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Abstract. In the introductory part (Section 1) some aspects of the large deformation analysis in holographic interferometry are 
briefly outlined. The calculus there may also serve as an introduction for a link to the principal part afterwards. Modifications of 
the set-up at the reconstruction should recover the previously invisible fringes. Their spacing and the contrast are characterized by 
the fringe and visibility vectors. The relevant derivative of the path difference involves the polar decomposition of the 
deformation gradient into strain and rotation and the image aberration implies further changes of the geodesic curvature and of 
surface curvatures. In the principal part (sections 2, 3, 4) these considerations lead then to similar aspects for hypersurfaces, above 
all to an interpretation of gravitation by two virtual deformations for the Schwarzschild solution. This is further useful for non-
spherical gravitational fields, for the invariants there, and for the TOV relation between pressure and density. The null-geodesics 
or light rays can also be interpreted by these virtual deformations. An approach towards the Kerr solution for rotating stars is 
added. As to linearization, a connection is outlined, which confirms the non-existence of gravitational waves if they are described 
by pure geometrical considerations of the field equations. Detailed equations for calculations are presented in Section 4. 
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*    
 

1.  DERIVATIVES  OF  THE  OPTICAL  PATH  DIFFERENCE,  STRAIN,  ROTATION,  
CHANGES  OF  CURVATURE,  FRINGE  AND  VISIBILITY  VECTORS 
 

The basic expression in holographic interferometry is the optical path difference ( ) .D λν= ⋅ − =u k h  
Here u  is the displacement, h  and k  are unit vectors, λ  is the wave length, and ν  the fringe order. In 
the case of a large deformation, when two modified holograms are used [1], the exact expression becomes 

( 2 )( ) ( ),D L Lλ π ϕ ϕ′ ′= − − −� �

� �  where ,L L′� �  denote the distances from the image points P, P′� �  to a point K�  
of fringe localization (see Fig. 1). The phases at P, P′� �  are T S T T(2 ) ( )L L p q q p q qϕ π λ= + + − − − + +� � � � + 

,π ψ+ �  ,ϕ ψ′ = + ∆� �…  so we obtain in general 
 

S S ( ) ( ) ( ) ( ) 2 .D L L L p L p p q p q q q λ ψ π′ ′ ′ ′ ′ ′= − − + + + + − − − + − − ∆� �

�� � � �                     (1) 
 

Many authors [e.g. 2] have studied the recovering of fringes. The contrast depends on the derivative of 
,D  and the spacing leads to the strains. Therefore the differential S Sd d d d( ) d( )D L L L p L p′ ′ ′= − − + + + +� �

� �  
d( ) d( ) d dp q p q q q′ ′ ′− − − + −� �  is primary. 

We insert now some elements with convenient notations for the geometry and deformation of  
2D-surfaces in the 3D-space. In the principal part these concepts will be generalized to 4D-hypersurfaces, 
embedded in an 8D-space or in a 4D-complex space. We write in particular for the distance SL  in Fig. 1 
left: S Sd d dL L= ⋅ ∇ = ⋅r N r Nh  with the normal projector = − ⊗N I n n  [note that for any dyadic ⊗a b  
the  rules ( ) ( ) ,⊗ = ⋅x a b x a b  ( ) ( )⊗ = ⋅a b y a b y  hold].  The  operator  n

α αθ∇ = ∇ = ∂ ∂N a  (α  summed  

                                                      
*This is an expanded version of the paper published in Speckle06 (Slangen, P. & Cerruti, C., eds), Proceedings of SPIE, Vol. 6341. 
Nîmes, 2006. The layout has been slightly modified and Section 4, an extended appendix, has been added. 
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Fig. 1. Recording of a large surface deformation. Modification at the reconstruction to recover fringes. 
 

 
from 1 to 2) appears as a formal projection of ∇  and the bases on the surface require ,α α

β βδ⋅ =a a  
,β

β θ= ∂ ∂a r  ,aα β αβ⋅ =a a  and .a α β
αβ= ⊗N a a  We write also 

 

n( ) ,∇ ⊗ = −n N B                                                                  (2) 
 

n ] .T∇ ⊗ = ⊗ + ⊗N B n B n                                                        (3) 
 

The tensor 1 1 1 2 2 2(1 ) (1 )B r rα β
αβ= ⊗ = ⊗ + ⊗B a a e e e e  describes the exterior curvature of a surface 

with principal values 11 ,r  21 .r  Equations (2) and (3) correspond to the Frenet-relations d d ,s r= −n e  
d ds r=e n  in the case of a plane curve. The bracket ]T  marks a transposition so that ]T⊗ =B n  

.B α β
αβ ⊗ ⊗a n a  Equations (2) and (3) help to decompose the derivative of a vector w= +u v n  into an 

interior and a semi-exterior part, namely n n n( ) ( ) .w w∇ ⊗ = ∇ ⊗ − + + ∇ ⊗u v N B Bv n  The deformations 
read d  = d ,′ ′N r FN r  ˆ ˆ ˆd  = d …

�

�

N r FN r  where only the semi-projection n( )T= + ∇ ⊗FN N u  of the 3D-
deformation gradient ( )T= + ∇ ⊗F I u  intervenes. The polar decomposition is =F QU  with the 
(orthogonal) rotation tensor Q  [ ]T =Q Q I  and the symmetric dilatation ,U  defined by the Cauchy–Green 
tensor .T =F F UU  At the surface the decomposition is with a rotation nQ  n i[ ]′ = =n Q n Q n  and the in-
plane dilatation V  [ ]T =NF FN VV  
 

n i p .= =FN Q V Q Q V                                                               (4) 
 

For small values, a strain tensor ,γ  an inclination vector ,ψ  a p-rotation scalar ,Ω  and the permutation 
tensor E α β

αβ= ⊗E a a  11( 0,E =  12 21,E E= −  22 0),E =  the decomposition Ω ψγ= + − + ⊗FN N E n  is 
additive and i ,ψ+ ⊗Q N N n�  p ,Ω−�Q N E  ,γ+�V N  .= −EE N  At an isotropic, elastic  
surface 0 0( )v Eγ τ τ= + E E  holds with factors 0 ,v  0 ,E  the stress tensor ,τ  and an involution ( ) .− …E E  
Next, the equation of a geodesic curve, relative to the arc ,s  can be written as 2 2d d 0,s =N r  because the 
osculating plane contains the unit normal .n  More generally, for any curve and its image we obtain with 

( 1)− =V V N  the transformation backwards 
 

2 ( 1) 2
n Vd [ d (d d )],T− ′ ′= −N r V Q N r r rD                                                     (5) 

 

V n n n n[( ) ] | [( ) ] | ,′= ∇ ⊗ + ∇ ⊗V N N Q V N QD                                            (6) 
 

where | N  marks a projection of the middle factor in a triadic. Finally, nd ′′ ⋅ ∇ =r nd ⋅ ∇ =r  
( 1)

n nd −′ ⋅ ∇r Q V  gives the change of surface curvature forwards 
 

( 1) ( 1)
n n n n n n( ) [ ( ) ] .T− −′ ′ ′ ′= − ∇ ⊗ = − − ∇ ⊗B Q V n N Q V BQ Q n N                             (7) 

 

Again in holography: The image P< >�  is defined by Pd 0θ =  (or Eq. (9)) of P 2 ( )p q p qθ π λ= − − +� �  
for the rays through the aperture. Thus we find with ( 1)

n n
T −
′′ ′ =V Q Q V  

 

( 1)
nd d [( ) ( )] d ( ),D ρρ−′ ′ ′ ′ ′= ⋅ − − − + ⋅ −

�

� ��

�r N k h Q V k h K k k                                 (8) 
 

n̂
ˆˆ ˆ[ ( ) ( )] 0.T c− − − =�

�N VQ k k c                                                         (9) 
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Consider now R 2 ( ) .q qθ π λ= + − −
�

�

�� �  The condition Rd 0θ =
�

 leads also to Eq. (9). Therefore we  
get from neighbouring rays 2d ( ) 0,q q+ − − =�

�� �  2 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆd ( d ) d [ ( ) ]d .q q= ⋅ + ⋅ ⋅ + …N r c r B n c NCN r  For 
2d

�

�

N r  we apply Eq. (5) so that the total term 2ˆ ˆd ( )…N r  is cancelled because of Eq. (9). We use also the 
affine connection ˆˆd dT= −�r M k  with the oblique projector ˆ ˆ ˆ .= − ⊗ ⋅M I n k n k  Resolving ˆˆd d⋅ =rN k  

2d ,− +…�  we get a linear transformation d d ,= �k T k  where the tensor ˆ ˆ ˆ{ ( ( ))= ⋅ − −T M B n k c  
( 1)

n
ˆ ˆ q −− �

� �

NCN Q V  [ ( ( )) q⋅ − − −
� � �� � �� �B n k c NCN  ( 1) ( 1)

nV
ˆ| ( ) ] }T T− −− −� �

�� �
� ��� �

�

V k c K V Q MD  shows the curvature 
of the non-spherical wavefront and the astigmatic interval R .< >  The ray aberration reads 

ˆd d d ;p= −K r K r k  thus the bridge ( 1)
n̂

ˆˆd dT T−=
�

� �� �k KV Q M k  gives with ( 1)
n̂ n

ˆˆ T− = �

� �
V Q Q V  the virtual image 

deformation Rd ( d ),=
�

� �

�K r G K r  where nR ( ) ( ).Tp p= + +�
�

� �� �
� � �� �G T K Q VM  If the small areas projected by the 

aperture overlap sufficiently for the correlation, we have .L′ ′− ≈ −� � � �

�k k Ku  To apply Eq. (8) we use 
′ ′ ′ ′ ′= − ⊗ ⋅M I n k n k  as well as d dβ′ ′ ′= −� ��k m  with a unit vector ′�m  and an angle d .β′�  We write then 

R Rd dD β′ ′′ ′ ′= ⋅
� �

� �

�m f  and K Kd d .D β′ ′ ′= − ⋅
� �

� �

�m f  The fringe vector [3] (indicating the spacing) and the 
visibility vector [4] (marking the distance of the homologous rays) are therefore 

 

( 1)
nR R( ) [ ( )] ( ) ,Tp p L L−

′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + − − − − + +
� �

� � � �� � �

�� �� �f G M k h Q V k h Ku                        (10) 
 

( 1)
nK K [ ( )].TL −′ ′ ′ ′ ′ ′= − − −

� �

� ��f G M k h Q V k h                                           (11) 

 
 

2.  ASPECTS  OF  DEFORMATION  AT  SPHERICAL  AND  NONSPHERICAL  
GRAVITATIONAL  FIELDS,  GRAVITATIONAL  LENS,  AND  ROTATING  BODIES 
 

This section is only indirectly related to the previous subject. An extension should illustrate Eqs (2)–(7). 
Equation (7) gives the curvature ′B  of a deformed surface 2 3.⊂ �A  For a hypersurface ,k n⊂ �A  n k>  
this leads to the Ricci tensor ,R  in components , , ,aR λ λ µ λ µ λ

αβ αλ β αβ λ αλ µβ β µλΓ Γ Γ Γ Γ Γ= − + −  where 
, , ,( ) 2a aa a a aλ λµ

αβ µ β µβ αβ µΓ = + −  are Christoffel symbols. However, the projector a α β
αβ′ = ⊗N a a = 

i
i′ ′− ⊗I n n  ( ,α β  from 0 to 1;k −  i  from 1 to )n k−  implies both the ‘metric tensor’ aαβ  and the 

exterior orthonormal vectors ,i
i′ ′=n n  which are at the moment supposed to be real. For the complex 

version see Section 3, Eqs (40)–(43). If we use these vectors, the Riemann–Christoffel tensor can be 
written (see also Section 4.1, Eqs (A1)–(A5)) as 

 

n n n n| [ ( ) ] |RT T
′ ′ ′ ′′ ′ ′ ′ ′ ′= ∇ ⊗ ∇ ⊗ − ∇ ⊗ ∇ ⊗N N N N N N  

 

( ) ,
TTTiT iT i T

i i i i

′ ′ ′ ′ ′ ′ ′= ⊗ − ⊗ + ⊗ − 


�� ��� ��
B B B B B B B                                       (12) 

 

according to Eq. (3) and ( 1)
n n( )i T

i i i
−′ ′ ′ ′ ′= = − ∇ ⊗ =B B Q V n N B  (Eq. (7)). The bracket �

T
 indicates a 

transposition of the factors 2 and 4. The Ricci tensor is the contraction of ,R  alternatively 
( ) .T i iT

i i′ ′ ′ ′ ′= − ⋅R B B B N B  For a spherical gravitational field first one uses the Schwarzschild radius 
22 2 ,M GM c=  the mass ,M  the radius ,a  the velocity of light ,c  and polar coordinates , , .r θ ϕ  We 

define an angle 2sin 2 ,M rψ ψ→ = �  where 2 2 ,M M=�  for r a>  and 2

0
ˆ ˆ ˆ2 ( ) d

r
M r r rκ ρ= ∫�  for ,r a≤  with 

28 G cκ π=  and the ‘density’ .ρ  Writing 2 2 2 2 2d sin dr rθ θ ϕ+ = nd d⋅r K r  the fundamental form [5] 
reads 
 

2
2 2 2 2

n2 2

cos 1
d d d d d ,

cos
c t r

ψσ
ϖ ψ

′ = − + + ⋅r K r                                   (13) 

 

where 1ϖ =  for .r a>  The projector n = − ⊗K N k k  refers to the radial unit vector ( , ).θ ϕk  The space 
part 2 2

nd d ( cos  )ds ψ′ = ⋅ ⊗ +r k k K r d d= ⋅r VV r  gives ( 1)
ncos .ψ− = ⊗ +V k k K  We obtain with a 

vector r w′ = +r k n  a deformation gradient , n( )rw= + ⊗ +FN k n k K  and 2d d dTs′ = ⋅r F F r  
2
, nd [(1 ) ]d ,rw= ⋅ + ⊗ +r k k K r  so that , d d tanrw w r ψ= =  implies an inclination and cosψ′ = +k k  
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sin , ψn  sin cos .ψ ψ′ = − +n k n  If we use the key relation ,(sin ) sin 2r rψ ζ ψ= −  with 
31 2 ,r Mζ κρ= − �  we find n ( )′ ′∇ ⊗ = ⊗n k k  ntan 2 sinr rζ ψ ψ− K  and curvatures 

 

( 1)
n n n( ) (sin )[ ( 2) ]rψ ζ−′ ′ ′ ′ ′= − ∇ ⊗ = − ⊗ +B Q V n N k k K 1 2 n(1 ) (1 ) ,r r′ ′= ⊗ +k k K           (14) 

 
2 2

3D n( ) (sin )[ ( ) ( 2 1) ]rψ ζ ζ′ ′ ′ ′ ′ ′ ′= − ⋅ = ⊗ + −R B B B B N k k K  
 

1 2 1 2 2 2 n(2 ) (1 1 ) ,r r r r r r′ ′= − ⊗ − +k k K                             (15) 
 

as well as the known vase-like surface [6]. Second, as for the time-radial terms in Eq. (13), we introduce a 
vector 2 cos ,M wψ ϖ′ = +� ��r k n  which gives with i d (2 )dc t M r⇒ ⋅�

r h  a real ( 1)− =
�

V  
( 2 cos )r Mϖ ψ⊗h h cos .ψ+ ⊗k k  Defining an angle sinχ χ→� �

,2 (cos ) cos ,rM ψ ϖ ψ=  ,rw =�

 
cos cosχ ψ�

 we get ( 1)
n

− ′= = ⊗ + ⊗�

� �� � �

Q N FV h h k k  and with sin cos ,χ χ′ = +
�

� � �

k k n  cos χ′ = − +� �

n k  
sin χ� �

n  another inclination by 2 .π χ− �

 The 2D-curvatures are therefore 
 

( 1)
n n( )−′ ′ ′= − ∇ ⊗� �

�� � �

�

B Q V n N ,( ) (sin ) ( ) 2rr r Mη ϖ χ η′ ′= ⊗ − ⊗
� �

� � �

h h k k 0 1(1 ) (1 ) ,r r ′ ′= ⊗ + ⊗
� �

� �h h k k   (16) 
 

2D ( )′ ′ ′ ′ ′= − ⋅
� � � � � �

R B B B B N ,(sin ) ( ) 2r Mϖ χ ′ ′= ⊗ + ⊗
� �

�

h h k k 0 1(1 )( ).r r ′ ′= − ⊗ + ⊗
� �

� � h h k k           (17) 
 

The factor cos 2 cosr Mη ϖ χ ψ=� �

 is not relevant in Eq. (17). Note also that we have T′ ′=N N  at the 
moment. 

The field equations and the theorem of energy-impulse are with 4T T′ ′⋅ =N N  (see also Section 4.3, 
Eqs (A19)–(A25) 

 

( ) 2 ,T T κ′ ′− ⋅ = −R R N N T                                                       (18) 
 

) ,[ ( 2]T Tκ ′ ′= − − ⋅R T T N N                                                        (19) 
 

n( ) 0.′ ′∇ =T N                                                                  (20) 
 

In this static case the principal components of the energy-impulse tensor T  are 0
0 ,T ρ=  1 2

1 2T T= =  
3

3 ,T p= −  where ( )p r  denotes the ‘pressure’. We introduce now the curvature 1
1′ ′=B B = 

0 1 2 n(1 ) (1 ) (1 )r r r′ ′⊗ + ⊗ +h h k k K  on a stripe 4 6⊂ �S  [7], where 01 sin 2 ,r rω ψ= −  11 r =  
sin 2 ,rζ ψ−  and 2

2′ ′=B B 0 1(1 ) (1 )r r ′ ′= ⊗ + ⊗� �h h k k  where 0 0cos sin ,r rβ β=�

 1 1cos sinr rβ β=�

 
must hold. We define also 2 2(sin )( 1).p rω κ ψ ω→ = −  The Ricci tensor 4D ( )i i

i i′ ′ ′ ′ ′= − ⋅R B B B B N  (i 
sum 1 to 2) becomes then with 2tan [(2 ) 1]2 1β ζ ω ζ= + − −  and Eq. (19) 

 

4D n( 2)[(3 ) ( )( )]p pκ ρ ρ ′ ′= + ⊗ + − ⊗ +R h h k k K                                                                                 
 

2 2
n(sin 2 )[(3 2) ( 2)( )]rψ ω ζ ω ζ ′ ′= − − ⊗ + + − ⊗ +h h k k K                                                   

 

0 1 0 1 0 2 0 1 0 1 1 2(1 1 2 ) (1 1 2 )r r r r r r r r r r r r ′ ′= − + + ⊗ − + + ⊗� � � �h h k k 0 2 1 2 2 2 n(1 1 1 ) .r r r r r r− + + K       (21) 
 

However, as 00 1 2 3
0 2 00 12 132 ( )r r a Γ Γ Γ= + 00 11

00,1 , 2cos (cos ) ,ra a a r rψ ψ ϖ= − = −  we have a connec-
tion between ω  and ϖ  (Eq. (22)), another connection between the curvatures (Eq. (23)) and, for a given 

( ),rρ  a linear differential equation for 1 ϖ  (Eq. (24)): 
 

2sin sin ,r Mω ϖ χ ψ= �

                                                          (22) 
 

0 1 0 1 0 11 1 1 ,r r r r r r+ =� � � �

                                                            (23) 
 

2 2
, , ,[(cos ) cos ] (sin 2 ) .r r rr rψ ϖ ψ ψ ϖ=                                          (24) 
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Two special cases are: (a) ,r a>  0,ρ =  1,ζ =  3,β π=  1,ω ϖ= =  and (b) ,r a≤  0 (const.),ρ ρ=  
2,ζ = −  0,β =  2cos (3cos cos ),aω ϖ ψ ψ ψ= = −  0 (cos cos ) (3cos cos )a ap ρ ψ ψ ψ ψ= − −  (TOV equa-

tion [8]). In a nonspherical field we have , ,2 2ss sU U r κρ+ =  with the potential ,U  the mean curvature 

2 31 1 2 1 2 ,r r r= +  and k  along the arc .s  We define 2 1/ 2
,sin 2( ) ,sM Uψ ψ µ→ = �  with ,(sin ) sψ =  

sin 2 ,rρζ ψ−  , ,1 ( ) 2 4 .s sr M M Uρζ µ µ κρ= − −� �  The vector k  differs from *k  by an angle ,α  which 
must be determined by the conditions of vanishing mixed terms. The inclination ψ  appears then between 

*k  and .′k  On 4 8⊂ �S  we use the curvature 0 01 tan ,r rβ=�

 1 11 tan ,r rβ=�

 01 sin 2 ,r rρ ω ψ∗= −  

11 sin 2 ,r rρ ζ ψ∗= −   the  tensors  1
1′ ′=B B 0 1 k[(1 ) (1 ) sin ] 2,r r ψ∗′ ′= ⊗ + ⊗ +h h k k B  3′ =B  

* * *
0 1 k[(1 ) (1 ) sin ] 2,r r ψ′ ′⊗ + ⊗ −h h k k E B E  and 2 4

0 1[(1 ) (1 ) ] 2   r r′ ′ ′ ′= ⊗ + ⊗ =� �B h h k k B  and we 
write 

 

  1 1
1 1( )′ ′ ′ ′ ′− ⋅ =B B B B N 0 1 0 1(1 2 1 ) ( 1 )r r r r r r ′ ′− + ⊗ − …+ ⊗� �h h k k  

 

2
k n 2 3sin [ ( ) 4 2 ],r r rψ ρ ω ζ∗ ∗ ∗ ∗ ∗+ + −B K                                          (25) 

 

     3 3
3 3( )′ ′ ′ ′ ′− ⋅B B B B N 0 0 1 1(... 1 ) (1 2 1 )r r r r r r ′ ′= − + ⊗ − + ⊗� �h h k k  

 

2 * *
k n 2 3sin [ ( ) 4 2 ],r r rψ ρ ω ζ∗ ∗ ∗ ∗ ∗− + +E B E K                            (26) 

 

2 2 4 4
2 2 0 1 4 4( ) (1 2 )( ) ( ),r r′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− ⋅ = − ⊗ + ⊗ = − ⋅� �B B B B N h h k k B B B B N                  (27, 28) 

 

where *E  is the 2D-permutation tensor normal to *.k  With the involution we have here the Gauss curvature 
*

2 3 k k1 ( ) 2 ,r r K∗ ∗ ∗ ∗ ∗ ∗= − ⋅ =E B E B  the mean curvature * *
k k n1 ( ) 2r ∗ ∗ ∗ ∗= − ⋅B E B E K  and 1 sin .r rψ ∗=�  

We obtain then with 2 21 sin ,r rψ ∗=  3 31 sin ,r rψ ∗=  2 tan β =  [(2 ) 1]2 1,r rζ ω ρ ζ∗ ∗+ − −  rr Kρ∗ ∗ ∗=  
the Ricci tensor 

 

        *
4D n( 2)[(3 ) ( )( )]p pκ ρ ρ ′ ′= + ⊗ + − ⊗ +R h h k k K  

 

   2
n( sin 2)[(3 2) ( 2)( )]K ψ ω ζ ω ζ∗ ∗′ ′= − − ⊗ + + − ⊗ +h h k k K  

 

0 1 0 1 0 0 1 0 1 1(1 1 2 ) (1 1 2 )r r r r r r r r r r r r ′ ′= − + + ⊗ − + + ⊗� � � �

� �h h k k *
0 1 2 3 n(1 1 1 ) .r r r r r r− + +� � K       (29) 

 

For the general gravitational lens with 1,ζ =  1,ω ϖ= =  we use the equation of a geodesic curve 
2 2d d 0.s′ ′ ′ =N r  A type of Eqs (5) and (6) gives then the backwards deformation into the flat space. We 

have similar to Eqs (25)–(28) four parts 
 

2 2 2 2 2
1 kˆ ˆd sin [ (d ) +( cos )d 2 d d ] 4 ,r r rψ ρ ρ ψ∗ ∗ ∗ ∗= ⋅ − ⋅N r k r h r B r                             (30) 

 

2 2
3 kd sin [ 2 d d ] 4 ,r rψ∗ ∗ ∗ ∗= …+ ⋅N r k r E B E r                                              (31) 

 

2 2 2 2 2 2
2 4ˆ ˆd sin tan [ (d ) ( cos )d ] 4 d .r rψ β ρ ρ ψ∗ ∗ ∗= ⋅ + =N r k r h N r                    (32, 33) 

 

The image equation is 2 2 2 2 2
4D 1 3 2 4d ( ) ( d d )cos ( d d )sin .σ β β′ = + + +N r N r N r N r N r  A 4D-nullgeodesic 

(light ray) requires ˆ[d d 2,r r= ˆd i d cos 2]c t ψ⋅ =r h  2 2d d ,kσ ϑ′ = −  0k →  so that 2
4Dd ( )ϑ =N r  

* 2
nsin ( 3d d 2).K ψ∗ ∗− ⋅k r K r  The surrounding field of a rotating star for instance is nonspherical. In the 

rotating system there, we may write for the scalar of the inertial force 2 2
0( 2 ) ,V cΩ= − ⋅r K r  where 

0 0 0= − ⊗K N k k  and Ω  denotes the angular velocity. The gravitational potential reads 2U GM rc= − =  
M r−  and the gradient of the sum is 3

n 0( ) ( ) ,U V M rχ∇ + = −r K r  where 2 3 2.r Mcχ Ω=  Without 
writing here all the details this gives finally for the equatorial plane 

 

,(ln ) (4 ) (2 )(1 ) ,r rµ χ χ χ χ= − − −                                                  (34) 
 

2/ 3 12(1 ) (1 ) ,µ χ χ −= − −                                                          (35) 
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2 1/3cos 1 (2 )(1 2) .M rψ χ= − −                                                    (36) 
 

For small Ω  we have 2 2 2 2cos 1 2 3 .M r r cψ Ω− +�  A Lorentz transformation leads with 
2 2 21 1r cΩ υ− =  to Eq. (37). In comparison Eq. (38) shows the Kerr solution [9] or [10], Eq. (10.58), 

where 2 2 21 2 ,r M r a r∆ = − +  
 

2 2 2 2 2 2 2 2 2d ( d d ) cos ( d d ) d cos d ,c t r c r r t r rσ Ω ϕ υ ψ ϕ Ω υ ψ θ′ = − − + − + +                   (37) 
 

2 2 2 2 2 2 2 2 2 2 2d ( d d ) ( d d d ) d ( ) d .c t a r r a ac t r r r rσ ϕ ϕ ϕ θ′ = − − ∆ + + − + ∆ +                  (38) 
 
 

3.  THE  PROBLEM  OF  LINEARIZATION.  CONFIRMATION  OF  THE  GEOMETRICAL  
NON-EXISTENCE  OF  GRAVITATIONAL  WAVES 
 

The usual linearization 2aαβ αβ αβη ψ≈ +  of the metric components concerns the small quantities .αβψ  
Here αβη  refer to a constant tensor in the Minkowski space 4.M  The Christoffel symbols 

, , ,( )λ λµ
αβ αµ β βµ α αβ µΓ η ψ ψ ψ≈ + −  would apparently give, together with a certain condition , ,2 ,λ λ

αλ λ αψ ψ=  
a wave equation (?) for the Ricci tensor in vacuum: 

 

, , , , , ,R λ λ λ λ λ λ
αβ αλ β αβ λ λ α β αλ β β αλ α β λΓ Γ ψ ψ ψ ψ≈ − = − − + ,  0.λ

αβ λ αβψ ψ= = =�                     (39) 
 

Let us now look at the dynamic case from another standpoint. We mention that the general Lorentz 
transformation requires second order spinors ,in  first in the complementary space 4

�

M  instead of the 
previous unit vectors .in  This implies a triadic connection 

�

S  to real unit ‘vectors’ .im  We refer to the 
Pauli matrices in components [10], p. 145, [11]: 

 

,i i=
�

n m S                                                                      (40) 
 

4 1 0 0 i 1   0 0 11 1 1 1
[ (M )] .ˆ

0 1 i   0 0 1 1 02 2 2 2

 −       
= =         −        

� �

S S                     (41) 

 

The covariant spinors read ;i i=
�

n mS  thus we find 1i i
i i⋅ = ⋅ =

� �

n n m mSS  (i  not summed) and 
.i i

j jδ⋅ =n n  Further, if we use once more an involution ( )T− …
� �

E E  with the symplectic matrix ,
�

E  we  
get the conjugates and i.e. a product: 

 

,k T k= −
� �
�

n E EmS                                                                (42) 
 

1 0   0 i 1  0   0 11 1 1 1
,ˆ

0 1 i 0   0 1 1   02 2 2 2
T  − −       

− =         − −        

� �
�

E ES                       (43) 

 

  0 1
,ˆ

1 0

 
=  − 

�

E                                                                     (44) 

 

1 0 1   0 1   0 1   01 1 1 1
.ˆ

0 1   0 1   0 1   0 12 2 2 2
T  − − −       

− =         − − −        

� �
� �

E ES S                               (45) 

 

Applying T
k k= −

� �
�

n m E ES  we obtain therefore 2d d dTσ = − ⋅ =
� �

��

� �

�

r E ES S r 2 2 2
1 2 3( ) ( ) ( )d d dx x x+ − − −� � �

 
2

4( ) .dx
�

 But the fundamental form Eq. (13) has incidentally reversed signs, implying 4[ ( )] =
�

MS  
4i[ ( )]− MS  or  shortly i ,= −

�

S S  i .=
�

S S  With a small parameter ψ  of inclination we write tentatively 
2i (1 2)ie ψ ψψ−= ≈ − −′S S S  2(1 2) ,ψ ψ= − +

�

S S  in 2 4 8× =  matrices: 2[ (1 2) ],ψ ψ⇒ −′
�

S S S  and  
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⇒′
�

S  2[ (1 2), ].ψ ψ− −
�

S S  Each of the two involutions from 
  0 1

1 0
,

−

 ⇒  
 

E
0 i

i 0

 
 
 

 or 
i  0

0 i−

 
 
 

 alters 

signs: in three matrices from 4
M  but in one only of the last two from 4.

�

M  Accordingly, 
T′ ′− ⇒′ ′E ES S 2 1 0 1 01 1

0 1 0 12 2
(1 ) ,  ,0, 0,Tψ

    − − …+          
−

� �

E ES S SS  is in fact related to Eq. (13); for 
2d (1 2)d d ,ψ ψ′ ′≈ + + �

r r r  d ( d , d , d , sin d ),ˆ c t r r rθ θ ϕ=r  d ( d , d , 0, 0),ˆ c t r=�

r  we find { 1,ϖ =  
2 2cos 1 }ψ ψ≈ −  

 
2 2d d d d d d d T Tσ ψ′ ′ ′ ′ ′= − ⋅ ≈ − ⋅ + ⋅′ ′ � �

� �

r E E r r E E r r rS S S S SS  
 

2 2 2 2 2
n(1 ) d (1 )d d d .c t rψ ψ= − − + + + ⋅r K r                                                 (13a) 

 

After this preparation, again in general, i k
i k= − ⊗ = − ⊗� �N I n n I n n  ( ,i k  summed from 1 to 4) 

denotes here a modified projector for which the transpose is equal to the conjugate: .T =N N  We have 
also ,i i=�In n  ,i i= …�n I n  where �I  is the ‘identity’ in a complex space 4 4 4⊕ =

�

�M  M C  (see Section 4.5 
and Eqs (A44)). We write then the development i′ ≈n ( ) 2,i i i j

jψ ψ ψ− − ⋅n n  i i iψ′ ≈ − −n n  
( ) 2j

i jψ ψ⋅ n  with small ‘inclination vectors’ or spinors in the flat space 4:M  ,i i iφψ ψ= =N S  
.i i iψ ψ φ= =N S  Therefore the development of the projector on the curved space becomes 

i i i
i i iψ ψ ψ ψ′ ≈ + ⊗ + ⊗ − ⊗N N n n ( )( ).i j

j iψ ψ+ ⋅ ⊗n n  The derivative of this projector reads 
according  to  Eq. (3),  n ] .i i T

i i′ ′ ′ ′ ′ ′∇ ⊗ = ⊗ + ⊗N B n B n  This leads to two exterior curvature tensors,  
here  we  have  ,i T

i i′ ′ ′≠ ≠B B B  see also in particular Section 4.4, Eqs (A38) and (A39) 
 

n n n( ) ( ) ( ) ,i i i T i Tψ′ ′′ ′ ′ ′ ′= ∇ ⊗ = − ∇ ⊗ ≈ ∇ ⊗B N n n N N                                 (46) 
 

n n( ) ( ) .i i iψ′′ ′ ′= − ∇ ⊗ ≈ ∇ ⊗B n N N                                                 (47) 
 

We can also use a base ,αe  λe  in the flat space instead of a base ,i
i

α α αψ ′≈ +a e n  k
k

λ λ λψ ′≈ +a e n  
on the curved space. The derivative of the spinor i i β

βψψ = e  has the interior part n( )i Tψ∇ ⊗ =N  
; ( )i µ β

β µψ ⊗e e  with the (covariant) derivative ;
i
β µψ = ,

i iλ
β µ µβ λψ Γ ψ− =  , .i

β µψ  The Ricci tensor 
( )T i iT

i i′ ′ ′ ′ ′= − ⋅R B B B N B  is in vacuum (see also sections 4.1, Eq. (A6), 4.2, Eq. (A16), and 4.6, 
Eqs (A58)–(A60)) 

 

n n n n[( ) ] ( ) [( ) ][( ) ]T i T i T T
i iψ ψ ψ ψ≈ ∇ ⊗ ∇ ⊗ − ∇ ⊗ ⋅ ∇ ⊗R N N N N  

 

, , , ,( )( ) 0.i i a
i i
λ λ β

λ α β α β λψ ψ ψ ψ≈ − ⊗ =e e                                                                     (48) 
 

This is not a wave equation. Therefore gravitational waves, based on the incorrect Eqs (39), cannot exist 
(see also [12]). The contradiction between Eqs (48) and (39) originates from the semi-exterior part 

,i i
i iψ ψ⊗ + ⊗n n  which is of first order small whereas i

iψ ψ⊗  and 2 αβψ  are of second order. We get  
in  fact  , , , , , ,2 ( ) 2( ).i i i

a i i i
λ λ λ λ
αβ λ β λ λ α β α β λψ ψ ψ ψ ψ ψ ψ= ≠ −  We could also develop the complementary projector 

′ ′= −
�

�N I N *( )( )Ψ Ψ≈ − −
� �

N N  * *Ψ Ψ ΨΨ= − − +
� � �

N N N  where ,i
iΨ ψ= ⊗ +…n  * i

iΨ ψ= ⊗ +…n  
have small semi-exterior parts. The Ricci tensor T T ′= ⋅ ⋅ − ⋅′ ′ ′ ′i iR NB B B B  is then obtained from the 
‘one-third-exterior triadic’ curvatures i

i′ ′= ⊗′ B nB n' n( ) | ( ) | ,Ψ′ ′ ′= ∇ ⊗ ≈ ∇ ⊗
� �

N N N N N  ... . 
 
 

4. APPENDIX,  DETAILED  CALCULATIONS 
 

4.1. Riemann–Christoffel  tensor 
 

Some remarks concern Eq. (12) in the general dynamic case where spinors i
i′ ′≠n n  and a modified 

projector  i k
i k′ ′ ′ ′ ′= − ⊗ = − ⊗� �N I n n I n n a α β

αβ= ⊗a a  are used. The first derivative n( )′ ′∇ = ∇N  of ′N  
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reads (pay attention to the non-commutative products and the transposition of the factors 2 and 3 by the 
sign ] )T  

 

     n n n( ) ( ) ]i i T
i i′ ′ ′′ ′ ′ ′ ′∇ ⊗ = − ∇ ⊗ ⊗ − ∇ ⊗ ⊗N n n n n  

 

                    n n n( ) ( ) ( ) ]i T i j i T
i j i i′ ′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − ∇ ⊗ ⊗ + ∇ ⊗ ⊗ ⊗ − ∇ ⊗ ⊗n N n n n n n n N n  

 

            n( ) ] .j i T
i j′ ′ ′ ′ ′+ ∇ ⊗ ⊗ ⊗n n n n  

 

As n n n( ) ( ) ( ) 0j j j
i i i′ ′ ′′ ′ ′ ′ ′ ′∇ ⊗ + ∇ ⊗ = ∇ ⋅ =n n n n n n  we have n( ) ]j i T

i j′ ′ ′ ′ ′∇ ⊗ ⊗ ⊗n n n n  
n( ) ,j i

i j′ ′ ′ ′ ′= − ∇ ⊗ ⊗ ⊗n n n n  so that we get in accordance with Eqs (46) and (47) 
 

n n n( ) ( ) ] ] ,i i T i i T
i i i i′ ′ ′′ ′ ′ ′ ′ ′ ′ ′ ′∇ ⊗ = − ∇ ⊗ ⊗ − ∇ ⊗ ⊗ = ⊗ + ⊗N n n n n B n B n                    (A1) 

 

n n n( ) ( ) ( ) ] ] .T i T T i T iT T i T
i i i i′ ′ ′′ ′ ′ ′ ′ ′ ′ ′ ′∇ ⊗ = − ⊗ ∇ ⊗ − ∇ ⊗ ⊗ = ⊗ + ⊗N n n n n n B B n             (A2) 

 

The second derivatives of the projector become afterwards 
 

n n n n( )  ,
TT T Ti iT i i T

i i i i′ ′ ′ ′
′ ′ ′ ′ ′ ′ ′ ′ ′∇ ⊗ ∇ ⊗ = ∇ ⊗ ⊗ − ⊗ +∇ ⊗ ⊗ − ⊗  

� �
� �� �N B n B B B n B B              (A3) 

 

n n n n( )  .
TT T TT iT iT T i i

i i i i′ ′ ′ ′
′ ′ ′ ′ ′ ′ ′ ′ ′∇ ⊗ ∇ ⊗ = − ⊗ + ∇ ⊗ ⊗ +∇ ⊗ ⊗ − ⊗  

� �
� �� �N B B B n B n B B           (A4) 

 

The bracket ]T  indicates here a transposition of the factors 3 and 4, the double bracket �
T

 indicates, as 
previously, a transposition of the factors 2 and 4. Referring to the 2 4 8× =  terms in Eqs (A3) and (A4), 
we see on one hand that the 1st, 3rd, 6th, and 7th quarter-exterior terms vanish all together if the full 
projection |{ [.....] } |′ ′ ′ ′N N N N  is applied. One term disappears by the first | ( )T′ ′= …N N  left (applied to 
the 2nd factor), two by the fourth | ( ) T′ ′= …N N  right (applied to the 3rd factor), and one by the third ′N  
right (applied to the 4th factor). The second ′N  left is actually not necessary, but it serves to accentuate 
the interior character of these 4th order tensors. In the difference appearing in the Riemann–Christoffel 
tensor only four terms remain therefore: 

 

n n n n| [ ( ) ] |T
′ ′ ′ ′′ ′ ′ ′ ′ ′∇ ⊗ ∇ ⊗ − ∇ ⊗ ∇ ⊗N N N N N N                            

 

( ) .
TT TiT iT i T T

i i i i
′ ′ ′ ′ ′ ′ ′= ⊗ − ⊗ + ⊗ − =


R� �
� �� �B B B B B B B                           (A5) 

 

The Ricci tensor R  is the ‘outside’ contraction of ,R  in components ,RaR λ
αβ βλ=  the last skew-

symmetric factor in Eq. (A5) vanishes after this contraction. Then R  can be written in two simple 
conjugate expressions (the real components R Rαβ βα=  are symmetric) 

 

( )T i iT
i i′ ′ ′ ′ ′= − ⋅R B B B N B                                                        (A6) 

or 
 

( ) .iT i T T
i i′ ′ ′ ′ ′= − ⋅ =R B B B N B R                                                (A7) 

 
4.2. Components  of  the  exterior  curvatures  and  the  Ricci  tensor 

 
The derivatives of  the spinors i

i′ ′≠n n  can be written 
 

n , ,i iα
α′ ′ ′∇ ⊗ = ⊗n a n                                                             (A8) 

 

n , ,i i
α

α′ ′ ′∇ ⊗ = ⊗n a n                                                              (A9) 



Proceedings of the Estonian Academy of Sciences, 2008, 57, 1, 34–47 42

,   ,i i i j
j

β
α αβ αΓ Γ′ ′= − −n a n                                                       (A10) 

 

,   .j
i i i j

µ
α α µ αΓ′ ′= + Γn a n                                                         (A11) 

 

Using the auxiliary relations n ,α αθ′∇ = ∂ ∂a   ,i iaµ µβ
α αβΓ Γ=  ,aµβ µ β= − ⋅a a  where βa  is the conjugate 

of ,βa  we obtain therefore 
 

n  ( ) ,i i T i α β
αβΓ′′ ′ ′= − ∇ ⊗ = ⊗B n N a a                                            (A12) 

 

n  ( ) .i i i i
µ α α β
α µ αβΓ Γ′′ ′ ′= − ∇ ⊗ = − ⊗ = − ⊗B n N a a a a                               (A13) 

 

Now as for the development in case of a small curvature, we get with i i λ
λψψ = e  and i i

µ
µψψ = e  

successively 
 

n  ;  ,( ) ,i i T i iα λ α λ
λ α λ αψ ψψ′ ≈ ∇ ⊗ = ⊗ ≈ ⊗B N e e e e  ,   , ,iT i iλ α α β

λ α α βψ ψ′ ≈ ⊗ = ⊗B e e e e          (A14) 
 

n ,( ) ,i i i
λ α

α λψ′ ≈ ∇ ⊗ ≈ ⊗B n N e e        , , ,T
i i i

α λ α λ
α λ α λψ ψ′ ≈ ⊗ = ⊗B e e e e  

 

,  ; ,  ; ,T i i i
i i ieλµ α β λ α β

α λ β µ α λ βψ ψ ψ ψ′ ′ ≈ ⊗ = ⊗B B e e e e  
 

, , ,( ) ( ) ,i i i ieβ λ µ λβ λ
λ β µ λ β λψ ψ ψ′ ⋅ ≈ ⊗ ⋅ ⊗ = =B N e e e e       ,  ,( ) ,iT i

i i
λ α β
λ β αψ ψ′ ′ ′⋅ ≈ ⊗B N B e e        (A15) 

 

so that the Ricci tensor of Eq. (48) becomes in fact 
 

( )T i iT
i i′ ′ ′ ′ ′= − ⋅R B B B N B  , ,  , ,( ) ( ).i i a

i i
λ λ β

λ α β α β λψ ψ ψ ψ≈ − ⊗e e                        (A16) 
 

In general we have also 
 

( )T i iT
i i′ ′ ′ ′ ′= − ⋅R B B B N B     ( ) ( ).i i a

i i
λ λ β

αλ β αβ λΓ Γ Γ Γ= − − ⊗a a                       (A17) 
 

The components of Eq. (A17) correspond to the usual representation  ,  ,R λ λ
αβ αλ β αβ λΓ Γ= − +  

   
µ λ µ λ
αλ µβ αβ µλΓ Γ Γ Γ−  because 

 

, ,( ) ( ) 0i i
i i

λ λ µ λ µ λ λ λ
αλ β αβ λ αλ µβ αβ µλ αλ β αβ λΓ Γ Γ Γ Γ Γ Γ Γ Γ Γ− + − + − =                       (A18) 

 

( ,α β  from 0 to 3, i  from 1 to 4) expresses the vanishing Ricci tensor in the space  4 4′ ′⊕ =
�

M M  
4 4 4.⊕ =

�

�M  M C  
 

4.3. Theorem  of  energy  impulse 
 

It is well known that Eq. (20) is compatible with Eqs (18) and (19), because of some integrability 
(Bianchi) equations. Here we give an alternative explanation, which refers to the present notation by 
exterior spinors. We use the rules ( ) ( ) ( )T∇ = ∇ + ∇ ⊗ ⋅XY X Y Y X  and ( ) ( )∇ ⋅ = ∇ ⊗ ⋅ +X Y X Y  
( ) ,∇ ⊗ ⋅Y X  valid for any 2nd order tensors ,X  .Y  First, the derivative of the trace T′⋅ =R N  

( )( )T i iT T
i i′ ′ ′ ′ ′ ′⋅ ⋅ − ⋅ ⋅B B B N B N  is (here we have )T′ ′≠N N  

 

n ( )T
′ ′∇ ⋅R N n n n n'( ) ( ) [ ( )]( ) [ ( )]( )T i i T iT T iT T

i i i i′ ′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ∇ ⊗ ⋅ + ∇ ⊗ ⋅ − ∇ ⋅ ⋅ − ∇ ⋅ ⋅B B B B B N B N B N B N  
 

n n2( ) 2[ ( )]( ),T i iT T
i i′ ′′ ′ ′ ′ ′ ′= ∇ ⊗ ⋅ − ∇ ⋅ ⋅B B B N B N                                                               (A19) 

 

because n n( ) ( ) ,i T T i
i i′ ′′ ′ ′ ′∇ ⊗ ⋅ = ∇ ⊗ ⋅B B B B  n n'[ ( )]( ) [ ( )]( ).iT T iT T

i i′ ′ ′ ′ ′ ′ ′ ′ ′∇ ⋅ ⋅ = ∇ ⋅ ⋅B N B N B N B N  The 
integrability equation can be written with the 4D-permutation tensor E  in the form 
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n n ) 0,i′ ′ ′∇ ∇ ⊗ =E n                                                            (A20) 
 

meaning that the two operators n′∇  can be permutated. Thus we have n n( ) ( )i i′ ′′ ′ ′ ′∇ ⋅ = ∇B N B N  so that we 
obtain 

 

n n n( ) 2 ( ) ( ) ( ).T T i iT T
i i′ ′ ′′ ′ ′ ′ ′ ′ ′∇ ⋅ = ∇ ⊗ ⋅ − ∇ ⋅R N B B B N B N                        (A21) 

 

Second, the derivative of the Ricci tensor R  is 
 

 n n n n n( ) ( ) ( ) [ ( )] ( ) ( )T i i T T iT iT T
i i i i′ ′ ′ ′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′∇ = ∇ + ∇ ⊗ ⋅ − ∇ ⋅ − ∇ ⋅R N B B B B B N B B N B N  

 

n n n n( ) ( ) ( ) ( ) ( ).T i T T i iT iT T
i i i i′ ′ ′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ∇ + ∇ ⊗ ⋅ − ∇ − ∇ ⋅B B B B B B B N B N                (A22) 

 

From the integrability Eq. (A20) we have also n n( ) ( )T T T
i i′ ′′ ′∇ ⊗ = ∇ ⊗B B  and further n( ) iT

i′ ′ ′∇ =B B  

n( ) ;T i
i′ ′ ′∇ B B  therefore we get 

 

n n n( ) ( ) ( ) ( ).T i Ti T
i i′ ′ ′′ ′ ′ ′ ′ ′ ′∇ = ∇ ⊗ ⋅ − ∇ ⋅R N B B B N B N                             (A23) 

 

The elimination of two terms from Eqs (A21) and (A23) leads finally to the equations sought (see also [8], 
p. 53) 

 

n n( ) ( ) 2,T
′ ′′ ′∇ = ∇ ⋅R N R N                                                  (A24) 

 

– n n( ) { [ ( ) 2]} 0.T Tκ ′ ′′ ′ ′ ′∇ = ∇ − ⋅ =T N R R N N N                                (A25) 
 

4.4. Three  illustrative  steps 
 

In order to relate the concepts of Section 2 with those of Section 3, we write: 
(a)  In Eq. (14) the projector nK  onto the plane normal to k  appearing in the 3D-space. Here we have the 

derivative of a distance r  to a fixed point (the centre) and then the derivative of the resulting unit 
vector :k  

 

n n n

1
( ) ,r

r
∇ = ∇ ⋅ = ∇ ⊗ =r r r r k                                               (A26) 

 

n n n n2

1 1 1 1
( ) .r

r r rr
∇ ⊗ = ∇ ⊗ − ∇ ⊗ = − ⊗ =k r r N k k K                           (A27) 

 

 In the 4D-space we form the derivative of a distance 1p  to a fixed straight line (representing in some 
way the ‘time’) from a point with ‘position vector’ 1.q  We obtain thus with 1 1 0 ,ξ= −p q k  0

n  ,ξ∇ = k  
0

1 0⋅ =k k  
 

  0
n 1 n 1 1 n 1 1 n 1 n 0 1 0 1 1

1 1 1

1 1 1
( ) ( ) ( ) .Tp

p p p
ξ∇ = ∇ ⋅ = ∇ ⊗ = ∇ ⊗ − ∇ ⊗ = − ⊗ =p p p p q k p N k k p k     (A28) 

 

 The derivative of this (unit) spinor leads to a modified projector nK  and its transpose n .TK  But with 
reference to the position vector 1,≠r q  we obtain 

 

1n 1 n 1 n 1 1 n 1 n 0 n 1 12 2
1 11 1

1 1 1 1
( ) ( ) ( ) ( ) ( ),p p

p pp p
ξ∇ ⊗ = ∇ ⊗ − ∇ ⊗ = ∇ ⊗ − ∇ ⊗ − ∇ ⊗qk p p q k p       (A29) 

 

0 1
n 1 0 1 n

1 1
( ) ( ) ,

r r
∇ ⊗ = − ⊗ − ⊗ =rk N k k k k K  1 0 1

n 0 1 n

1 1
( ) ( ) .T T

r r
∇ ⊗ = − ⊗ − ⊗ =rk N k k k k K       

 (A30) 
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(b) The derivative of the spinor 1 1 1 ie ψ−′ = =′
� �

n m mS S  in the ‘inclined’ complementary space 4′
�

M  reads 
 

1 1 i 1 i 1
n n n n n

sin
i ( ) ( ) ,Te e

r
ψ ψ ψψ ψ− −′ ′∇ ⊗ = − ∇ ⊗ + ∇ ⊗ = −∇ ⊗ −

� �

n m m k KS S               (A31) 

 

 with the (unit) spinor 1 1=m S k  in the Minkowski space 4
M  and because 

 

1 1
n n( )cos ( )cos 0,ψ ψ∇ ⊗ = ∇ ⊗ =

�

m nS  
 

1 1 1
n n n n

sin
( )isin ( )sin ( )sin .T

r

ψψ ψ ψ∇ ⊗ = ∇ ⊗ = ∇ ⊗ =
�

m m k KS S  

 

 In the space 4′M  we have 1 1 1 i ,e ψ−′ = =′k m mS S  i
1 1 1 ,e ψ−′ = =′k S m Sm  and 1 2i

1 ,e ψ−′ ′⋅ = −k k  but 
1 2i

1 .e ψ+′ ′⋅ = −k k  Thus we can write, now with 1
1 [sin , cos , 0, 0] ,ˆ ˆγ γ= =m m  
 

2 2
1 i 1 i 2i

1 1

1   0 1   0sin cos
    0  0 ,ˆ

  0 1   0 12 2
T Te e eψ ψ ψγ γ − −   ′ ′⊗ = ⊗ =     − −    

k k m E E E EmS S            (A32) 

 

1 0 2 1 2 2i
1 0 1( sin cos ) ,e ψγ γ′ ′⊗ = − ⊗ − ⊗k k h h h h   

 1 1 0 2 1 2
1 1 0 1( )( ) sin cos ,T γ γ′ ′ ′ ′⊗ ⊗ = ⊗ + ⊗k k k k h h h h                                

(A33)
 

 

0
0

1 01
   0   0   0 ,ˆ

0 12

  
⊗ =   

  
h h                                                     (A34) 

 

1
1

1 01
0      0   0 .ˆ

0 12

  
⊗ =   

  
h h                                                     (A35) 

 

(c) The definition 2sin 2M rψ ψ→ = �  of the inclination in the static spherical case, according to that in 
front of Eq. (14), leads with 31 2 ,r Mζ κρ= − �  2

n n 1 cosr p γ∇ = ∇  to the key relation and in addition 
to nψ′∇  

 

2 2
2

n n 12 2

2 sin
(sin ) ,

cos

r M
r

r r r

κρ ψψ ζ
γ

 
∇ = − ∇ = − 

 

�

k                                    (A36) 

 

n 1 n 12 2

tan sin
, .

2 cos 2 cosr r

ψ ψψ ζ ψ ζ
γ γ′ ′∇ = − ∇ = −k k                                   (A37) 

 

 The exterior curvature tensor 1 1
n( ) ,T

′′ ′= − ∇ ⊗B n N  according to Eq. (46), is therefore 
 

1 1 0 2 1 2i
1 n 0 1 n2

sin sin sin sin
( ) ( tan ) .

22 cos
T Te

r r rr
ψψ ψ ψ ψζ ζ γ

γ
′ ′ ′= − ⊗ + = ⊗ + ⊗ +B k k K h h h h K      (A38) 

 

 By comparison with Section 2 we find now 2tan .γ ω ζ=  In the same way, but in addition with 
2

n ,0∇ ⊗ =k  we have 2 2 i 2
n n ni ( ) .e ψψ ψ−′ ′∇ ⊗ = − ∇ ⊗ = −∇ ⊗

�

n m kS  Therefore we get with nψ∇ =  
2

2 tan tan 2 cosrζ ψ β γ− k  
 

2 2 0 2 1 2i
n 0 1

sin
( ) tan ( tan ) .

2
T e

r
ψψζ β γ′′ ′= − ∇ ⊗ = ⊗ + ⊗B n N h h h h                  (A39) 

 

 The expressions (A38) and (A39) lead then with 1,′B  2′B  and Eqs (A6) and (A33) to a relation for the 
Ricci tensor R  similar to Eq. (21). 
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4.5. The  role  of  the  surrounding  complex  space 
 

In the 4D-complex space 4 4 4⊕ =
�

�M  M C  we have the coordinates 1 ,x u=�

 2i i ,xx ct=�

 3i i ,yx ct=�

 4i i  zx ct=�

 
and 0i i ,x ct=  1 ,x x=  2 ,x y=  3 .x z=  First, an ‘ordinary’ vector u  and its conjugate have the components 

 

0 1 1 2 2 3 3 4 (i , i , i , i ),ˆ u u u u u u u u= + + + +� � � �u    0 1 1 2 2 3 3 4 ( i , i , i , i ),ˆ u u u u u u u u= − + − − −� � � �u            (A40) 
 

and the norm reads 2 2 2 2 2 2 2 2
0 1 2 3 1 2 3 4 0.u u u u u u u u⋅ = + + + + + + + >� � � �u u  The scalar product of two vectors ,u  

v  is 
 

0 0 1 1 2 2 3 3 1 1 2 2 3 3 4 4u v u v u v u v u v u v u v u v⋅ = + + + + + + +� � � � � � � �u v  
 

0 1 0 1 1 2 1 2 2 3 2 3 3 4 3 4i ( ).u v v u u v v u u v v u u v v u+ − − + − + − +� � � � � � � �

               (A41) 
 

In particular, if 1 0 2 1 3 2 4 3( i , i , i , i ),ˆ u u u u u u u u⊥= = − + − − −� � � �v u  this scalar product is purely imaginary: 
 

2 2 2 2 2 2 2 2
0 1 1 2 2 3 3 4i ( ).u u u u u u u u⊥⋅ = + + + + + + +� � � �u u                            (A42) 

 

We have for instance two unit vectors (0, cos isin , 0, 0)ˆ α α= +u  and (0, sin icos , 0, 0)ˆ α α⊥ = −u  for 
which i.⊥⋅ =u u  As this corresponds to a complex product izz i,=  we can say that ⊥u  is in some way 
‘orthonormal’ to .u  Second, in a similar manner the two unit spinors 2 2=

�

n m S  in the complementary 
space and 2 2 2i= =

�

m mk S S  in the Minkowski space can be said to be ‘orthonormal’ to each other, 
because we have 

 

i ,=
�

S S                                                                      (A43) 
 

2 2
2 2 i.⋅ = =

�

n k m mSS                                                        (A44) 
 

Finally we recall the well-known Lorentz transformation, for instance in the Minkowski space for the 
first pair 0 1(i , ),x x  which transforms into 0 1(i , )x x′ ′  and where 0 0i i ,x ct y= =  0 0i .x ct y′ ′ ′= =  We can either 
write two matrix representations or a complex representation: 

 

1 1

0 0

  cos sin
,

i isin cos

x x

x x

φ φ
φ φ

′    
=    ′ −    

                                                  (A45) 

 

1 1

0 0

  cos sin
,

sin cos

x x

y y

φ φ
φ φ

′    
=    ′ −    

                                                (A46) 

 

1 0 1 0i ( i ) ( i )x x a b x x′ ′+ = − + 1 0(cos sin ) i (sin cos ),x xφ φ φ φ= − + +                (A47, 48) 
 

2
0cos 1 1 ,a φ β= = −                                                     (A49) 

 

2
0 0 0i sin 1 .b aφ β β β= − = − =                                              (A50) 

 

For 1 0ix vt x c= =  we obtain 1 0 0 00 ,x avx c a xβ′= = −  0 ,v cβ =  2 2 2
1( ) 1 .t t x v c v c′ = − −  

 
4.6. The  problem  of  linearization,  an  alternative  development  with  details 

 
In order to point out explicitly a sort of kinematic meaning of Eq. (48) and also of the statement 

, , , , , ,2 ( ) 2( )i i i
a i i i

λ λ λ λ
αβ λ β λ λ α β α β λψ ψ ψ ψ ψ ψ ψ= ≠ −  there, we introduce a generalized displacement = +u v w  on 

the 4D-flat space defining the near 4D-hypersurface of small curvature. The spinor =v Nv  is interior (in 
the Minkowski space 4 )M  and i i

i iw w= = =
�

w n n Nw  is an exterior spinor (in the complementary space 
4 ).

�

M  We assume further that | |w  is smooth of first order small, whereas | |v  is smooth of second order 
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small. Analogously to the nonlinear kinematic equations in the 3D-shell theory, we define here a modified 
strain tensor Tγ γ=  (also in accordance with the full projection T =NF FN VV  in Section 1, before 
Eq. (4)): 

 

n n n n

1 1
( ) [( ) ( ) ( )( ) ].

2 2
T T Tγ = − ≈ ∇ ⊗ + ∇ ⊗ + ∇ ⊗ ∇ ⊗NF FN N v v w w                 (A51) 

 

For the last term we can write n n n n( )( )T i
iw w∇ ⊗ ∇ ⊗ = ∇ ⊗ ∇w w .i

iψ ψ= ⊗  We introduce further the 
restrictive kinematic equation 

 

n n2 ( ) ( ),T T Tγ γ γ γ∇ + = ∇ ⋅ + ⋅N N                                             (A52) 
 

where we have with ∇ n ⋅ ∇ n = ∆  the auxiliary relations 
 

n n n n n n n2 ( ) ( ) ,i T i
i iv w w w wγ∇ = ∆ + ∇ ∇ ⋅ + ∇ ⊗ ∇ ∇ + ∆ ∇v                           (A53) 

 

n n n n n n n2 ( ) ( ) ,T T i i
i iv w w w wγ∇ = ∆ + ∇ ∇ ⋅ + ∇ ⊗ ∇ ∇ + ∆ ∇v                         (A54) 

 

n n n n n n n n2 ( ) ( ) ( ) ( ),T i
iv v w wγ∇ ⋅ = ∇ ∇ ⋅ + ∇ ∇ ⋅ + ∇ ∇ ⋅ ∇N                          (A55) 

 

n n n n n n n n2 ( ) ( ) ( ) ( ).T i
iv v w wγ∇ ⋅ = ∇ ∇ ⋅ + ∇ ∇ ⋅ + ∇ ∇ ⋅ ∇N                          (A56) 

 

From the last four equations we get with i
i= ⊗

�

N n n  a differential equation for the displacements v   
and w  

 

n n( ) ,i
iw w∆ = −∆ ∇ = − ∇ ⊗ ∆

�

v w N w          n n( ) ,i T
iw w∆ = −∆ ∇ = −∆ ∇ ⊗

�

v wN w             (A57) 
 

which expresses Eq. (A52) in another manner. If we apply now the operator ∆  onto Eq. (A51) we obtain 
with Eq. (A57) 

 

              n n n n

1
[ ( ) ( )]

2
T i

iw wγ∆ = ∇ ⊗ ∆ + ∇ ⊗ ∆ + ∆ ∇ ⊗ ∇v v   

 

                    n n n n n n n n

1
[ ( ) ( ) ]

2
i i T i i

i i i iw w w w w w w w= −∇ ∆ ⊗ ∇ − ∆ ∇ ⊗ ∇ − ∇ ⊗ ∇ ∆ − ∇ ⊗ ∇ ∆  

 

                       n n n n n n n n

1
[ 2( ) ( ) ]

2
i T i i

i i iw w w w w w+ ∆∇ ⊗ ∇ + ∇ ⊗ ∇ ∇ ⊗ ∇ + ∇ ⊗ ∆∇  

 

0
n n n n n n( ) ( ) ( ) .T i i T

i iw w w w= ∇ ⊗ ∇ ∇ ⊗ ∇ − ∆ ∇ ⊗ ∇ = R                                                    (A58) 
 

The tensor 0R  may be called the image in the flat space of the true Ricci tensor on the curved space 
 

0 0 0
n n( ) ( ) .T≈ + ∇ ⊗ + ∇ ⊗R R R w w R                                             (A59) 

 

Because Eq. (48) represents already an approximation after the forgoing development of the projector, R  
has two semi-exterior parts of higher order. We arrive therefore at the following conclusion: 
  The field Eq. (19) becomes in vacuum 0.=R  We would then get from Eqs (A58) and (A59) and 

from Eq. (A52) simultaneously two differential equations: 
 

0 0,γ= ∆ =R                                                                (A60) 
 

n n2 ( ) ( ).T T Tγ γ γ γ∇ + = ∇ ⋅ + ⋅N N                                            (A52) 
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  This is not possible; therefore gravitational waves, described by pure geometrical considerations, 
cannot exist. As for the (incorrect) Eq. (39), note that the operator , (...) λ

λ=�  is only applied on the 
components ( ) 2,i

iαβ α βψ ψ ψ=  whereas in Eqs (A58) and (A60) the equivalent operator 

n n∇ ⋅ ∇ = ∆  is applied on the complete tensor γ  including its base. Moreover, one has ,αβ αβψ γ≠  
because the interior generalized displacement (spinor) v  does unfortunately not intervene in 
Eq. (39). The commonly used condition , ,2 ,λ λ

αλ λ αψ ψ=  serving to obtain this equation, is stated as a 
choice of simplifying special coordinates. However, this statement disguises the fact of the 
additional restrictive kinematic relation Eq. (A52). 
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Deformeeritud  pinnad  holograafilises  interferomeetrias.   
Sarnased  aspektid  üldistes  gravitatsiooniväljades 

 
Walter Schumann 

 
Esimeses osas on antud lühiülevaade pinnadeformatsioonide meetodist holograafilises interferomeetrias. 
See on sissejuhatuseks järgnevatele osadele, kus sama meetodit on kasutatud üldrelatiivsusteooria võrran-
dite ja nende lahendite uurimiseks. 

Artikli põhiosas (2., 3. ja 4. osa) on vaadeldud Einsteini võrrandite lahendi poolt antud neljamõõtmelist 
kõverat aegruumi hüperpinnana kõrgemamõõtmelises tasases ruumis. Virtuaalsete deformatsioonide 
meetodit on rakendatud hüperpindadele, mis vastavad Schwarzschildi ja Kerri lahenditele, aga ka üldise 
gravitatsiooniläätse isotroopsetele geodeetilistele ehk valguskiirtele. On väidetud, et tühjas (ilma matee-
riata) aegruumis on lainevõrrandi tuletamine Einsteini võrrandite lineariseerimisel ebakorrektne ja artiklis 
toodud meetodil lineariseerimine lainevõrrandit ei tekita. Sellest asjaolust on järeldatud, et puhtgeo-
meetrilisi gravitatsioonilaineid pole olemas. 

Lisas on toodud kasutatud matemaatiliste mõistete ja arvutuste üksikasjad. 


