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Abstract. Epidermal growth factor receptor (EGFR) is the first growth factor receptor proposed as a target
for cancer therapy. Molecular modeling protocols like molecular docking, molecular mechanics/generalized
born surface area (MM/GBSA) calculations and three dimensional-quantitative structure activity relationship
(3D-QSAR) studies were performed on 45 molecules to understand the structural requirements for EGFR
tyrosine kinase inhibitors. Conformation for all the molecules obtained from molecular docking were used as is
for 3D-QSAR analysis. Comparative molecular field analysis (CoMFA) and comparative molecular similarity
indices analysis (CoMSIA) models were obtained by performing partial least square analysis on 35 training
molecules and these models were validated using 10 test moleucles. The models showed good statistical results
in terms of r2, q2

loo and r2
pred values. Information rendered from 3D-QSAR model and sitemap analysis was

used to optimize lead molecule to design prospective inhibitors. Improvement in EGFR binding affinity can be
achieved by substitutional modification on phenyl ring attached to alkynyl group with bulkier hydrogen bond
donor and acceptor substituents that can increase favourable interaction with the receptor.

Keywords. Epidermal growth factor receptor (EGFR); Extra precision (XP) docking; 3D-QSAR;
Comparative molecular field analysis (CoMFA); Comparative molecular similarity indices analysis (CoMSIA);
Molecular mechanics; generalized born surface area (GBSA).

1. Introduction

Epidermal growth factor receptor (EGFR) is a transmem-
brane glycoprotein consisting of a single polypeptide
chain of 1186 amino acids.1 It belongs to a family of
receptor tyrosine kinases (TKs) that includes EGFR,
ErbB-2, ErbB-3 and ErbB-4 (also known as HER-1,
HER-2, HER-3, and HER-4).2 The EGFR and its family
members are composed of an extracellular ligand-bin-
ding domain, a transmembrane domain, and an intracel-
lular domain. When epidermal growth factor (EGF), binds
to the ligand-binding domain, the EGF receptor forms a
homodimer or heterodimer with other members of
EGFR family. This activates the intrinsic kinase domain
that in turn triggers autophosphorylation events on spe-
cific tyrosine residues within the cytoplasmic tail activ-
ity.3,4 Downstream single proteins then initiate several
signal transduction cascades, leading to DNA synthesis,
and cell proliferation.5 EGFR is a crucial regulator in
several cell phenotypes, such as cell migration, adhe-
sion, proliferation, and immune response in the human
skin making it a key target for anti-tumor strategy.

∗For correspondence

Early studies on EGFR inhibition have reported many
compounds having inhibitory activity, these included
4-anilinoquinazoline derivatives,6–8 arylaminopyrimi-
dines9,10 and pyrrole triazines derivatives.11,12 Lapatinib,
which is a potent dual EGFR/ErbB2 inhibitor, approved
by FDA for the treatment of breast cancer (figure 1), is
a modified 4-Anilinoquinazoline derivative.13 Recently,
pyrimidine derivatives like anilinopyrimidines, thieno-
pyrimidines, and alkenyl-methylpyrimidine were repor-
ted as EGFR inhibitors.14–18 All these skeletons possess
a pyrimidine ring portion that bind with EGFR. The
crystal structures of EGFR bound to inhibitors have two
hydrogen bond interactions specifically with the active
site residues Met793 and Asp800. Met793 played a key
role in the inhibitory activity of EGFR. In an ongoing
effort, we report receptor based 3D-QSAR studies using
comparative molecular field analysis (CoMFA)19,20

and comparative molecular similarity indices analysis
(CoMSIA)21 methodology on EGFR inhibitors. Partial
least square (PLS)22 based statistical analysis was carried
out on 45 molecules to identify the correlation. Contour
maps generated enabled us to explain the observed vari-
ation in activity and guided us to design new molecules.
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Figure 1. Lapatinib – Dual EGFR/ErbB-2 inhibitor.

2. Methodology

2.1 Ligand preparation

All molecular modeling calculations were performed on
a Linux operating system. A total of 4514–18 molecules
were available with reported IC50 values for inhibition
of EGFR tyrosine kinase. The kinase inhibition assay
IC50 determinations were measured with the homoge-
neous time resolved fluorescence (HTRF) KinEASE-TK
assay. Three dimensional structures of these inhibitors
were sketched using Mastreo build panel in Schrödinger
2010 suite, and the IC50 values were converted to pIC50

values (pIC50 = −log IC50) (table 1).
The ligprep module of Schrodinger was used to gene-

rate all possible states at a physiological pH range 7 ± 2
and produces lowest potential energy conformer of the
ligand using an OPLS_2005 force field. All these lig-
ands post preparation was used for molecular docking
studies and ADME properties using Qikprop module of
Schrodinger Suite.

2.2 Protein preparation

Crystal structure of EGFR tyrosine kinase bound with
lapatinib with resolution of 2.4 Å was downloaded
from RCSB protein data bank.(http://www.rcsb.org/
pdb/) (PDB id 1xkk). Protein was prepared using pro-
tein preparation wizard module of Schrodinger Suite.
All the water molecules and heteroatoms except lap-
atinib (FMM) were deleted and hydrogen atoms were
added to the crystal structure. The complex was submit-
ted to minimization to relieve steric clashes using the
OPLS 2005 force field. Sitemap module was used to
characterise features of binding sites. Hydrophobic and
hydrophilic maps are generated which are dispersed as
donor, acceptor, and hydrophobic regions.

2.3 Molecular docking

Active site for docking ligands was defined using
Receptor Grid Generation module in Glide 5.6.23

Co-crystallied ligand was selected and grid was gener-
ated around the active site of EGFR intrinsic domain,
with a receptor van der Waals scaling for non-polar
atoms as 0.9.24,25 Molecules selected from literature
(figure 2) were prepared by LigPrep application. These
molecules were docked into the grid generated from
EGFR protein structure. Two different docking proto-
cols, standard precision (SP) and extra precision (XP)
were employed to analyze binding modes of the known
inhibitors from the literature.

2.4 Prime MM/GBSA calculations

To estimate relative binding affinities of protein ligand
complexes, Molecular mechanics with generalized born
surface area (MM/GBSA) is employed. The relative
binding free energy �Gbind was estimated according to
the following equation:

�Gbind = Ecomplex(minimized)

−[Eligand(unbound, minimized)

+Ereceptor(unbound, minimized)]
Where �Gbind is the calculated relative free energy
that includes both ligand and receptor strain energy.
Ecomplex(minimized) is the MM/GBSA energy of the
minimized complex, and Eligand (unbound, minimized)
is the MM/GBSA energy of the ligand after removing
it from the complex and allowing it to relax. Ereceptor

(unbound, minimized) is the MM/GBSA energy of
protein after separating it from the ligand.26,27 Prime
MM/GMSA modules was used for calculating the rel-
ative binding free energy for each molecule. The pro-
tein ligand complexes obtained from XP docking were
subjected to MM/GBSA calculations.

2.5 CoMFA and CoMSIA studies

CoMFA and CoMSIA studies were carried out as
described by Carmer et al.,19,20 and Fatima et al.28 The
process is briefly described here. Dock pose of each
ligand that showed two hydrogen bond interactions
with the receptor were imported into SYBYLX-2.1
molecular modeling program package29 and Gasteiger–
Huckel30 charges were assigned. Standard Tripos force
fields were employed for CoMFA and CoMSIA analy-
sis. A 3D cubic lattice of dimension 4 Å in each direc-
tion with each lattice intersection of a regularly spaced
grid of 2.0 Å was created. Steric and electrostatic para-
meters were calculated in CoMFA fields while hydro-
phobic, acceptor and donor parameters in addition to
steric and electrostatic were calculated in CoMSIA
fields at each lattice. The sp3 carbon atom was used as a
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Table 1. Experimental and predicted activity of EGFR tyrosine kinase inhibitors along with Dock score (Kcal/mol) and
�Gbind(Kcal/mol).

Predicted pIC50 Predicted pIC50 SP Dock Score XP Dock Score �Gbind
Mol IC50(μM) pIC50 CoMFA CoMSIA (Kcal/mol) (Kcal/mol) (Kcal/mol)

1 0.650 6.190 6.050 6.120 −11.260 −11.326 −121.746
2 0.022 7.660 8.040 7.910 −12.700 −12.128 −132.827
3 0.003 8.520 7.490 8.240 −11.740 −12.197 −133.303
4 0.009 8.050 7.720 7.820 −11.500 −11.572 −135.183
5 0.190 6.720 7.000 7.470 −11.940 −12.147 −125.868
6 0.079 7.100 7.370 7.380 −11.700 −11.527 −140.538
7* 0.030 7.520 7.416 7.648 −11.440 −11.427 −143.336
8 0.055 7.260 7.120 7.220 −12.130 −12.309 −128.936
9* 0.094 7.030 6.750 6.970 −11.020 −12.369 −136.369
10* 0.920 6.040 5.920 5.700 −9.620 −9.702 −90.464
11* 1.100 5.960 5.789 5.903 −9.930 −10.085 −100.213
12 47.000 4.330 4.670 4.490 −9.520 −9.527 −96.164
13 22.000 4.660 5.110 5.000 −9.090 −8.096 −109.857
14 10.000 5.000 5.920 5.460 −10.310 −10.175 −108.267
15∗ 0.068 7.170 6.708 7.113 −10.810 −11.282 −125.437
16 0.065 7.190 7.190 7.230 −11.160 −11.902 −115.438
17 0.590 6.230 7.060 6.450 −11.460 −11.119 −117.256
18 0.034 7.470 7.190 7.140 −11.020 −11.571 −143.399
19 0.240 6.620 7.290 7.040 −11.700 −11.636 −135.572
20 0.028 7.550 7.320 7.480 −11.580 −12.491 −140.553
21∗ 0.018 7.740 6.971 6.808 −11.720 −12.462 −128.446
22 0.014 6.940 6.960 6.840 −11.430 −12.010 −132.853
23 0.003 8.520 8.110 8.280 −11.480 −11.976 −128.161
24 0.019 7.720 7.430 7.880 −11.070 −11.846 −130.904
25 0.156 6.810 7.210 7.160 −11.050 −12.239 −131.088
26 0.013 7.890 7.350 7.080 −10.930 −11.846 −127.077
27* 4.130 5.380 6.371 6.682 −11.210 −11.451 −128.013
28 0.038 7.420 7.270 7.370 −11.380 −11.690 −127.590
29 0.011 7.960 7.740 7.360 −10.620 −11.284 −139.209
30* 0.009 8.040 8.279 8.235 −11.740 −11.722 −137.283
31 9.700 5.010 4.700 4.990 −9.540 −9.584 −108.649
32 5.600 5.250 5.050 5.480 −9.360 −8.639 −89.460
33 72.400 4.140 3.980 3.810 −9.020 −7.540 −84.807
34 3.500 5.460 4.980 5.710 −9.020 −8.215 −93.839
35 26.600 4.580 4.230 3.990 −10.800 −10.727 −100.470
36 8.600 5.070 5.410 5.410 −8.620 −7.755 −102.330
37 0.009 8.050 8.160 8.220 −13.310 −13.321 −137.448
38* 0.080 7.100 6.113 6.429 −11.410 −9.700 −138.488
39 0.180 6.740 6.720 6.530 −11.550 −12.447 −129..403
40 0.108 6.970 6.630 6.600 −10.800 −11.434 −115.789
41 0.129 6.890 7.010 6.840 −11.290 −11.592 −129.656
42* 0.048 7.320 6.626 6.551 −10.620 −11.936 −112.935
43 0.627 6.200 6.610 6.180 −11.430 −12.536 −124.355
44 0.821 6.090 6.670 6.190 −11.190 −12.043 −125.053
45 2.138 6.140 5.660 6.030 −9.830 −11.587 −107.014

* represents test set molecules.

probe atom to generate steric (Lennard–Jones potential)
field energies and a charge of +1 to generate elec-
trostatic (Coulombic potential) field energies. A dis-
tance dependent dielectric constant of 1.00 was used.
Steric and electrostatic fields were condensed to +30.00
Kcal/mol.

PLS analysis was performed to correlate computed
fields with biological activity (pIC50 = −log IC50)

for the data set of ligands. Molecules were randomly
divided into training and test set of 35 and 10, respec-
tively, as 3:1 ratio. The pIC50 difference between most
active and least active molecule in the dataset is 4.38
log units. The training set was used to generate the
QSAR model and test set was used to validate the gen-
erated model. In the PLS statistical analysis, biologi-
cal activity values of ligands were used as dependent
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variables. To improve the signal-to-noise ratio column
filtering value (s) was set to 2.0 Kcal/mol by omit-
ting lattice points whose energy variations were below
the threshold. Leave-one-out (LOO) cross-validations
were performed to determine the optimum number of
components (ONC) and coefficient q2

loo. The obtained
ONC was applied to derive the final QSAR model.
Validation of CoMFA and CoMSIA derived model

was performed by predicting the activity of test set
compounds.

3. Results and Discussion

The accuracy of molecular conformation for Quanti-
tative Structure Activity Relationship (QSAR) studies

Figure 2. Structures of EGFR Inhibitors. *indicates test molecules.
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Figure 2. (Continued).

is a most important criteria, and the most favorable
bioactive conformer selection is a tough task. Molecu-
lar docking of active compounds into the active site of
the protein is one of the methods used for obtaining the
active conformation. These molecules were docked into
the active site (lapatinib binding site) of EGFR to obtain
the receptor based conformations (figure 2). The RMSD
between the predicted conformation and the observed
X-ray Crystallographic conformation of the compound
(Lapatinib) equaled 1.92 Å, a value that suggests the
reliability of docking protocol in producing the experi-
mentally observed binding mode for EGFR inhibitors.
Dock poses analysis of all the molecules showed simi-
lar hydrogen bond interactions with active site residues.
Molecules were having specific hydrogen bond inter-
actions between N1 of the pyrimidine ring and amine
in the tail region with hinge region amino acid Met793
and Asp800, respectively. These hydrogen bond inter-
actions were also observed for the co-crystalized ligand
(lapatinib), and it also showed a halogen interaction

with gate keeper amino acid Thr790. DFG binding
motif is also a crucial part for inhibitor binding to
EGFR, lapatinib and most of the pyrimidine derivative
showed a hydrophobic (π −π) interaction with Phe856.

Molecular mechanics/generalized born surface area
(MM/GBSA) calculations were performed for best
ranking molecules in XP mode. MM/GBSA calcula-
tions were performed to estimate relative binding affin-
ity of ligands to the receptor. In principle, MM/GBSA
is used for free energy based ranking of ligands belong-
ing to a congeneric series. MM/GBSA and docking
protocols employed in the present work for assessing
ligand affinities to EGFR allow protein flexibility and
therefore, give more reliable results.

The list of inhibitors along with their pIC50, dock
scores from SP, XP and �Gbind values from Prime have
been tabulated in table 1. Dock score (XP dock score)
vs. Experimental pIC50 and �Gbind vs. Experimental
pIC50 gave a correlation coefficient value (r) of 0.728
and 0.782, respectively, which shows a significant
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relation between biological activity vs. docking and free
energy calculations. The high correlation depicts the
accuracy of the docking protocol. The correlation of
MM/GBSA Gbind values and experimental values is in
acceptable range of 78% (r = 0.78 and r2 = 0.61). Even
though a few molecules showed higher MM/GBSA val-
ues than best active molecule 3 and 23. The variation
in binding affinity with respect to experimental activity
can be correlated to lesser aqueous solubility of these
molecules (ADME properties in supplementary data).
Molecule 37 (lapatinib) is the co-crystallized ligand in
the protein structure used for docking studies (pdb id
1xxk) hence its docking and binding values are higher
compared to the best active molecule, other molecules
had bulkier hydrophobic group (heterocyclic saturated
groups like morpholine, pyrrolidine) that showed favou-
rable interaction with hydrophobic amino acids residues
(Leu 718, Cys 797, Leu 1001 and Met 1002) and also an
electrostatic interaction with Asp 800. Scatter plot of
pIC50 versus XP dock score and �Gbind values are
shown in figure 3. Usually in 3D QSAR, all the mole-
cules in the dataset are superimposed onto the best
active molecule. Instead, the most promising poses
(best GLIDE Score along with most physiologically
similar positions) of each molecule has been considered
for 3D QSAR analysis. Overlay of dock pose of each
ligand is shown in figure 4.

CoMFA and CoMSIA analysis were carried out on
these reported inhibitors. The molecules were divided
into a training set consisting of 35 molecules for
the derivation of QSAR model and a test set of 10
molecules for validation of derived model. CoMFA and
CoMSIA statistical analysis are summarized in table 2.
Statistical data shows q2

loo of 0.638 and 0.672, r2 0.88
and 0.929, respectively, for CoMFA and CoMSIA. The
q2

loo and r2 values indicate a good internal predictive
ability of this model. The SEE value of 0.448 and 0.345,

respectively, for CoMFA and CoMSIA indicate error in
prediction of activity from the obtained model, as the
model is derived from a training set of 35 molecules the

Figure 4. Dock pose alignment of EGFR inhibitors.

Table 2. PLS results in summary.

Statistical parameters CoMFA CoMSIA

Training set 35 35
Test set 10 10
q2

loo 0.638 0.672
ONC 3 3
SEE 0.448 0.345
r2 0.880 0.929
Fration 75.645 134.713
r2
pred 0.530 0.520

Fraction of field contributions
Steric 0.619 0.124
Electrostatic 0.381 0.219
Hydrophobic – 0.178
Donor – 0.214
Acceptor – 0.265

Fratio = Fisher test value; q2
loo = cross-validated correlation

coefficient by leave one out method; r2 = conventional
correlation coefficient; r2

pred = cross-validated correlation
coefficient on test set; ONC, optimum number of compo-
nents; SEE, standard error of estimate.

Figure 3. Scatter plot of pIC50 vs. XP dock score and �Gbind values.
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value seem to be optimum with respect to the r2 values
obtained for the models, the error estimate would have
been less for a larger set. Test set molecules excluded
from the model generation were used to predictive abi-
lity of the model. Predictive correlation coefficient r2

pred

0.53 for CoMFA and 0.52 for CoMSIA, respectively,
wich indicates good external predictive ability of the
model.

Scatter plots for actual and predicted pIC50 values for
training and test sets of CoMFA and CoMSIA studies
are shown in figure 5. Observed and predictive pIC50

values of these molecules are provided in table 1.
CoMFA and CoMSIA contour maps were generated

to visualize information content of the 3D QSAR mod-
els. Modifications required to design new molecules
are suggested by molecular fields (contour maps) that
define favorable or unfavorable interaction energies of
aligned molecules. Contour maps of CoMFA denote the
region in the space where molecules would favorably or
unfavorably interact with the receptor while CoMSIA
contour maps symbolize specified regions where the

presence of a particular group with certain physico-
chemical property binds to the receptor. CoMFA and
CoMSIA results were graphically interpreted by field
contribution maps using “STDEVCOEFF” field type.
All contours represented default 80 and 20% level
contribution for favored and unfavored regions.19,20

Molecule 3, the most potent inhibitor within the series
was incorporated on the map to aid visualization. Varia-
tion in activity is discussed based on the contour maps
analyzes the characterstic features of binding sites.

Steric contour maps of CoMFA and CoMSIA mod-
els are similar as seen in figures 6a and 6b, respectively;
the green and yellow areas represent favored and disfa-
vored regions, respectively. Large green contour is seen
near the substituted benzylamine ring, suggesting sub-
stitution with a bulky group at this position will increase
the activity. The most active molecule (3) shows sub-
stituted benzylamine ring incorporated into the green
region. A yellow contour is seen around the pyrimdine
ring, suggesting more bulky substituents in this area will
significantly decrease the biological activity. Figure 7

Figure 5. Scatter plot for the actual and predicted pIC50 values, the training set is represented in squares and test set in
triangles.

Figure 6. CoMFA and CoMSIA steric fields. (a) CoMFA and (b) CoMSIA standard deviation (SD* coef-
ficient) contour map illustrating steric features in combination with molecule 3. Green contours represent
favorable bulky group substitution at that point while yellow regions are disfavorable for activity.
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shows electrostatic contour maps where the red contour
represents electronegative charge favoring and blue con-
tour represents the electropositive charge favoring, re-
spectively; blue contour on the side chain of substituted
benzylamine ring indicates lesser electronegative sub-
stituents may increase the activity. Red contour on ben-
zyloxy phenyl ring suggests that high electronegative
substituents like flourine at this position are essential
for biological activity as in the case of the most active
molecule 3.

Hydrophobic contour are embodied in figure 8a,
yellow and white areas represent hydrophobic and
hydrophilic preferred regions. Three small yellow con-
tours are seen, one at phenyl ring, one at methyl
substituent on pyrimidine ring and third on benzy-
loxy attached phenyl ring. Bulkier hydrophobic group
substitution at this position may increase the activ-
ity of the molecules since this region is also steric
favored. A white contour is observed at the phenyl ring

suggesting hydrophilic groups in this region will
increase activity.

Acceptor and donor contour maps are shown in figure
8b, magenta and cyan fields indicate the hydrogen bond
acceptor and donor favored regions whereas red and
purple fields imply disfavored regions. In molecule 3, a
donor disfavored purple contour is seen in the vicinity
of the pyrimidine ring. Magenta contours are away from
the molecule, and a small cyan contour is observed near
the NH of the side chain phenyl ring. Site map analy-
sis of the receptor showed similar hydrophobic, hydro-
gen bond donor and hydrogen bond acceptor regions
as obtained from the CoMSIA analysis. These analy-
ses of contour maps and sitemap assisted us to identify
structural requirements for receptor binding and inhibi-
tion. New molecules have been designed based on these
structural requirements as shown in figure 9. The dock
pose of molecule 3 shown in figure 10a shows yellow
hydrophobic region covering the phenyl rings that has

Figure 7. CoMFA and CoMSIA electrostatic fields. (a) CoMFA and (b) CoMSIA electrostatic standard
deviation (SD* coefficient) contour maps illustrating electrostatic features in combination with molecule
3. Red contours indicate negative charge favoring activity, whereas blue contours indicate positive charge
favoring activity.

Figure 8. CoMSIA SD* coefficient contour maps illustrating, (A) hydrophobic, and (B) donor and accep-
tor features in combination with molecule 3. Yellow contour represents the hydrophobic favored region,
white indicates the hydrophilic favored regions. The purple contour represents H-bond donor disfavored
regions while cyan indicates H-bond donor favored region. Magenta and red contour represent H-bond
acceptor favored and disfavored regions, respectively.
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Figure 9. Structural requirements for EGFR inhibitors obtained from CoMFA (CF) and
CoMSIA (CMS) contour map and sitemap analysis.

Figure 10. Sitemap analysis of, (a) most active molecule 3 of the data set, (b) dock pose of newly designed
molecule N4 showing increased number of hydrogen bond interaction with active site amino acids. Yel-
low region represents hydrophobic, blue represents hydrogen bond donor, red represents hydrogen bond
acceptor, and green represents hydrophilic.

π −π interaction with Phe856, a hydrogen bond accep-
tor red region is seen over the nitrogen of pyrimidine
group that interacts with Met793. Blue hydrogen bond
donor region is seen near amine group of the tail region
having salt bridge interaction with Asp800.

Bulky groups with hydrophilic character were sub-
stituted on the phenyl ring attached to alkynyl group.
Groups like sulfonyl and amine were substituted to
the side chain of phenyl ring resulting in more hydro-
gen bond interaction between the receptor and lig-
and (figure 10b). Designed molecules were docked
into the active site, and they showed similar interac-
tions with comparable dock score and predicted activ-
ity with respect to the the most active compound 3.
Figure 10 shows dock poses of the most potent
molecule 3 and newly designed molecule N4. These
molecules are embedded in the protein along with

hydrogen bond interaction with active site amino acids.
N4 showed one extra hydrogen bond interaction with
Arg803. Methylsulphonyl side chain attached to the
amine allows it to occupy the cavity having increased
hydrogen bond interactions. Predicted pIC50 values
were calculated and found to be better. Their struc-
tures and predicted pIC50 are given in table 3. ADME
properties of the newly designed molecules were cal-
culated and found to be in range as that of pyrimi-
dine derivatives used in the present study. The toxic-
ity properties of these molecules were calculated using
pKCSM online server.31 The new molecules showed
similar properties as data set molecules, namely AMES
toxicity, CYP and hERG inhibition, etc. The ADMET
properties have been calculated and provided as Sup-
plementary Information for both the new molecules and
data set molecules.
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Table 3. Structures of newly designed molecules with predicted pIC50 values, Dock score(Kcal/mol) and �Gbind(Kcal/mol).

N

N

NH Cl

O
F

CH3

R

Pred pIC50 Pred pIC50 SP Dock score XP Dock score �Gbind
Mol R CoMFA CoMSIA (Kcal/mol) (Kcal/mol) (Kcal/mol)

N1

NH
CH3

H3C

H3C

7.855 7.387 −11.801 −12.166 −141.336

N2

NH

CH3

H3C

7.704 8.229 −12.821 −13.368 −126.719

N3

NH

CH3

H3C

7.884 7.595 −12.453 −12.889 −146.801

N4

NH
S

CH3

O

O
7.503 7.285 −13.176 −13.242 −150.500

N5

NH
S

CH3

O

O
CH3

CH3 7.681 7.288 −12.524 −13.237 −144.551

4. Conclusions

To understand the binding mode of molecules to recep-
tors and rationalize structural requirements for inhibi-
ton, molecular modeling tools like docking, MM/GBSA
and 3D-QSAR studies are helpful. In the present study,
molecular docking (SP and XP) and prime MM/GBSA
calculations were performed to understand the binding
mode of inhibitors with EGFR. CoMFA and CoMSIA
methodologies were used to build a model for obtaining
structural requirement for EGFR inhibitors. The gene-
rated model showed good statistical results in terms
of high r2 and q2 values for all the models, this indi-
cates the ablility of QSAR model to predict potent
inhibitors from designed molecules. Based on detailed

analysis of contour maps and sitemap, it is evident that
improvement in EGFR binding affinity can be achieved
by substitutional modification on phenyl ring attached
to alkynyl group with bulky hydrophilic substituents.
Maintaining hydrophobic character at phenyloxy group
attached to pyrimidine ring of the best active molecule
3 has enhanced the binding affinity.

Supplementary Information (SI)

ADMET properties of newely designed molecules,
Tables and Figures of Superimposition of structure pose
and docked pose of co-crystalized ligand with RMS
deviation of 1.92 Å, have been incorporated in SI,
available at www.ias.ac.in/chemsci.
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