr/2M cosy) +k Okcosy. Defining an angle Y - siny =2M(cosy//w), cosy, W, =
cosy/cosy we get QN =FV™ =hOh kO k and with k'=ksiny+ncosy, n' =-kcosy +
nsin y another inclination by 77/2- . The 2D-curvatures are therefore

B'=-QV ™ (00 n)N' =7(h0h)/r w(siny),rkd K)/2M7 =l/p)h O @/r)k0 K, (16)

P

5 =B'B -B (B IN) =a(siny), (hOhk kO K)/2M =—1/rn)(h Ok kO K). (17)

The factor /7 =cor cosy/2M cosy is not relevant in Eq. (17). Note also that we have N'=N'T at the
moment.

The field equations and the theorem of energy-impulse are with N'" [IN'" =4 (see also Section 4.3,
Egs (A19)—A25)

R-(RIN'T)N'T/2=—«T, (18)
R=—-«[T -(T IN'")N'T/2], (19)
(0, T)NE 0. (20)

In this static case the principal components of the energy-impulse tensor T are T) =p, T'=T/ =
T2 =-p, where p(r) denotes the ‘pressure’. We introduce now the curvature B =B;=
UYrp)hORr Yr)kD ¥ (@/r,)K, on a sripe S*OR° [, where Iry=-wsny/2r, Ir =
-¢sing/2r, and B'?>=B,=@/f,)hO (/f)k0 k' where cosB/f, =sinp/r,, cosB/f =sinp/y
must hold. We define also w — xp=(sin®¢/r?)(w-1). The Ricci tensor R,; =B"'B/ -B' (B, IN') (i
sum 1 to 2) becomes then with tan® 8 =[(2+{)/w-1]2/{ -1 and Eq. (19)

Rp =(«/9[Bp+p)h Ok (p- p)kO kK K,)]
=(sny/2r?)[Bw-{-2h Oh (¢ & 2)(KD K K,)]
= =1/t +1/ror, +2/15r,)h Oh- (/ff+ Yot 2/rr) KO K —=(@/rr, +1/nr, +1/nr) K. (21)

However, as 2/ryr, = g (I % +155) = -a%aay,, /r = -2cosy (cosy/@) , /v, we have a connec-

tion between w and @ (Eq. (22)), another connection between the curvatures (Eq. (23)) and, for a given
p(r), alinear differential equation for /@ (Eq. (24)):

w=arsiny/Msin’y, (22)

Yioh +Yron =Yrr, (23)

[(cosy /@), cosy/r], =(sin*y/2r?), . (24)
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Two specid cases are: (8) r >a, p=0, {=1, f=n/3, w=w=1 and (b) r<a, p=p,(const.),
{=-2, =0, w=w=2cosy/(3cosy, —cosy), p=p,(cosy —cosy,)/(3cosy, —cosy) (TOV equa-
tion [*]). In a nonspherical field we have U  + 2U /T =kp/2 with the potential U, the mean curvature
v =12r, +1/2r;, and k aong the arc s. We define ¢ — sin’@ =2(M J ()2, with (sng), =
-pdsiny/2r, ,T)Zzl—r_(M,u),S/ZMy -ko/4U . The vector k differs from k" by an angle @, which
must be determined by the conditions of vanishing mixed terms. The inclination ¢ appears then between
k" and k'. On S*OR® we use the curvature I/, =tanB/r,, Yf =tanB/n, ]E(ro = —p wsin /2,
UYr, =-p~¢sing/2r, the tensors B"=B;=[1/r,)h0Rk (@/r)k0 K B sin?l/\/i, B =
[(L/r)hOR @r)kO & E'BE sngl/V2, and B2=[(I/f)hOhk @WKR)KkD K]/vV2 B* andwe
write

B'B -B(B,IN)=-(@/2r,r, +Yr,f)h Oh (.+ Yrf)kO K

+sin?y[ o (w+ QB /4r - K] [21,1,1, (25)

BB, - B 3B, N') = —(... +1/r,7)h Oh- (/2ryr+ Yri)kD K
—sin?y[p(w+ QE'BLE /4 +K] /28,1, (26)
B'?B, -B*(B, N ) =—(/2f,i)(hOh KO k3 B*B; B*(B] N), (27, 28)

where E” isthe 2D-permutation tensor normal to k. With the involution we have here the Gauss curvature
I/t =—(E'BE ) (B, /2=K’, the mean curvature I/r” = (B, -E'B,E ) (K, /2 and Y/r =sin/r".
We obtain then with 1/r, =sing//r), Ury=sing/ry, tan® B=[(2+{)/w-12F/r"0'¢ -1, p"=m"K
the Ricci tensor

Rp =(k/2[Bp+p)h Oh (p- p)(kO K K)]

=(K"siny/2)[Bw-¢-2h Oh+ (¢ & 2)(kD K K]

= =1/ +1/ryr, +2/r,F)h Oh- (/fi+ Yror+ 2/f)K'D K =@Q/rof +1/n7 +Yrr) K. (29)

For the general gravitational lens with ¢ =1, w=w=1, we use the equation of a geodesic curve
N 'd?r’ / ds2=0. A type of Egs(5) and (6) gives then the backwards deformation into the flat space. We
have similar to Eqgs (25)—(28) four parts

N,d?r =k“sin? @[ 4" (df th)*+(5 /cos? @) df? - 2rdr B, dr]/4r, (30)
N,d?r =k"sin?[... + 2rdr (E"B,E dr]/4r, (31)
N,d?r =k"sin?y tan B[ 0’ (df [h)* + (4 /cos® ) df?]/4F =N d°r. (32, 33)

The image equation is Nd°r,, (o) = (N,d°r + Nzd’r)cosB +(N,d’r +N,d’r)sin 5. A 4D-nullgeodesic
(light ray) requires [dfzdr/D\/E, df th=icdtcosy/v2] do’? =-kd$?, k 0 so that Nd?r,, ()=
kWK sin?g(-3dr [Kdr /2). The surrounding field of arotating star for instance is nonspherical. In the
rotating system there, we may write for the scalar of the inertial force V = —(Q? / 2¢*)r [K,r, where
K, =N —k, Ok, and @ denotes the angular velocity. The gravitational potential reads U = -GM /rc? =
~-M/r and the gradient of the sum is 0, (U+ V)E M(— xK,r)/r®, where y=Q%?/Mc?. Without
writing here all the details this gives finally for the equatorial plane

(Ing), =(@E=-x)x/2-x)A-x)r, (34)

p=A-x/2"*1-x0" (35)
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cos’ ¢ =1-(2M/r)1- x/2)"2. (36)

For smal @ we have cos?y=1-2M/r +2%?/3c>. A Lorentz transformation leads with
1- Q°r?/c® =1/v to Eq. (37). In comparison Eq. (38) shows the Kerr solution[?] or [*%], Eq. (10.58),
where A/r? =1-2M/r +a?/r?,

do’ = ~(cdf - 2r2d@/c)? vcos®  +(rd@ —2rdt)?v +dr?/cos’y +r2dé?, (37)

dg’® = ~(cdt ~ad@)® &/r? +(r’dg +a’dg —acdt)?/r? +dr®(r*/ ) +°dé”. (38)

3. THE PROBLEM OF LINEARIZATION. CONFIRMATION OF THE GEOMETRICAL
NON-EXISTENCE OF GRAVITATIONAL WAVES

The usua linearization a,; =1,, + 2, of the metric components concerns the small quantities ¢/,
Here /75[; refer to a constant tensor in the Minkowski space M?*. The Christoffel symbols
T 0 =0 W o p YW o ~Wap,.) Would apparently give, together with a certain condition 275, =4, ,
awave eguation (?) for the Ricci tensor in vacuum:

R = /_;A,,B _/_c/rlﬂ,/l =¢/j,a/3‘¢/ju,,5 ‘41/{/3,m +41/f,/3,A ”/’?w,a =0,z =0. (39)

Let us now look at the dynamic case from another standpoint. We mention that the general Lorentz
transformation requires second order spinors n', first in the complementary space I\\_/JI4 instead of the
previous unit vectors n'. This implies a triadic connection S to real unit ‘vectors m'. We refer to the
Pauli matrices in components[*], p. 145, []:

n=mS§, (40)

e300 50 36 D H0 e

The covariant spinors read n, =§mi; thus we find n' 0h =m' Eﬁémi =1 (i not summed) and
Sk R

n' 0h, = 4. Further, if we use once more an involution ~E(...)" E with the symplectic matrix E, we
get the conjugates and i.e. a product:

1
V2
|]]i

i = -ESTEm, (42)
_A”T”;il 0 i 0 i i—l 0 i 0 -1
ESE{ 2[0 J 2[-i Oj ﬁ[o 1] 2[-1 Oﬂ )
_ (0 1
E—[_l Oj, (@)

oA 10 -1 0 -1 0 -1 0
_ESTES=|1 1 1 1 . (45)

20 1) 2 0 - 2\ 0 - 2\ 0 -
Applying i, =-m,ESTE we obtain therefore dg? = —df [EST ESAF = + (d%,)? - (dX,)? —(dj%)2 -
(d%,)?. But the fundamental form Eg.(13) has incidentally reversed signs, implying [S(M*)] =

—i[S(M*)] or shortly S=-iS, S=iS. With asmall parameter ¢ of inclination we write tentatively
S=eS=1-iy-¢?/2)S =(1-w?/2)S +yS, in 2x4=8 matrices: S' =[SA-¢?/2),yS] and
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- - 0 1) (0 i i 0

S — [S(1—¢/2/2),—¢/S]. Each of the two involutions from E:{( . oj’ ( (I)j or (:) H aters
- | il

signs. in three matrices from M* but in one only of the Tast two from M*. Accordingly,

-E'STE'S = | -1-¢*)ESTES, ...+S5- {0 0, G (D i(; m is in fact related to Eq. (13); for

dr'=(@+@?/2)dr +¢df,  dr =(cdt,dr,rdd,rsinédg), df =(cdt,dr,0,0), we find {w@w=1,
cos’y =1- %}
do'? =—dr' [E'STE Sdr =-dr (ES"ESdr +y2dr [$Sdf
= —(L-¢?)c?dt? +(1 +¢?)dr? +dr K dr. (13a)

After this preparation, again in general, N =1 -n' On= I- nJd n* (i,k summed from 1 to 4)
denotes here a modified projector for which the transpose is equal to the conjugate: N™ = N. We have
aso In'=n', ni=n,... where I isthe ‘identity’ in acomplex space MO ME C* (seeSect|0n45
and Eqs(A44)) We write then the development n"=n'-¢' - (/' W)nJ/Z n=n-y -
W, W'n, /2 with small ‘inclinationvectors or spinors in the flat space M* ' = Nt// =¢S,
W, =N =Sq@. Therefore the development of the projector on the curved space becomes
N'=N+¢' On+ n0 ¢ & ¢ +@ ml/])(n' Dnlr) The derivative of this projector reads
according to Eq 3, 00 N BY +1 B r']. This leads to two exterior curvature tensors,
here we have B'' # B # B’T seedsoin partlcular Section 4.4, Eqgs (A38) and (A39)

B"=(00 NYE-QO, n)NDO , ¢)NT, (46)

B/=—(0,0 n)N OO, )N. (47)

We can also use a base €7, &’ mtheflatspacelnsteadofabasea =e¢’ +yn", a'=¢ +z/7f§_r""

on the curved space. The derlvanve of the spinor ¢ (,27 e/} has the interior part (J[0 ¢')N=

. (e“0€") with the (covariant) derivative @, ,= %;,, ri4ph= @}, The Ricci tensor

R B'TB" -(B, IN')B'™ is in vacuum (see also sections4.1, Eq. (A6), 4.2, Eq.(A16), and 4.6,
Eqs (A58)—(A60))

R=[(00 ¢)NIO@, ¢ NOO( 0 ¢PNI( , ¢INTT
=@ oWl ~ U s ) OEE 0. (48)

Thisis not awave equation. Therefore gravitational waves, based on the incorrect Egs (39), cannot exist
(see aso["]). The contradiction between Eqs(48) and (39) originates from the semi-exterior part
' On+ nd ¢, whichisof first order small whereas ¢' O, and 2y, are of second order. We get
in fact Zz/laﬂ), (waw,ﬁ)ﬁ F 2(LWM¢/}; %p z,l/M ) We could also develop the complementary projector
N'= =N =(N-¢)(N-¢") =N -¥N -N¢¥" +@¢ where ¥ =¢/' Ont+... , ¥ =n' O+...
have small semi-exterior parts. The Ricci tensor R=B" [B'" B 'BT [N’ is then obtained from the
‘one-third-exterior triadic’ curvatures B'=B" On = (0.0 N)N'|N¢ (0, %)N|N,

4. APPENDIX, DETAILED CALCULATIONS
4.1. Riemann—Christoffel tensor

Some remarks concern Eq. (12) in the general dynamic case where spinors n'" # n; and a modified
projector N'=1-n"On= - AO A* = a,za’ Oa? areused. Thefirst derivative (D = NI ) of N’
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reads (pay attention to the non-commutative products and the transposition of the factors 2 and 3 by the
sign ")
00 N-O0; o'y mOo(g ) A
=—~(0,0 ")NT w00, dhdp Alom (g AN AT
+(0,0 nH)nd m, 'l

As (0,0 nm)n¥ OO, ndHE [(iEh) 0 we hae (00 n)nd O AT
=—(0,0 n')fl @' n;, sothat we get in accordance with Eqgs (46) and (47)

00 N-Od, @'y mo(n 3 d™+BO A B ('], (A1)
@0 NF- 8O0, A00C P d)E & + 87 BT h'T. (A2)
The second derivatives of the projector become afterwards
I iT I i i T
0,000, N)O O 8 B+ET|0 -BOa'| B 87| } , (A3)
nT ' i i T T i i T
o000, Ny OB +BD pefom|o ., BTOn'] B B } . (A4)

The bracket 1" indicates here a transposition of the factors 3 and 4, the double bracket ]]T indicates, as
previoudly, a transposition of the factors 2 and 4. Referring to the 2x4 =8 terms in Eqs (A3) and (A4),
we see on one hand that the 1t, 3rd, 6th, and 7th quarter-exterior terms vanish all together if the full
projection N'[{N'[....]JN'}|N' is applied. One term disappears by thefirst N'|=N'T(...) left (applied to
the 2nd factor), two by the fourth |[N" = (...)N'T right (applied to the 3rd factor), and one by the third N’
right (applied to the 4th factor). The second N' left is actually not necessary, but it serves to accentuate
the interior character of these 4th order tensors. In the difference appearing in the Riemann—Christoffel
tensor only four terms remain therefore:

N'IN[O,@m 0, -NOO O ( , N)IN|N
) NT_ p T ' i T
=808 80 B"f B (8 B )H RT. (A5)

The Ricci tensor R is the ‘outside’ contraction of R, in components R,; = Rgm, the last skew-
symmetric factor in Eg. (A5) vanishes after this contraction. Then R can be written in two simple
conjugate expressions (the real components R,; = R, are symmetric)

R=B'B"' -(B IN)B'" (A6)
or

R=B""B -(B'N')B" =R'. (A7)
4.2. Components of the exterior curvatures and the Ricci tensor

The derivatives of the spinors n"" #n can be written

OO0 a nl (A8)

a?

00 " d n (A9)

a?
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'y == za =,n’, (A10)
Ny =/ ady, + ). (A1)

Using the auxiliary relations O,= ab g 6", 7t =a*r,, a* =-a*[@", where @ isthe conjugate
of a”, we obtain therefore

B"=—(0,0 n)NT 7a% a”, (A12)
B =—(0,0 n)N- 7rtafl a- & a' (A13)

Now as for the development in case of a small curvature, we get with ¢/'=@e* and ¢, =@, 8"
successively

B'=(0H ¢ )N+ @61 ® g, & €, 6 B"=p,80e= ¢ 0 e, (A1
B =(00 n)N §,,& &, B =g,e0e= y,,é0 ¢,
B'B" =y, ,& P, 0" 0% 7,y e &,
BIIN =@, O&'N(e0 en) w,e¥ ¢, (BIIN)B" =y 7,6" 08",  (Al9)
so that the Ricci tensor of Eg. (48) becomes in fact
R=BB"~(B IN)B" =@, (ip~Wo s ) (€ DE”). (A16)
In general we have aso
R=B/"B" —(B IN)B " =~(/" oy /1y =/ ol ) (@* 0. (A17)
The components of EQ.(A1l7) correspond to the usua representation Ry =1 jm 5= f,ﬂ At
I =1k, because
(/_;A,/; _/_;/3,1 "'/_53/_;/3 _/_523/_;;; ) "'«:aia/_;z 7‘_:;;;/_ 2) =0 (A18)
(a, B from 0to 3, i from 1 to 4) expresses the vanishing Ricci tensor in the space M'* O M':
M*0 ME C%
4.3. Theorem of energy impulse

It is well known that Eq. (20) is compatible with Eqgs(18) and (19), because of some integrability
(Bianchi) eguations. Here we give an alternative explanation, which refers to the present notation by
exterior spinors. We use the rules O(XYF U X)¥ 0 M) X and DOOAYE (@ X}#Y
(0 Y) X, valid for any 2nd order tensors X, Y. First, the derivative of the trace RIN'T =
BTB' F(B IN)BTINT) is(herewehave N'#N'")

0.(RNT) =(0,0 BD B O, B8O [ G NIBT NH) [ BT NDIB N)
=20,0 BH B¢ o ,@® N)ET NT), (A19)

because (0,0 BT) BZ (00, B') B, [O0,(BONTBONE O (B N)BH NT). The
integrability equation can be written with the 4D-permutation tensor E in the form
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0,EQ =a) o (A20)

meaning that the two operators [, can be permutated. Thuswe have O (BON'F U B/)N' sothat we
obtain

0. (RNTY/z= o BI) B'O( ,B)N@BT NT). (A21)
Second, the derivative of the Ricci tensor R is
(O,RNE 0 BB OO, B B0 [ QB N)BI ( ,BT)N(B N)
=(0,BN)B* U BDO B'O( ,B)BH ( ,BTNAMB N). (A22)

From the integrability Eq. (A20) we have dso (0,0 BTY (0, B") and further (0,B/)B"'=
(0,B/7)B"; therefore we get

O,RN= U0 BJ)BO( BINB" NT). (A23)

The elimination of two terms from Eqgs (A21) and (A23) leads finally to the equations sought (see also [],
p. 53)

(O,RN=D (R N'T)/2, (A24)
—k(0,T)NE {0 [R (R NT)N'T/2IN 0. (A25)
4.4. Three illustrative steps

In order to relate the concepts of Section 2 with those of Section 3, we write:

(@ InEq. (14) the projector K, onto the plane normal to k appearing in the 3D-space. Here we have the
derivative of a distance r to a fixed point (the centre) and then the derivative of the resulting unit
vector k:

an:Dn\Iﬁ:F wJE(Dn F)r Kk, (A26)
r

1

OH E}Dn— rDF]Q =r r—%CIN =k k) ?K (A27)

n*

In the 4D-space we form the derivative of adistance p, to afixed straight line (representing in some
way the ‘time’) from a point with ‘position vector’ ¢,. We obtain thuswith p,=q,-¢&k,, 0.& k°,
k°k, =0

0,020 B éﬂmn rnf)pl%la—nmcw & Eo)plel(mN 5 kKp, k. (A28)

The derivative of this (unit) spinor leads to a modified projector K, and its transpose K . But with
reference to the position vector r # g,, we obtain

O )z =0, -p) ExO,p= pl AL, 00— &0kl —( ., p).  (A29)
] Py Py Py

1

OF Ky SN K & B ) K, (O Ky =

SN K K K, =Y Ky
(A30)
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(b) The derivative of the spinor n* =m'S' =m'Se™'¥ inthe ‘inclined’ complementary space M'* reads
00 -0 m (MSeyn . mSe 0 -y k* kT, (A31)
r

with the (unit) spinor m*S =k* in the Minkowski space M* and because

(00 m'S)cosgy OO, nY)cesy O,
O mS)isng 00, mS)sn@n( . kysny S"‘T‘/’Kg.

In the space M'* we have k' =m'S' =m'Se™, k;=Sm, =Sme™, and k™ k| =-€?¥, but
k; (K'* = - Thus we can write, now with m, =[siny, cos ), 0, 0] =m',

_ _ in2 (-1 2 (1 _
k'OK: mESTE€4] ESTEmte¥ ~| 3NV 0} cos’ y %0062, (A32)
! ' 2 {0 -1 2 (0 -
k;OKE € h{J h’sin>y B h'cos® y)e??,
(A33)
(k,OkHYKE KF B h°sinfy [h,  hicos’y,
10
hy 0 he" E[O J 00 o] (A34)
10
h, O =" {o %[0 J 0 o}. (A35)

(©) The definition ¢ — sin* =2M/r of theinclination in the static spherical case, according to that in
front of EqQ. (14), leads with ¢ =1—/(,0r3/2M , 0,=0, pl/coszy to the key relation and in addition
to O,¢

2 7 s n2
0, Sy [ﬂ— Mp - ¢ 208, (A36)
r r r cos’ y
tan sin ,
- (=2 0 - (2 (A37)
2r cos” y 2r cos” y

The exterior curvature tensor B =—(0,0 n")NT, according to Eq. (46), is therefore

B =0 (g 0Ky k= ¢ oty |y medr KT (asg
2rcos’ y r 2r r

By comparison with Section 2 we find now tapzyza)/Z. In the same way, but in addition with

00 K 0 wehave 00 n®-0 [y (M?SeE4y 0O,¢ k' Therefore we get with 0 y=

~{k, tang tan B/ 2r cos’ y

B?=-(0,0 n?)NZ ZSi;—rwtanﬁ(m h'tanty [h, h')e??. (A39)

The expressions (A38) and (A39) lead then with B;, B, and Eqs (A6) and (A33) to arelation for the
Ricci tensor R similar to Eq. (21).
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4.5. The role of the surrounding complex space

In the 4D-complex space M* 0 M= C* we have the coordinates % =u, i%, =ict,, i, =ict,, i%, =ict,
and ix, =ict, X, =X, X, =Y, X =z First, an‘ordinary’ vector u and its conjugate have the components

u=(iuy +0;, u +id,, u, +ity, Uy +id,), U=(-iu, +0,u, —il,,u, —il,, Uy —id,), (A40)

and the norm reads u @ =u +u] +u5 +u +0/ +05 +02 +0; >0. The scalar product of two vectors u,
Vis

Ul =upVv, +Wy, +U,v, +uv; +0v; +0,v, +0,v; Hi,v,
+i(UgV, —Voly —uV, +ViU, —U,V, +V,Uy —UgV, +vgl,). (A41)
In particular, if v=u, =(-0, +u,, 0, —iuy, U; —iu,, 0, —iuy), thisscalar product is purely imaginary:
UL, =i(ug +07 +uf +07 +uF +05 +ui +0;). (A42)

We have for instance two unit vectors u = (0, cosa +isina,0,0) and u, =(0,sina —icosa,0,0) for
which uli; =i. As this corresponds to a complex product izz =i, we can say that u; isin some way
‘orthonormal’ to u. Second, in a similar manner the two unit spinors n*> =m*S in the complementary
space and k, =Sm, =iSm, in the Minkowski space can be said to be ‘orthonormal’ to each other,
because we have

S=iS, (A43)
n? [k, =m2SSm, =i. (A44)
Finally we recall the well-known Lorentz transformation, for instance in the Minkowski space for the

first pair (i%,, %), which transformsinto (ixy, X)) and where ix, =ict =y,, x, =ict' =Yy,. We can either
write two matrix representations or a complex representation:

1) -one sl e

i g -

X % =(a=ib)(x, +ix,) =X (Cosp—sin g +ix,(sin g+cos @ (A47, 48)
a=cosp=1/\1- &2, (A49)
b=-isng=4/\J1- & = Ba (A50)

For x, =Vt =ix,/c weobtain 0=x =awx,/c —aB%, B, =Vv/c, t' =(t —xlv/cz)/wll—vz/cz.
4.6. The problem of linearization, an alternative development with details

In order to point out explicitly a sort of kinematic meaning of Eq. (48) and also of the statement
2 05 ,= W 5Y 2 2AW, o, Wis— W, 544, there, weintroduce a generalized displacement u=v +w on
the 4D-flat space defining the near 4D- hypersurface of small curvature. The spinor v =Nv isinterior (in
the Minkowski space M*) and w=wn' -V\/n =Nw is an exterior spinor (in the complementary space
M*). We assume further that |w| is smooth of first order small, whereas |v| is smooth of second order
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small. Analogously to the nonlinear kinematic equations in the 3D-shell theory, we define here a modified
strain tensor )=} (also in accordance with the full projection NF'FN =VV in Section 1, before

Eq. (4)):
y=Z(NFTEN -N) =2((00 ® 00, %O o, w'l (ASD)

For the last term we can write (00 W)(O, =) w W =, O¢'. We introduce further the
restrictive kinematic equation

20,00 VFEO YN+ P N), (AS2)
where we have with 0, (1, = A the auxiliary relations
20, A WO O, MOM@, OwWYA W w w, (A53)
20,/=0wO 0, MOM, Ow¥a v w w, (AB4)
20,()BNTFO IO, #P O 4000 [0 W W), (A55)
20,(VONFO RO, M O 400 [0 W w). (AS6)

From the last four equations we get with N =n' On, a differential equation for the displacements v
and w

AV=-MwOw=-(00 wiN w, Av=-MWOw=-AWN{QO[ w), (A57)

which expresses Eq. (A52) in another manner. If we apply now the operator A onto Eqg. (A51) we obtain
with Eq. (A57)

By=,l0R VOB D @w W)
= 1TAWD b W, @) AW OfW A, ) W]

SO0 WD WD, QR0 @) W)

=(0@ W@, -awW)Dm( = W) R (A58)
Thetensor R° may be called theimage in the flat space of the true Ricci tensor on the curved space
R=R°+R%(00 w) O, w)'R° (A59)

Because Eq. (48) represents already an approximation after the forgoing development of the projector, R
has two semi-exterior parts of higher order. We arrive therefore at the following conclusion:
The field Eqg. (19) becomes in vacuum R =0. We would then get from Egs (A58) and (A59) and
from Eq. (A52) simultaneously two differential equations:

R°=Ay =0, (A60)

20,0 V' FO N+ PIN). (A52)
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This is not possible; therefore gravitational waves, described by pure geometrical considerations,
cannot exist. As for the (incorrect) Eq. (39), note that the operator 0= (...)" ", isonly applied on the
components  ¢/,,; = (t//alﬁ.,g) / 2, whereas in Eqgs(A58) and (A60) the equivalent operator
Of0=A isapplied on the complete tensor )/ including its base. Moreover, one has ¢/, # V5,
because the interior generalized displacement (spinor) v does unfortunately not intervene in
Eq. (39). The commonly used condition 241/21’ =y » Serving to obtain this equation, is stated as a
choice of simplifying special coordinates. However, this statement disguises the fact of the
additional restrictive kinematic relation Eg. (A52).
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Deformeeritud pinnad holograafilises interferomeetrias.
Sarnased aspektid Uldistes gravitatsioonivaljades

Walter Schumann

Esimeses osas on antud |UhiUlevaade pinnadeformatsioonide meetodist holograafilises interferomeetrias.
See on sissgjuhatuseks jargnevatel e osadele, kus sama meetodit on kasutatud uldrel atiivsusteooria vorran-
dite ja nende lahendite uurimiseks.

Artikli pohiosas (2., 3. ja4. 0sa) on vaadeldud Einsteini vorrandite lahendi poolt antud neljamdotmelist
kdverat aegruumi hiperpinnana kdrgemam@dtmelises tasases ruumis. Virtuaalsete deformatsioonide
meetodit on rakendatud hiperpindadele, mis vastavad Schwarzschildi ja Kerri lahenditele, aga ka tldise
gravitatsioonil&étse isotroopsetele geodestilistele ehk valguskiirtele. On véidetud, et tiihjas (ilma matee-
riata) aegruumis on lainevorrandi tuletamine Einsteini vorrandite lineariseerimisel ebakorrektne ja artiklis
toodud meetodil lineariseerimine lainevdrrandit el tekita. Sellest agaolust on jareldatud, et puhtgeo-
meetrilisi gravitatsioonilaineid pole olemas.

Lisas on toodud kasutatud matemaatiliste moistete ja arvutuste Uksikasjad.



