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Abstract. A series of triazolylcoumarins was synthesized by the cycloaddition of acetylenic derivatives to
azide in the presence of Cu(I) catalyst at room temperature. All the synthesized compounds were evaluated
for their anti-microbial activity against Gram-positive (B. subtilis and S. aureus), Gram-negative bacteria (K.
pneumonia and P. vulgaris) and human pathogenic fungi (C. tropicalis and C. krusei), with tetracycline and
fluconazole as standards for anti-microbial and anti-fungal activity. Triazolylcoumarins exhibit anti-microbial
activity against all the tested pathogens, which is further supported by molecular docking studies.
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1. Introduction

During the last decade, due to the increase in the num-
ber of immuno-compromised hosts, the incidence of
systemic microbial infection has been increasing dras-
tically. Further, most of the microorganisms develop
resistance over a period of time against available
drugs. Hence, the available anti-microbial medicines
are either less effective or ineffective. There is a need to
search for alternative antimicrobial agents. Coumarin,
known as 1,2-benzopyrone, occurs naturally in plants,
notably in high concentration in the tonka bean, vanilla
grass, sweet woodruff and mullein. Coumarin and its
derivatives attract great attention due to their wide
range of biological activities such as anti-cancer,1 anti-
microbial,2 anti-HIV,3 antioxidant,4 anti-viral,5 anti-
inflammatory,6 anti-coagulant7 and as inhibitors of
lipoxygenase8 and cyclooxygenase.9

Click chemistry10–12 has emerged as a reliable
approach for the stereo selective synthesis of 1,2,3-
triazole with desired properties. Cycloaddition of azide
to alkyne in the presence of copper sulphate and sodium
ascorbate to give 1,2,3-triazole has drawn considerable
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attention due to its wide range of biological activi-
ties13,14 as well as in material applications.15 Click reac-
tion is unique due to high yield and there is no need
for a protection or deprotection protocol. Further, 1,2,3-
triazole ring system is highly stable under hydrolytic
as well as under reductive and oxidative conditions.
Recent synthesis have focused on the design of triazole
based coumarin compounds using CuAAC reaction.16,17

In fact, compounds with the combination of
coumarin with triazole systems will be interesting
and such molecules may have better bioactivity than
coumarin itself. Hence, the aim of the present investi-
gation is to synthesize and characterize triazole-based
coumarin derivatives 1–8 (figure 1) and screen them for
their in vitro anti-microbial activity. Molecular docking
and Absorption, Distribution, Metabolism, Excretion
and Toxicity (ADMET) properties of the synthesized
coumarin derivatives have also been studied.

2. Experimental

2.1 General

All melting points were determined using a Toshni-
wal melting point apparatus by the open capillary tube
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Figure 1. Molecular structures of triazolylcoumarins 1–8.

method and are uncorrected. 1H NMR and 13C NMR
spectra were recorded on a Bruker 300 MHz instrument.
The mass spectra (ESI-electron spray ionization) were
recorded on a Perkin Elmer Sciex mass spectropho-
tometer. Elemental analyses were carried out using a
Perkin Elmer CHNS 2400 instrument. Column chro-
matography was performed on silica gel (ACME, 100–
200 mesh). Routine monitoring of the reaction was
made using thin layer chromatography developed on
glass plates coated with silica gel-G (ACME) of 25 mm
thickness and visualized with iodine. All the reagents
and solvents employed were of the best grade available
and used without further purification.

2.2 General procedure for the synthesis of di and tri

azides from di and tri bromides (18–25)

To corresponding di or tri bromides (1 mmol) dissolved
in dry DMF (20 mL), sodium azide (1.5 mmol) was
added and stirring was continued at room temperature
for 12 h. The reaction mixture was poured into water
(30 mL) and extracted with CHCl3 (3 × 100 mL). The
organic layer was washed with water (100 mL) and sat-
urated NaCl (3 × 100 mL), dried (MgSO4). Solvent was
evaporated under reduced pressure to afford the crude
product, which was purified by column chromatogra-
phy (SiO2).
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2.2a 4,4′′-bis(azidomethyl)-1,1′:3′,1′′-terphenyl (22):
Yield 0.25 g (81%); M.p. 96–98◦C; 1H NMR:
(300 MHz, CDCl3)δ 2.32 (s, 4H), 7.12 (s, 1H), 7.14
(d, 2H), 7.16 (s, 4H), 7.29 (s, 4H), 7.31(s, 1H). 13C
NMR: (75 MHz, CDCl3)δ 54.5, 128.4, 128.5, 128.8,
129.2, 129.8, 137.2, 145.5, 148.1. HRMS m/z = 341.40
(M+1)+; Elemental Anal. Calcd. for C20H16N6: C,
70.57; H,4.74; N, 24.69; Found C, 70.27; H, 4.86; N,
24.31. Elemental Analysis: C, 70.57; H, 4.74; N, 24.69

2.3 General procedure for the Cu(I)-catalyzed

Huisgen click reaction (1–8)

Acetylenic derivative (1.0 mmol) was added to azide
(0.5 mmol) in a mixture of THF and water (1:1)
solution. Sodium ascorbate (10 mol%) was added to
the reaction mixture, followed by the addition of
CuSO4.5H2O (5 mol%). The reaction mixture was
stirred overnight at room temperature and after comple-
tion of the reaction the solvent was evaporated under
reduced pressure and the crude product was dissolved
in ethyl acetate (100 mL), washed with water (100 mL),
brine solution (50 mL) and dried (Na2SO4). Evapo-
ration of the solvent afforded a residue which was
purified by column chromatography (silica gel) with
CHCl3/MeOH (9:1) as an eluent to give the correspond-
ing triazolylcoumarins.

2.3a 4-((1-(2-((4-(((2-oxo-4a,8a-dihydro-2H-chromen-

4-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)methyl)benzyl)-

1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (1):
Yield 0.33 g (70%); M.p. 234–236◦C; 1H NMR
(300 MHz, DMSO-d6)δ 5.43 (s, 4H), 5.91 (s, 4H), 6.15
(s, 2H), 7.19–7.22 (m, 2H), 7.30–7.41 (m, 6H), 7.64 (t,
2H, J = 7.8 Hz), 7.75 (d, 2H, J = 7.8 Hz), 8.44 (s,
2H); 13C NMR (75 MHz, DMSO-d6)δ 50.0, 62.7, 91.3,
115.0, 116.4, 122.9, 124.2, 125.6, 128.9, 129.3, 132.8,
134.1, 141.3, 152.7, 161.5, 164.3; MALDI-TOF-MS
m/z = 611.39 (M+Na)+, 627.39 (M+K)+; Elemental
Anal. Calcd. for C32H24N6O6: C, 65.30; H,4.11; N,
14.28; Found C, 65.26; H, 4.12; N, 14.34.

2.3b 4-((1-(4-((4-(((2-oxo-4a,8a-dihydro-2H-chromen-

4-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)methyl)benzyl)-

1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (2):
Yield 0.31 g (66%); M.p. 248–250◦C; 1H NMR
(300 MHz, DMSO-d6)δ 5.41 (s, 4H), 5.65 (s, 4H), 6.15
(s, 2H), 7.30–7.42 (m, 8H), 7.66 (t, 2H, J = 7.5 Hz),
7.73 (d, 2H, J = 7.8 Hz), 8.44 (s, 2H); 13C NMR
(75 MHz, DMSO-d6)δ 52.5, 62.7, 91.3, 115.0, 116.4,
122.8, 124.2, 125.3, 128.5, 132.8, 135.9, 141.3, 152.7,
161.5, 164.3; HRMS m/z = 591 (M+1)+; Elemental

Anal. Calcd. for C32H24N6O6: C, 65.30; H,4.11; N,
14.28; Found C, 65.28; H, 4.12; N, 14.31.

2.3c 4-((1-(3-((4-(((2-oxo-4a,8a-dihydro-2H-chromen-

4-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)methyl)benzyl)-

1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (3):
Yield 0.34 g (72%); M.p. 213–215◦C; 1H NMR
(300 MHz, DMSO-d6)δ 5.40 (s, 4H), 5.67 (s, 4H), 6.12
(s, 2H), 7.31–7.45 (m, 8H), 7.64 (t, 2H, J = 7.8 Hz),
7.72 (d, J = 7.8 Hz, 2H), 8.46 (s, 2H); 13C NMR
(75 MHz, DMSO-d6)δ 52.6, 62.7, 91.3, 114.9, 116.4,
122.8, 124.2, 125.4, 127.5, 127.9, 129.3, 132.8, 136.5,
141.2, 152.7, 161.5, 164.3; MALDI-TOF-MS m/z =

611.49 (M+Na)+, 627.49 (M+K)+; Elemental Anal.
Calcd. for C32H24N6O6: C, 65.30; H,4.11; N, 14.28;
Found C, 65.35; H, 4.16; N, 14.29.

2.3d 4,4′-(((1,1′-((5-hydroxy-1,3-phenylene)bis(methy-

lene))bis(1H-1,2,3-triazole-4,1-diyl))bis(methylene))bis

(oxy))bis(2H-chromen-2-one) (4): Yield 0.42 g (71%);
M.p. 237–239◦C; 1H NMR (300 MHz, DMSO-d6)δ

5.40 (s, 4H), 5.57 (s, 4H), 6.14 (s, 2H), 6.66 (s, 2H),
6.76 (s, 1H), 7.31–7.41 (m, 4H), 7.64 (t, 2H, J = 7.2
Hz), 7.73 (d, 2H, J = 7.5 Hz), 8.44 (s, 2H), 9.77 (s,
1H); 13C NMR (75 MHz, DMSO-d6)δ 52.6, 62.7, 91.2,
114.5, 114.9, 116.4, 117.8, 122.8, 124.2, 125.4, 132.8,
137.7, 141.2, 152.7, 157.9, 161.6, 164.3; MALDI-
TOF-MS m/z = 627.72 (M+Na)+, 643.71 (M+K)+;
Elemental Anal. Calcd. for C32H24N6O7: C, 63.57;
H,4.00; N, 13.90; Found C, 63.58; H, 4.00; N, 13.88.

2.3e 4,4′-(((1,1′-(1,1′:3′,1′′-terphenyl-4,4′′-diylbis(me-

thylene))bis(1H-1,2,3-triazole-4,1-diyl))bis(methylene))

bis(oxy))bis(2H-chromen-2-one) (5): Yield 0.50 g
(76%); M.p. 222–224◦C; 1H NMR (300 MHz, DMSO-
d6)δ 5.45 (s, 4H), 5.73 (s, 4H), 6.18 (s, 2H), 7.20–7.27
(m, 8H), 7.38–7.42 (m, 8H), 7.65 (d, 2H, J = 7.5
Hz), 7.76 (d, 2H, J = 7.8 Hz), 8.54 (s, 2H); 13C NMR
(75 MHz, DMSO-d6)δ 52.6, 62.8, 91.3, 115.0, 116.4,
122.9, 124.2, 125.5, 127.5, 128.5, 129.0, 129.6, 135.1,
136,7, 141.3, 142.2, 146.9, 152.7, 161.5, 164.3; HRMS
m/z = 741.59 (M+1)+; Elemental Anal. Calcd. for
C44H32N6O6: C, 71.34; H,4.35; N, 11.35; Found C,
71.35; H, 4.39; N, 11.31.

2.3f 4,4′-(((1,1′-(((oxybis(ethane-2,1-diyl))bis(oxy))bis

(ethane-2,1-diyl))bis(1H-1,2,3-triazole-4,1-diyl))bis(me-

thylene))bis(oxy))bis(2H-chromen-2-one) (6): Yield
0.30 g (75%); M.p. 138–140◦C; 1H NMR (300 MHz,
DMSO-d6)δ 3.39–3.45 (m, 4H), 3.48–3.50 (m, 4H),
3.83 (t, 4H, J = 4.8 Hz), 4.57 (t, 4H, J = 4.8 Hz),
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5.42 (s, 4H), 6.17 (s, 2H), 7.31 (t, 2H, J = 7.5 Hz),
7.39 (d, 2H, J = 8.1 Hz), 7.64 (t, 2H, J = 7.5 Hz),
7.71 (d, 2H, J = 7.8 Hz), 8.35 (s, 2H); 13C NMR
(75 MHz, DMSO-d6)δ 49.5, 62.7, 68.6, 69.5 (2C),
91.3, 115.0, 116.4, 122.7, 124.1, 125.6, 132.7, 140.8,
152.7, 161.5, 164.3; MALDI-TOF-MS m/z = 667.52
(M+Na)+, 683.52 (M+K)+; Elemental Anal. Calcd.
for C32H32N6O9: C, 59.62; H,5.00; N, 13.04; Found C,
59.60; H, 5.01; N, 13.00.

2.3g 4,4′,4′′-(((1,1′,1′′-(benzene-1,3,5-triyltris(methy-

lene))tris(1H-1,2,3-triazole-4,1-diyl))tris(methylene))tris

(oxy))tris(2H-chromen-2-one) (7): Yield 0.51 g (74%);
M.p. 232–234◦C; 1H NMR (300 MHz, DMSO-d6)δ

5.37 (s, 6H), 5.67 (s, 6H), 6.08 (s, 3H), 7.29–7.38 (m,
9H), 7.62 (t, 3H, J = 7.8 Hz), 7.72 (d, 2H, J = 7.8
Hz), 8.46 (s, 3H); 13C NMR (75 MHz, DMSO-d6)δ

52.4, 62.7, 91.2, 114.9, 116.4, 122.9, 124.1, 125.4,
127.4, 132.7, 137.2, 141.2, 152.7, 161.5, 164.2; HRMS
m/z = 845.3 (M+1)+; Elemental Anal. Calcd. for
C45H33N9O9: C, 64.05; H,3.94; N, 14.94; Found C,
64.07; H, 3.89; N, 14.98.

2.3h 4,4′,4′′-(((1,1′,1′′-((2,4,6-trimethylbenzene-1,3,5-

triyl)tris(methylene))tris(1H-1,2,3-triazole-4,1-diyl))tris

(methylene))tris(oxy))tris(2H-chromen-2-one) (8): Yield
0.26 g (70%); M.p. 102–104◦C; 1H NMR (300 MHz,
CDCl3)δ 2.39 (s, 9H), 5.28 (s, 6H), 5.66 (s, 6H), 5.82
(s, 3H); 7.25–7.28 (m, 6H), 7.48–7.55 (m, 6H), 7.73 (d,
3H, J = 7.8 Hz); 13C NMR (75 MHz, CDCl3)δ 20.1,
48.8, 62.5, 91.1, 115.4, 116.7, 122.9, 123.9, 129.2,
131.8, 139.5, 141.3, 153.3, 164.9; HRMS m/z = 886.7
(M+1)+; Elemental Anal. Calcd. for C48H39N9O9: C,
65.08; H,4.44; N, 14.23; Found C, 65.10; H, 4.41; N,
14.25.

2.4 Anti-bacterial activity

The in vitro antibacterial activity of the triazole-based
coumarin derivatives 1–8 was determined by the well
diffusion method.18 The Muller Hinton Agar (MHA)
medium was used for the preparation of the plates.
The medium was poured onto sterile petri dishes
of 90 mm diameter. The agar was allowed to set at
ambient temperature. Fresh human pathogenic bacte-
rial cultures inoculated into the Muller Hinton Broth
(MHB) of two Gram-positive bacteria, Bacillus subtilis

(MTCC-441) and Staphylococcus aureus (MTCC-98)
and two Gram-negative bacteria, Klebsiella pneumo-

niae (MTCC-109) and Proteus vulgaris (MTCC-742)
were spread on the surface of the MHA plate with
swabs. They were allowed to incubate; after incubation,

using a sterile cork (9 mm diam) borer, wells were cut
from the MHA in the petri dishes. The compounds were
weighed (5 mg/mL) and dissolved in dimethyl sulfoxide
(DMSO). Different volumes of 25 µL, 50 µL and
75 µL test solution were poured into the wells using a
sterile micropipette. The inoculated plates were initially
incubated for 15 min at room temperature and then they
were incubated at 37◦C for 24 h. Turbidity was adjusted
with a sterile broth so as to correspond to 0.5 McFar-
land standards. Inhibition zones were recorded as the
diameter of the growth free zones, including the diame-
ter of the well in mm at the end of the incubation period.
The percentage of inhibition was calculated by the for-
mula: % of inhibition = {I (Diameter of the inhibition
zone)/90 (Diameter of the petri-plate in mm)} × 100,
where I = Zone of inhibition.

2.5 Anti-fungal activity

Anti-fungal activity of compounds 1–8 was determi-
ned,19 Sabouraud Dextrose Agar (SDA) medium was
used for the preparation of plates. The anti-fungal activ-
ities of compounds 1–8 were tested against two human
pathogenic fungi Candida tropicalis and Candida kru-

sei. The medium was poured into sterile petriplates of
90 mm diameter. The agar was allowed to set at ambi-
ent temperature. Fresh fungal culture inoculated into
the Sabouraud Dextrose Broth (SDB) was spread on the
surface of the SDA plate with the swab. After incuba-
tion, the SDA plates were allowed pre-incubation for
10 min, after that using the cork borer (9 mm diameter)
well was cut on the agar plate. The compounds were
weighed (5 mg/mL) and dissolved in dimethyl sulfox-
ide (DMSO). The solution was poured (25 µL, 50 µL
and 75 µL) using a sterile micropipette. The inocu-
lated plates were initially incubated for 15 min at room
temperature and then they were incubated at 37◦C for
24 h. Then, the plates were examined for the growth
inhibition zone. Inhibition zones were measured as the
diameter of the growth free zones in mm including the
diameter of the well at the end of the incubation period.

The percentage of inhibition was calculated by the
formula: % of inhibition = {I (Diameter of the inhibi-
tion zone)/90 (Diameter of the petri-plate in mm)} ×

100, where I = Zone of inhibition.

2.6 Docking studies

The protein in complex with simocyclinone (PDB ID:
2Y3P) was used as the template for molecular docking
studies. GLIDE 9.5 and IFD script from Schrödinger,
LLC (New York) was employed as our primary docking
engine.20 A hierarchical search protocol was utilized by



Synthesis, anti-microbial activity and molecular docking studies 569

the docking algorithm of the GLIDE program. The scor-
ing function, called the GLIDE score, for computing the
binding affinity based Chem-Score function20 is used.
OPLS is the molecular mechanism whose potential
energy function was used throughout the calculations.
The extra precision mode of GLIDE, which has higher
penalties for unfavourable and unphysical interactions,
was used for docking. Computations were carried out
on a Linux system with CentOS-5 computer platform.
The pictures were generated using LIGPLOT.21

3. Results and Discussion

The reaction of di and tri bromides 10–17 with sodium
azide at room temperature afforded di and tri azides22

18–25 in good yields respectively (scheme 1).
The reaction of propargyloxy coumarin 9 with 0.5

equivalents of azides 18–23 under the click reaction
conditions of CuSO4.5H2O (5 mol%) and sodium ascor-
bate (10 mol%), in a mixture of water-THF (1:1) at
room temperature gave the triazolylcoumarin 1–6 in
good yield (scheme 2).

The 1H NMR spectrum of compound 1 displayed two
singlets at δ 5.43 and δ 5.91 for N-methylene and O-
methylene protons, respectively in addition to aromatic
proton signals. The 13C NMR spectrum of compound 1

displayed singlets at δ 50.0 and δ 62.7 for N-methylene
and O-methylene carbons, respectively, along with aro-
matic carbon signals. The appearance of a molecular
ion peak at m/z 611.39 confirmed the structure of the
triazolylcoumarin 1. Similarly, the structure of the com-
pounds 2–6 was also confirmed from the spectral and
analytical data.

Further, the reaction of propargyloxy coumarin 9

with 0.33 equivalents of azides 24 and 25 under Cu
(I) catalyzed click reaction conditions, offered the com-
pound 7 and 8 in 74% and 70% yields, respectively

(scheme 2). Compound 7 in 1H NMR spectrum
displayed two singlets at δ 5.37 and δ 5.67 for N-
methylene and O-methylene protons, respectively in
addition to aromatic proton signals. The 13C NMR spec-
trum showed the carbon signals at δ 52.4 and δ 62.7 for
N-methylene and O-methylene carbons, respectively
along with the signals for aromatic carbons. Similarly,
the structure of the compound 8 was also confirmed
from spectral and analytical data.

The synthesized compounds 1–8 were evaluated for
in vitro anti-bacterial and anti-fungal activity against
two Gram-positive bacteria, B. subtilis and S. aureus,

two Gram-negative bacteria, K. pneumoniae and P. vul-

garis and two fungal pathogens, C. tropicalis and C.

krusei using the well diffusion method. Standard anti-
bacterial and anti-fungal drugs, viz., tetracycline and
fluconazole were also screened for comparison. The
inhibition percentages of the various microbial strains
are shown in table 1. All the triazole based coumarin
derivatives showed various levels of inhibitory effects
against human pathogenic bacteria and fungi. The
anti-microbial activities of these compounds were
dose dependent and found to be significant at 75 µL
addition.

The synthesized triazolylcoumarins; compound 1 to
8 were screened for anti-bacterial and anti-fungal activ-
ity against human pathogens. Compound 1 showed anti-
bacterial activity against Gram-positive bacterium; S.

aureus, Gram-negative bacteria, K. pneumonia, P. vul-

garis, anti-fungal activity against C. tropicalis and C.

krusei. Compound 1 didn’t show any activity against
Gram-positive bacterium; B. subtilis. Compounds 2 and
3 showed activity against K. pneumonia, P. vulgaris,
C. tropicalis and C. krusei but didn’t show any activity
against B. subtilis and S. aureus. Compound 5 showed
activity against B. subtilis, S. aureus, P. vulgaris, C.

tropicalis and C. krusei, but didn’t show activity against
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Scheme 2. i) CuSO4.5H2O (5 mol%), sodium ascorbate (10 mol%), H2O-
THF (1:1, v/v), rt., 10 h, 1 (70%), 2 (66%), 3 (72%), 4 (71%), 5 (76%), 6 (75%),
7 (74%) and 8 (70%).

Table 1. Anti-microbial activity of triazolylcoumarins 1–8 (values given are mean values with triplicate (n=3).

Well diffusion method (Zone of inhibition (dia. in mm)
Standarda 1 2 3 4 5 6 7 8

Microbial strains Ib I%c I I% I I% I I% I I% I I% I I% I I% I I%

B. subtilis 25 26.66 NI NI NI NI NI NI 12 13.33 12 13.33 11 12.22 15 16.66 14 15.55
S. aureus 22 23.33 12 13.33 NI NI NI NI 12 13.33 12 13.33 12 13.33 NI NI NI NI
K. pneumoniae NId NI 14 15.55 15 16.66 13 14.44 19 20 NI NI 16 17.77 17 18.88 17 18.88
P. mirabilis 20 21.11 14 15.55 12 13.33 NI NI 13 14.44 12 13.33 12 13.33 12 13.33 13 14.44
C. krusei NI NI 15 16.66 15 16.66 14 15.55 15 16.66 14 15.55 15 16.66 12 13.33 13 14.44
C. tropical NI NI 15 16.66 15 16.66 14 15.55 19 20 12 13.33 15 16.66 16 17.77 14 15.55
aStandard: antibacterial drug-Tetracycline; anti-fungal drug-Fluconacole are used
bZone of inhibition
cPercentage of zone of inhibition
dNo Inhibition

K. pneumonia. Compounds 7 and 8 showed activity
against B. subtilis, K. pneumonia, P. vulgaris, C. trop-

icalis and C. krusei, but didn’t show activity against
S. aureus. Tetracycline and fluconazole were used as
internal standard for anti-bacterial activity and fungal
activity, respectively.

Compounds 4 and 6 showed anti-bacterial activity
against B. subtilis, S. aureus, K. pneumonia, P. vulgaris

and anti-fungal activity against C. tropicalis and C. krusei.
Compared to all the compounds 1 to 8, compound 4

and 6 exhibited anti-bacterial and anti-fungal activity

against all the tested human pathogens. All the cou-
marin triazole derivatives 1–8 showed excellent anti-
fungal activity against C. tropicalis and C. krusei at
a volume of 75 µL which is comparable to that
of standard viz., fluconazole. Within 6 h, fluconazole
showed activity against fungal pathogens, after 12 h
fluconazole’s activity was reduced against fungal
pathogens. Triazolylcoumarins 4 and 6 exhibit good
activity among the synthesized compounds due to the
combined effect of coumarin and triazole, with phenolic
and tetraethyleneglycol units, respectively.
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The structures of the compounds 1–8 were employed
for docking studies with the target DNA gyrase B (PDB
ID: 2Y3P).23 The ligands maintain an average four
hydrogen bond with the DNA gyrase. 10–15 Poses were
obtained for all the compounds and based on the top
score selected for each compound. Among all the com-
pounds, synthesized triazolylcoumarins 4, 6 and 7 show
high binding affinity towards the DNA gyrase B and the
results are compared with simocyclinone (D8), which
was also docked with the DNA gyrase using a similar
protocol and the results are shown in table 2. Figure 2
shows hydrogen bonding and hydrophobic interactions
of the triazolylcoumarins 1–8 with the DNA gyrase B,

respectively and it has be seen that for each compound,
the binding sites and their hydrogen bonding inter-
actions vary.

The variation in the bioactivity is mainly due to the
difference in the binding site. The activity study shows
that triazolylcoumarins 1–8 shows comparable results
with simocyclinone (D8) in the case of E. coli. It may
be due to the fact that the binding sites of triazolyl-
coumarins are similar to that of the simocyclinone (D8)
binding sites. The triazolylcoumarins 4, 6 and 7 show
interaction with the key residues of the receptors Arg
91, Lys 42, Val 268, His 45, Arg 32, Gln 94 and Gln 114
with Glide energy of −101.548 kcal mol−1, −101.002

Table 2. Binding free energy docking simulation results of triazolylcoumarins 1–8.

Hydrogen Bond
Compounds Glide Score Glide Energy (kcal/mol) D-H. . .A Distance(Å)

1 −10.291 −81.071 Lys N-H. . .N 3.19
Lys N-H. . .O 3.17
Arg N-H. . .N 3.07
Gln N-H. . .O 3.01

2 −8.963 −77.302 Lys N-H. . .O 3.29
Ser O-H. . .O 2.89

3 −10.115 −83.188 Ser O-H. . .O 3.26
Ser N-H. . .O 3.17
Tyr N-H. . .O 3.24
Asn N-H. . .O 3.30
Gln N-H. . .O 3.06

4 −10.238 −101.548 Arg N-H. . .O 2.82
Arg N-H. . .N 3.13
Arg N-H. . .O 2.98
Lys N-H. . .O 2.87
Val O-H. . .O 2.98

5 −9.705 −87.672 Lys N-H. . .N 3.31
Lys N-H. . .O 3.30
His N-H. . .N 3.01
Gly N-H. . .O 3.12

6 −11.057 −101.002 Lys N-H. . .N 3.05
His N-H. . .N 3.28
Arg N-H. . .O 3.07
Gln N-H. . .O 307

7 −10.238 −100.056 Lys N-H. . .O 3.06
Gln N-H. . .N 3.21
Arg N-H. . .O 305

8 −9.112 −80.123 Lys N-H. . .N 3.13
Ala N-H. . .O 2.90
Arg N-H. . .N 3.07

Simicyclinone −6.565 −64.715 Asp N-H. . .O 3.30
Arg N-H. . .O 2.70
Gln N-H. . .O 2.20
Ala N-H. . .O 2.70
Ser N-H. . .O 3.50
Lys N-H. . .O 3.23
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Figure 2. Interaction of triazolylcoumarins 1–8 with DNA gyrase B.
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Table 3. Theoretical ADMET properties of triazolylcoumarins 1–8.

Hydrogen Bonding

Compounds CNSa SASAb Donor Acceptor QPlogSc

1 −2 962.55 0 12 −6.546
2 −2 970.04 0 11 −7.212
3 −2 1010.42 0 11.5 −7.715
4 −2 1023.68 1 12.25 −8.206
5 −2 1187.89 0 11.5 −10.753
6 −2 958.69 0 17.25 −2.91
7 −2 1010.09 0 17.25 −3.884
8 −2 1010.91 0 17.25 −3.9
Tetracylcine − 641.47 2 7.5 −4.53
Flucanacole +/− 514.69 1 6 −3.740

aPredicted central nervous system (CNS) activity on a −2 (inactive) to +2 (active) scale.
bTotal solvent accessible surface area (SASA) in square Angströms using a probe with a 1.4 Å radius.
cPredicted aqueous solubility, log S. S. in moles/liter is the concentration of the solute in a saturated
solution that is in equilibrium with the crystalline solid (QplogS).

kcal mol−1 and −100.056 kcal mol−1, respectively. The
activity study clearly reveals that all the synthesized
triazolylcoumarins 1–8 show excellent results compara-
ble with that of simocyclinone (D8). Hence, the dock-
ing studies would of great help in the design of the novel
triazolylcoumarins drug targets of bacterial proteins.
Further, the theoretical prediction of the ADMET
properties based on the numbers of hydrogen donors
and acceptors have been studied for compounds 1–8

and the results are presented in table 3. The ADMET
parameter shows that the reported triazolylcoumarins
have good oral absorption and do not affect the central
nervous systems (CNS) and hence could be favourable
drug candidates after a systematic in vivo analysis.

4. Conclusions

We have synthesized a series of triazole based coumarin
derivatives by the click chemistry approach. The anti-
microbial activity showed that the coumarin deriva-
tives 4 and 6 could be developed as potential anti-
bacterial agents against B. subtilis, S. aureus, K. pneu-

monia, P. mirabilis and also anti-fungal agents against
C. krusei and C. tropicalis. The molecular docking
studies also revealed that compounds 4 and 6 may be
good inhibitors of the DNA gyrase B enzyme and also
showed strong hydrogen bonding with key residues of
chain A of the enzyme dimer DNA gyrase B with novel
binding conformation.

Supplementary Information

NMR and Mass data are available at www.ias.ac.in/
chemsci.
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