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Abstract. This article reviews theoretical approaches for controlling spin dynamics in solid-state nuclear
magnetic resonance. We present fundamental theories in the history of NMR, namely, the average Hamiltonian
and Floquet theories. We also discuss emerging theories such as the Fer and Floquet-Magnus expansions. These
theories allow one to solve the time-dependent Schrodinger equation, which is still the central problem in spin
dynamics of solid-state NMR. Examples from the literature that highlight several applications of these theories
are presented, and particular attention is paid to numerical integrators and propagator operators. The problem
of time propagation calculated with Chebychev expansion and the future development of numerical directions
with the Cayley transformation are considered. The bibliography includes 190 references.
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1. Introduction

The time-dependent Schrodinger equation is one of
the main frameworks unifying the quantum mechanical,
atomic and molecular physics descriptions of matter.1–5

This framework is particularly unique, permitting a
consistent treatment of the spin dynamics in nuclear
magnetic resonance (NMR). Such spin dynamics are
central in the description of the quantum measurement
process leading to the NMR signal and also in design-
ing sophisticated pulse sequences and understanding of
different experiments.6–150

The present review article presents some direct appli-
cations of major theories in NMR spectroscopy such as
the average Hamiltonian theory (AHT),19,44 the Floquet
theory (FLT),20–23 the Fer expansion (FE)62,63 and the
Floquet-Magnus expansion (FME).18,44 Methodologies
of these theoretical approaches based on numerical inte-
grators and their propagator operators are reviewed.44

Examples from literature highlighting some applica-
tions of these theoretical schemes are also given.151,152

We mainly treat the problems of Bloch-Siegert shift,
continuous waves (CWs) decoupling and interactions
in solid-state NMR when irradiated with magic echo
pulse sequence with all the theories (AHT, FLT,
FE and FME) to give the reader the possibility of

appreciating the advantages and limitations of these
theories and approaches. Our analysis is mainly based
on effective Hamiltonians. Effective Hamiltonians are
necessary to understand how the pulse sequences work.
We used the time-dependent Hamiltonians to derive
effective Hamitonians useful to compare the similarities
and contrasts of the theories therein. During different
times of the experiment, different effective Hamiltoni-
ans are expected. All pulse sequences use rf irradia-
tion schemes that lead to time-dependent Hamiltonians
for decoupling or recoupling purposes. Furthermore,
different rf irradiation schemes in combination with
magic-angle spinning (MAS) lead to different types of
effective Hamiltonians.189 With the increase of the level
of sophistication of NMR experiments, higher-order
terms are of increasing importance, such as in diffusion
experiments, or like triple-resonance CWs radio fre-
quency irradiation under magic-angle spinning (MAS).
Therefore, it is important to consider also theories such
as Fer and Floquet-Magnus expansions that allow the
calculation of higher-order terms more easily. In this
review, we do not present unpublished solutions or
unsolved problems such as theoretical treatment of
problems with more than four frequencies when the
Floquet theory or Floquet-Magnus expansion is used.39,66
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Without going into details, we highlight potential
future NMR numerical simulations and theoretical
directions such as the time evolution propagation cal-
culated by Chebychev expansion153–158 and the Cayley
method.159–164 This means that spin dynamics systems
amenable to perturbative treatment still deserve much
attention.

2. Average Hamiltonian Theory

The average Hamiltonian theory (AHT) has evolved as
a powerful technique of analysis in the development
of high-resolution NMR spectroscopy. The Magnus
expansion44,69–71,165–179 has been systematically used
in NMR, in particular in solid-state NMR where it
forms the basis of AHT. This expansion was first
applied to NMR in 1968 by Evans69 and Haeberlen
and Waugh.19 Since that time, the ME has been instru-
mental in the development of improved techniques in
NMR spectroscopy.70 Developed by John Waugh and
co-workers in 1968, the AHT approach became the
main tool to study the dynamics of spin systems sub-
ject to an RF perturbation.19 This approach is the most
commonly used method to treat theoretical problems
in solid-state NMR and have been used sometimes
abusively.68 The basic understanding of AHT involves
considering a time-dependent Hamiltonian H(t) gov-
erning the spin system evolution, and describing the
effective evolution by an average Hamiltonian H within
a periodic time (T ). This is satisfied only if H(t) is
periodic (T ) and the observation is stroboscopic and
synchronized with period (T ).

This technique has been widely used in the NMR lit-
erature in the development of multiple pulse sequences
and in the context of both decoupling and recoupling
experiments.6,18,19,26,33–36,44 The AHT set the stage for
stroboscopic manipulations of spins and spin interac-
tions by radio-frequency pulses and also explains how
periodic pulses can be used to transform the symmetry
of selected interactions in coupled, many-spin systems
considering the average or effective Hamiltonian of the
RF pulse train.79,80,89,142

2.1 Propagator and Magnus expansion

2.1a Propagator: The central result of AHT is
obtained by expressing the evolution propagator U(tc)

by an average Hamiltonian H and using the Magnus
expansion, which forms the basis of AHT.19,26,34–36 The
AHT propagator is given by

U(tc) = exp
{−iH(tc)tc

}
, (1)

where H(tc) is the average Hamiltonian and tc corre-
sponds to the period of a periodic Hamiltonian H(t).

2.1b Magnus expansion: The Magnus expansion44,69–85

was first applied to NMR in 1968 by Evans69 and
Haeberlen and Waugh.19 Since that time, the ME has
been instrumental in the development of improved tech-
niques in NMR spectroscopy.44,70 The Magnus expan-
sion provides a solution to the initial value problem

dU

dt
= −iH(t)U(t), U(t0)

= U0, t ∈ �, U(t) ∈ Cn,−iH(t) ∈ Cn×n, (2)

in terms of exponentials of combinations of the coef-
ficient matrix −iH(t). Eq. (2) is a first-order linear
homogeneous system of differential equations in which
Y (t) is the unknown n−dimensional vector function. In
general, U0, U and −iH(t) are complex valued. The
scalar case, n = 1, has the general solution

U(t) = exp(−
t∫

t0

iH(t ′)dt ′)U0. (3)

This expression is still valid for n > 1 if the matrix −iH(t)

is constant; or the commutator [H(t1),H(t2)] = 0,for
any pair of values of t , t1and t2. In general, there is
no compact formula for the solution of eq. (2) and
the Magnus proposal endeavour to complement eq. (3)
in the following direction. If a term is added to the
argument in the exponential such as

U(t) = exp(−
t∫

t0

iH(t ′)dt ′ + M(t, t0))U0, (4)

then the Magnus expansion provides M(t, t0) as an
infinite series.

A salient feature of the Magnus expansion is the fact
that, when −iH(t) belongs to a given Lie algebra, if
we express U(t) = U1(t, t0)U0, then U1(t, t0) belongs
to the corresponding Lie group. By construction, the
Magnus expansion lives in the Lie algebra. Further-
more, this is also true for their truncation to any order.
In many applications, this mathematical setting reflects
important features of the problem. The Magnus expan-
sion has been successfully applied as a perturbative tool
in numerous areas of physics and chemistry such as
in nuclear magnetic resonance. The Magnus expansion
has been systematically used in NMR, in particular in
solid-state NMR where it forms the basis of AHT.

2.2 Applications of average Hamiltonian theory

The method of AHT has been gradually applied to
many theoretical problems in NMR and in solid-
state NMR in particular.68 For example, we used the



Theoretical approaches to control spin 2083

technique to compare the efficiency of the magic
echo cycle and the simple two-pulse quadrupolar echo
sequence. More details on the efficiency of the magic
echo cycle compared to the simple two-pulse quadrupo-
lar echo sequence can be found in the literature of
solid-state NMR spectroscopy.31,33–35,99,112,113 AHT has
played a major role in NMR for developing, design-
ing, and improving the performance of pulse sequences.
For example, the technique of AHT has been very
useful in designing and constructing composite pulses
sequences. Composite pulses are the decomposition
of a single pulse into a product of a number of
constituent pulses.135–137 These types of pulses have
been developed to compensate for rf inhomogeneity,
off-resonance effects, and phase distortion. Theoreti-
cal procedure for constructing composite pulses that
compensate the inhomogeneities of electric field gra-
dient and radio frequency field strength for nuclear
quadrupole resonance spectroscopy uses a similar tech-
nique than AHT.138

The 12 chemical physics articles cited in this section
describe some interesting applications of AHT in the
development of pulse sequences. This include the use
of AHT to calculate homonuclear dipole–dipole cou-
plings and chemical shifts for the simple pulse sequence
(delta-function) called DRAMA,115 continuous rf irra-
diation with the pulse sequence called 2Q-HORROR,116

finite-pulse recoupling sequences such as finite-pulse
radio-frequency-driven recoupling (fpRFDR),117,118

chemical-shift-driven recoupling including rotational
resonance121–128 and radio-frequency-driven-recoupling
(SEDRA).121–127 An important utility of AHT to
exploit the mathematical symmetry principles in the
design of NMR multiple-pulse sequences should be
recongnized.114

2.2a Symmetry in the design of NMR multiple-pulse
sequences using AHT: Nearly a decade and half ago,
Eden and Levitt developed a set of selection rules based
on the symmetry of the internal interactions and Euler
angles.103,114 Levitt’s group has exploited symmetry
arguments in order to simplify the design of RF pulse
sequences in the presence of sample rotation.129–132

Theorems are presented, which allow one to predict
the elimination of many average Hamiltonian terms.
These findings are useful to study important problems
in solid-state NMR such as the heteronuclear decou-
pling in the presence of rapid MAS, the homonu-
clear recoupling interactions of the irradiated spins,
higher-order multiple-quantum excitation, and selection
of isotropic interactions. Indeed, several groups have
developed symmetry theorems for suppressing average
Hamiltonian terms in the presence of time-independent

internal spin interactions, but most of these results
do not apply strictly in a rotating sample.90,97 Fortu-
nately, Levitt and co-workers developed the selection
rules based on general symmetry properties of pulse
sequences that allow the development of recoupling and
decoupling sequences as well as many other experi-
ments. The selection rules reveal which types of inter-
actions can be recoupled by a sequence with a given
symmetry.90–92

2.2b Bloch–Siegert shift: The Hamiltonian for the
Bloch–Siegert shift for single spin-1/2 under on-
resonance rf irradiation on the I spin may be written as62

HLab(t) = 2ω1 cos(ωRF t)IX + ω0IZ (5)

The above relevant Hamiltonian in the interaction frame
defined by the operator

URF (t) = e−iωRF IZt , (6)

that is,

H̃Rot (t) = e−iωRF IZtHLab(t)e
iωRF IZt

= (ω0 − ωRF )IZ + ω1IX + ω1 cos(2ωRF t)IX

+ ω1 sin(2ωRF t)IY

(7)

The first-order AHT expansion is the result of reso-
nance offset and rf irradiation,

H
(1) = 1

τC

τC∫
0

dtH̃Rot (t) = (ω0 − ω1)IZ + ω1IX (8)

and the second-order AHT expansion is the well-
documented Bloch–Siegert shift

H
(2) = −i

2τC

τ∫
0

dt2

t2∫
0

dt1

[
H̃ (t2), H̃ (t1)

]
=ωRF (

ω1

2ωRF

)2IZ

(9)
These shifts are significant for homonuclear and het-
eronuclear decoupling if the irradiation frequency is
close to the detection frequency.

2.2c Interactions in solid-state NMR when irradi-
ated with solid echo and magic echo pulse sequences:
The interactions of spin systems in NMR have been
extensively described by Levitt,75 Veshtort and
Griffin,76 and Bak et al.77 In this part of the review
paper, we summarized the various forms of Hamiltoni-
ans subject to the secular approximation of high-field
truncation. The Hamiltonian of the spin system is the
sum of the different physical influences or interac-
tions acting on the nuclear spin such as the chemical
shift, dipole–dipole coupling, or quadrupolar coupling.
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Mathematically, the spin Hamiltonian in NMR can be
written as

H =
∑

�

H�, (10)

where � represents the contributions from radiofre-
quency (RF) irradiation, chemical shift (CS), indirect
spin–spin coupling (J), dipole–dipole coupling (D),
quadrupolar coupling (Q) and so on. In general, the
interactions of the nuclei with the excitation field (exter-
nal radiation) and the internal Hamiltonians (CS, J, D,
Q) do not commute.

In high-magnetic-field NMR, all interaction terms
have the spin quantum numbers equal to zero (μ = 0,
m = 0), and the spin Hamiltonians are truncated by the
secular approximation. NMR interactions are written
explicitly by the following expressions31

HRF =
∑

i

∣∣ωi
RF (t)

∣∣ (Iix cos φi + Iiy sin φi), (11)

HCS =
∑

i

ωi
CS,0(t)Iiz, (12)

HJ =
∑

ij

−ω
ij

Jiso,0
(t)

1√
3

Ii .Ij

+ω
ij

Janiso,0
(t)

1√
6
(3IizIjz − Ii .Ij ), (13)

HD =
∑
i,j

ω
ij

D,0(t)
1√
6
(3IizIjz − Ii .Ij ), (14)

HQ =
∑

i

ωi
Q,0(t)

1√
6
(3I 2

iz − I2
i )

+ 1

2ωi
0

{
ωi

Q,−2(t)ω
i
Q,2(t)(2I2

i − 2I 2
iz − 1)Iiz)

+ωi
Q,−1(t)ω

i
Q,1(t)(4I2

i − 8I 2
iz − 1)Iiz

}
(15)

with i, j representing the concerned spins. φi is the
phase of the RF irradiation (pulse phases), and ωi

RF =
−γiB

i
RF is the RF nutation frequency. (CS) represents

the chemical shift, (J) is the indirect spin–spin cou-
pling, (D) represents the dipole–dipole coupling, and
(Q) is the quadrupolar coupling. The symbols γi is
the gyromagnetic ratio, and Jiso and Janiso describe
the scalar and anisotropic J coupling, respectively. The
aforementioned Hamiltonians are for the Lab frame
and can be transformed to the rotor frame R (MAS
frame) by the sequence described further. Details of
these NMR interactions (eqs. (11–15)) can be found in
the literature.24–26,30,75–77,111 The operator product Ii .Ij

is truncated to IizIjz when a coupling occurs between
nuclei of different spin species. In eq. (15), the first term
represents the first-order quadrupolar coupling, while

the second term includes the secular components for
the second-order quadrupolar coupling. In the follow-
ing, we have neglected the second-order term with the
secular components. Equation (15) is reduced to

HQ =
∑

i

ωi
Q,0(t)

1√
6
(3I 2

iz − I2
i ). (16)

The frequency coefficients for the various internal
Hamiltonians depend on some physical parameters and
are typically expressed in terms of Fourier expansion
such as

ωλ,m
′ (t) =

2∑
m=−2

ω
(m)

λ,m
′ e

imωr t (17)

where
ωr

2π
is the spin rate. The Fourier coefficients are

written as

ω
(m)

λ,m′ = ωλ
isoδm,0 + ωλ

aniso

{
D

(2)

0,−m(
λ
PR)

− ηλ

√
6

[
D

(2)

−2,−m(
λ
PR)+D

(2)

2,−m(
λ
PR)

]}
d

(2)

−m,m′(βRL)

(18)

where δm,0 is the standard Kronecker delta. The con-
stants describing the isotropic (ωλ

iso) and the anisotropic
(ωλ

aniso, η
λ) contributions to the Fourier coefficients can

be found in the article by Bak et al.76,77 The article
also gives a description of the orientation dependence
of the anisotropic interactions. The above Hamiltonians
are for the magic-angle spinning (MAS) experiment.
In the laboratory reference frame, the z-axis is paral-
lel to the static magnetic field. In MAS experiments,
the following sequence of transformation is used: P →
C → R → L. The frames P, R, C, and L represent the
principal-axis, the rotor-fixed, the crystal-fixed, and the
laboratory-fixed frames, respectively. These frames (P,
R, S, and L) are connected by the relation

D
(2)

m
′
,m

(
λ
PR) =

2∑
m"=−2

D
(2)

m′,m′′(

λ
PC)D

(2)

m′′,m(
CR). (19)

The internal Hamiltonians (eqs. (11)–(15)) can also be
written in more succinct forms such as those described
by Tycko78 or Schnell and Spiess.111 For instance, in
the form given by Tycko, the Hamiltonian is expressed
in terms of {Y2m}, which is a basis for an irreducible
representation of rotations of the spatial coordinates of
the sample, and {T2m}, which is a basis for an irre-
ducible representation of rotations of the spin angular
momenta. {Y2m} and {T2m} are the second-rank spher-
ical harmonics and the second-rank irreducible tensor
operators, respectively. In high field approximation, we
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Figure 1. Magic echo sequence for time reversing the evo-
lution of a system of nuclear spins coupled by a dipolar
interaction.

only have the two basis {Y20} and {T20}. For example,
the truncated dipole–dipole coupling can be written as

HD = bij (t)Y20T20 (20)

where bij (t) is the coupling variable proportional to r−3
ij

(and rij is the internuclear distance). The quadrupolar
interaction can also be written as

H
(0)

Q (t)=
2∑

m=−2

{
1√
6
D

(2)

m0(
)+η
[
D

(2)

m2(
)+D
(2)

m−2(
)
]}

D
(2)

0m

[



′
(t)

]
T20. (21)

where η is the asymmetry parameter.
The magic echo sequence (figure 1) is a multiple

pulse sequence that has been applied with great success
in solid-state NMR. The scheme consists of a period of
free evolution of time τ −α, a π

2 pulse about the y axis,
followed by two spin-locking fields of duration 2τ − α,
and ending with the application of a second π

2 pulse
aboutthe y axis. The cycle is well known in the NMR
community to be more efficient than a simple two-
pulse quadrupolar echo (solid echo) sequence (figure 2).
Specifically, sufficient line-narrowing may be obtained
for the magic echo sequence when the free evolution
times are made long enough (i.e., about 100 μs). This
is in contrast to quadrupolar echo sequence where effi-
cient line-narrowing is obtained when using very short
free evolution times (typically less than 10 μs). This
characteristic can be explained by considering the con-
vergence of the Magnus expansion with strong RF
power and short pulse spacings. The Magnus expan-
sion converges faster with the magic echo sequence
compared to the conventional two-pulse quadrupo-
lar echo cycle as in the article by Mananga et al.34

More details on the efficiency of the magic echo cycle
compared to the simple two-pulse quadrupolar echo
sequence can be found in the literature of solid-state

Figure 2. Simple two-pulse quadrupolar echo sequence.

NMR spectroscopy.31,34,99 Figure 3 also represents the
magic echo sequence for refocusing the quadrupolar
interaction. We presented the results of AHT for various
interactions in the solid state when samples are irradi-
ated using the magic echo pulse sequence. The J cou-
pling was neglected and all the durations of the π

2 pulses
were 2α. We consider only the first-order quadrupolar
coupling and neglect all the secular components from
the second and upper order.

We consider the static case where the AHT is more
convenient to study the spin dynamics. The zero-order
term of the average Hamiltonian was calculated with
the magic echo pulse sequence for each interaction:34

H
0

�ω = 1

3τ

�ω

ωRF

Iy[1 − cos ωRF (2τ − α)]

− 1

3τ

�ω

ωRF

Ix[sin ωRF (2τ − α) + 4

π
ωRFα]

(22)

H
0

D = ωDIzIz − ωDI.I + 1

4τ

ωD

ωRF

IxIx[2ωRF (2τ + α)]

+ sin 2ωRF (2τ − α)] + 1

4τ

ωD

ωRF

IyIy[2ωRF (2τ

−α)] − sin 2ωRF (2τ − α)] − 1

2τ

ωD

ωRF

[IxIy

+IyIx] sin2 ωRF (2τ − α) (23)

H
0

ωQ
= 1

7τ

12αωQ

π
Ix,2 + 4(3α − τ)ωQ

7τ

× [
Ix,1Ix,1 + Iy,1Iy,1 − 2Iz,1Iz,1

]
(24)

where 2α is the duration of π/2 pulse width, and ωD

is the dipolar coupling constant. ωRF is the RF field
strength, �ω is the resonance offset, and ωQ is the
quadrupolar coupling constant. The sequence used for
the chemical shift and the dipolar interactions consists
of a period of free evolution of time τ − α, a π

2 pulse
about the y axis, followed by two spin-locking fields of
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Figure 3. Magic echo sequence for refocusing the quadrupolar interaction.

duration 2τ − α, and ending with the application of a
second π

2 pulse about the y axis. The echo occurs at a
time τ − α after the last pulse. For the sequence used
in the case of the quadrupolar interaction, a π

2 pulse
about the x axis precedes the magic echo sequence. In
the expression of the average Hamiltonian obtained for
the quadrupolar interaction, the spin-1 operator formal-
ism developed by Vega and Pines79 was used. Note that
the zero-order term of the average Hamiltonian for the
quadrupolar interaction (eq. 21) is obtained when using
the magic echo sequence with a π

2 pulse about the x

axis inserted during the first free evolution time as in the
figure shown in the previous work by Mananga et al.34

2.2d CW decoupling: We revisit the AHT approach
by using the case of heteronuclear decoupling. In the
doubly rotating frame of the I and S spins, the truncated
dipolar interaction and the RF irradiation with the inten-
sity of ω1 along the X axis of the I spin for the CW
decoupling is given by84

H = dIZSZ + ω1IX + �ωIZ, (25)

where the first term denotes the dipolar interaction, and
�ω represents the off resonance. Following the devel-
opment of Takegoshi et al.84 the propagator is given by

U(t) = e−iH t = e(−iω1IXt)T e
(−i

t∫
0
H0(t1)dt1)

, (26)
where the relevant Hamiltonianin the toggling frame is
given by

H0(t) = A(IZ cos ω1t + IY sin ω1t) (27)

with
A = �ω + dSZ. (28)

After lengthy calculation, the average Hamiltonian for
the first two orders is found to be

H
(0) = 0, (29)

H
(1) = A2

2ω1
IX, (30)

H
(2) = A3

2ω2
1

IZ. (31)

2.2e Magnus expansion as numerical integrator:
The Magnus expansion can also be used as numerical
method for solving eq. (2). One follows a time-stepping
advance procedure, from U0 to obtain the solution U(t).
For the sake of simplicity, let us consider a constant
time step, h = t

N
and tj = jh with j = 0, 1, 2..., N .

To obtain uj , the Magnus expansion is applied in each
subinterval

[
tj−1, tj

]
to the initial condition uj−1. The

approximations uj are computed to the exact values
U(tj ). The process involves the following steps:44,168

(a) The expansions are truncated according to the
order in h to be achieved.

(b) The multivariate integrals in the truncated expan-
sions are replaced by conveniently chosen appro-
ximations.

(c) The exponentials of the matrices have to be com-
puted.

Magnus proposed an exponential representation of
the solution of eq. (2) in the form

U(t) = e−i
(t)U0, (32)

with 
(0) = 0, where 
 is obtained as an infinite
series,


(t) =
∞∑

n=1


n(t). (33)

The average Hamiltonian can be defined by means
of an expansion known as Baker–Campbell–Hausdorff
expansion or Magnus expansion. In essence, the Mag-
nus expansion yields the solution of the above linear
operator equation (eq. (2)) in the exponential form,



Theoretical approaches to control spin 2087

where 
(t) represents the argument of a unique expo-
nential function obtained as an infinite series.169 The 
1

and 
2 obtained from the Magnus expansion or Mag-
nus series suffice to build methods up to order four in
h. Blanes and co-workers44 have shown that the fourth-
order Magnus method improves the result achieved by
the second order, whereas a higher-order method does
not necessarily lead to a better approximation. Next,
the averaged matrices procedure is used for different
quadrature rules.

− iH (i)(h) ≡ −i

hi

tn+h∫
tn

(t − t1/2)
iH(t)dt

= −ih

k∑
j=1

bj (cj − 1

2
)iHj + O(hp+1),

(34)

for i = 0, 1, ..., where t1/2 = tn + h

2 and Hj =
H(tn + cjh). Here, bj , cj , j = 1, ..., k, are the weights
and nodes of a particular quadrature rule of order p, to
be chosen by the user.

The first order in the Magnus expansions,
exp(−iH (0)(h)), leads to a second-order approximation
in the time step h. Using the mid-point rule, we obtain

un+1 = exp(−ihH(tn + h

2
))un. (35)

Computing −iH (0) and −iH (1) in eq. (34), one can
obtain fourth-order methods that provide a good bal-
ance between good performance and moderate com-
plexity. A fourth-order Magnus integrator is given by

un+1 = exp(−iH (0) − i[H(1), H (0)])un. (36)

Choosing the Gauss-Legendre quadrature rule, we have⎧⎪⎨⎪⎩
H(0) ∼= h

2
(H1 + H2)

H (1) ∼= h
√

3

12
(H2 − H1)

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H1 = H

(
tn +

(
1

2
−

√
3

6

)
h

)

H2 = H

(
tn +

(
1

2
+

√
3

6

)
h

) (37)

A good perspective of the overall performance of
a given numerical integrator is provided by the effi-
ciency diagram.44,168 This efficiency plot is obtained
by carrying out the numerical integrator with differ-
ent time steps, corresponding to different numbers of
evaluations of H(t). For each run, one compares the

corresponding approximation with the exact solution,
and plots the error as a function of the total number
of matrix evaluations. The results are better illustrated
in a double logarithmic scale. In that case, the slope
of the curves should correspond, in the limit of very
small time steps, to (minus) the order of accuracy of the
method.

2.3 Advantages and limitations

The AHT cannot be used with multiple incommen-
surate time-dependent processes in solid-state NMR
such as sample rotation and non-synchronized radio fre-
quency irradiation.38,39 One has to be able to define
a single basic frequency as well as a cycle time of
the Hamiltonian. No single cycle time can be defined
if the two or more frequencies are incommensurate.
For instance, in the MAS experiments, the signal is
observed continuously with a time resolution much
shorter than the rotor period. Furthermore, because
sidebands appear at integer multiples of the basic fre-
quency of Nyquist frequency, they cannot be described
in the MAS spectra. They are folded back onto the cen-
tre band. A similar effect occurs with radiofrequency
irradiation where sidebands are neglected because there
are folded back onto the centre band.26,38,39,105,108–111

Therefore, the method of AHT cannot describe cor-
rectly the spectra obtained with MAS. Synchronized
experiments and stroboscopic observation after a full
cycle time are well described by the technique of AHT.

Recently, the validity of the AHT method was probed
for quadrupolar nuclei.36 The investigation showed that
the AHT method becomes less efficient to predict the
dynamics of the spin system as the quadrupolar spin
nuclei dimension increases. This is attributed to the
Hilbert space becoming very large and leading to the
contribution of non-negligible higher-order terms in the
Magnus expansion being truncated. For instance, con-
sidering a simple two-pulse sequence for refocusing the
quadrupolar Hamiltonian shown in figure 2, Mananga
et al.36 have shown that the ability of the AHT to pre-
dict the spin dynamics depends on the size of the spin
system.

3. Floquet Theory

The FLT introduced to the NMR community in the early
1980s simultaneously by Vega23 and Maricq22 is
another illuminating and powerful approach that offers
a way to describe the time evolution of the spin system
at all times and is able to handle multiple incommen-
surate frequencies. Floquet theory is an exact method
and does not imply any assumptions or approximavtions.
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This theory provides a more general approach
to AHT and is useful in discussing the conver-
gence of the expansion. The theory maps the
finite-dimensional time-dependent Hilbert space onto
an infinite-dimensional but time-independent Floquet
space.38–61 Floquet description requires an additional
Fourier space to describe the quantization of the
motional process. Matrix-based Floquet description
leads to a correct description of time-dependent Hamil-
tonians, including the side bands. The FLT approach
allows the computation of the full spinning side-
band pattern, which is of importance in many MAS
experimental circumstances to obtain information on
anisotropic sample properties. The FLT has been
applied satisfactorily to simple-spin systems, spin-pair
systems to study important NMR phenomena, including
rotational-resonance, composite pulse sequence design-
ing, field-dependent chemical shifts, cross-polarization
dynamics, two-dimensional solution NMR experi-
ments, and the dynamic characteristics of exchanging
spin systems. The general description of the FLT is
equally applicable to dipolar systems as well as to
quadrupolar nuclear spin systems. However, spin sys-
tems with large quadrupolar couplings may violate the
convergence conditions for the expansions employed
to evaluate the Floquet matrices. An important ques-
tion to answer is the level of extension the FLT can be
used in NMR without losing its conceptual framework.
The author and co-workers of the present study recently
have probed the validity of FLT for quadrupolar nuclei
including those with spin I=1, 3/2, 5/2, and 7/2 by ana-
lyzing a simple pulse sequence can also be beneficial
to the NMR community.36 While the FLT scheme pro-
vides a more universal approach for the description of
the full-time dependence of the response of a period-
ically time-dependent system, it is most of the time
impractical. Analytical calculations are limited to small
spin systems and it is difficult to get physical insight
from matrix representation.94,100 Matti Maricq obtained
results that show that the Floquet theory and the aver-
age Hamiltonian theory are equal for each of the first
two orders, but comparison of higher orders is more
difficult.22,26

The full Floquet Hamiltonian has an infinite dimen-
sion and it is often not very intuitive to understand
its implications on the time evolution of the spin sys-
tem. Matrices for multi-mode Floquet calculations
can become intractable. Massive reduction in dimen-
sionality by truncation of the Fourier dimensions
can introduce artefacts. In the literature, problems
with up to four frequencies have been treated, but
the demand of experiments that require four frequen-
cies for a full description is increasing. For instance,

non-cyclic multiple-pulse sequences like two-pulse
phase-modulated (TPPM) decoupling experiment
acquire four frequencies under double rotation (DOR)
and there are some other obvious problems with
more frequencies, such as triple-resonance CW radio
frequency irradiation under MAS.

3.1 Useful equations and Propagators

3.1a Operator-based Floquet theory38,39,94,100,148:
The Floquet operator formalism was introduced for
the development of broadband excitation pulses.148

Operator-based Floquet theory in solid-state NMR
gives the following results.

3.1a1 Single-mode Floquet Hamiltonian: we assume
a periodic time-dependent Hamiltonian that can be
expanded in a Fourier series of the form

Ĥ (t) =
∞∑

n=−∞

(n)Ĥ einωmt (38)

where ωm is the characteristic frequency and the oper-
ators (n)Ĥ can be viewed as Fourier coefficients of the
Hamiltonian with respect to this frequency. The effec-
tive Hamiltonian for a single-mode Floquet Hamilto-
nian can be obtained to different orders given by

Ĥ = (0)Ĥ − 1

2

∑
n�=0

[
(−n)Ĥ , (n)Ĥ

]
nωm

+ 1

2

∑
n�=0

[[
(n)Ĥ,(0)Ĥ

]
,(−n)Ĥ

]
(nωm)2

+ 1

3

∑
k,n�=0

[
(n)Ĥ ,

[
(k)Ĥ , (−n−k)Ĥ

]]
knω2

m

+ ... (39)

3.1a2 Bimodal Floquet Hamiltonian: we assume
a periodic time-dependent Hamiltonian that can be
expanded in a Fourier series of the form

Ĥ (t) =
∞∑

n=−∞

∞∑
k=−∞

(n,k)Heinωr t eikωmt (40)

where ωm and ωr are the characteristic frequencies and
the operators (n,k)Ĥ can be viewed as Fourier coeffi-
cients of the Hamiltonian with respect to these frequen-
cies. The effective Hamiltonian for a bimodal Floquet
Hamiltonian can be obtained to different orders given
by

Ĥ =
∑
n0,k0

(n0,k0)Ĥ −
∑
n0,k0

1

2

∑
ν,κ

[
(n0−ν,k0−κ)Ĥ , (ν,κ)Ĥ

]
νωr + κωm

+ ...

(41)
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with
n0ωr + k0ωm = 0 (42)

and
νωr + κωm �= 0. (43)

For bimodal Floquet problem, resonance phenomena
will always involve both frequencies.

3.1a3 Triple-mode Floquet Hamiltonian: we assume
a periodic time-dependent Hamiltonian that can be
expanded in a Fourier series of the form

Ĥ (t) =
∞∑

n=−∞

∞∑
k=−∞

∞∑
l=−∞

(n,k,l)Heinωr t eikωmteilωpt (44)

where ωm, ωr , and ωp are the characteristic frequencies
and the operators (n,k,l)Ĥ can be viewed as Fourier coef-
ficients of the Hamiltonian with respect to these fre-
quencies. The effective time-independent Hamiltonian
for a triple-mode Floquet Hamiltonian can be obtained
to different orders given by

Ĥ =
∑

n0,k0,l0

(n0,k0,l0)Ĥ

−
∑

n0,k0,l0

1

2

∑
ν,κ,λ

[
(n0−ν,k0−κ,l0−λ)Ĥ , (ν,κ,λ)Ĥ

]
νωr + κωm + λωp

+ ...

(45)

with
n0ωr + k0ωm + l0ωp = 0 (46)

and
νωr + κωm + λωp �= 0. (47)

For triple-mode and higher Floquet problems, reso-
nance conditions involving all frequencies as well as
involving only a subset of the frequencies are possible.
Such resonance conditions describe problems that are
partially resonant and partially non-resonant, depending
on the frequencies observed.

3.1b Matrix-based Floquet theory: The Floquet
Hamiltonian, the density operator, and the detector
operator are extensively given in the literature of NMR.
Some examples of the matrix-based treatment are given
in III.2.3.

3.2 Applications of Floquet theory

Several MAS NMR experiments on spin systems with
a periodically time-dependent Hamiltonian were exten-
sively discussed in the recent articles by Leskes et al.38

and Scholz et al.39 For many NMR experiments, under-
standing the spin dynamics requires a wise choice of

the interaction frame in which the Hamiltonian is pre-
sented. A transformation of the Hamiltonian to such
a frame often leads to periodic time dependences,
which can be removed by an additional transfor-
mation to the Floquet representation. After deriving
the Floquet Hamiltonian, the van Vleck transforma-
tion was applied to obtain an effective Hamiltonian.
Leskes et al.38 described all examples using the Floquet
operators introduced by Boender and co-workers.96

Leskes et al.38 and Scholz et al.39 applied the Floquet
theory to investigate numerous cases such as MAS,
rotational-resonance recoupling, CW irradiation on a
single spin species, DARR and MIRROR recoupling,
simultaneous CW irradiation on two different spin
species, phase-alternating (XiX) irradiation on a single
spin species, CW irradiation on one and XiX irradia-
tion on a second spin species, phase-modulated Lee-
Goldburg decoupling, C-type and R-type sequences,
TPPM decoupling, CSA spectra during MAS exper-
iments, recoupling under MAS (rotational resonance,
recoupling and decoupling with CW irradiation), het-
eronuclear decoupling, cross polarization, homonuclear
decoupling, quadrupolar nuclei, and dynamic MAS. Let
us present here the case of CW decoupling under MAS,
the multipole-multimode Floquet theory in NMR, and
the Floquet theory of NMR for a single spin.

3.2a CW decoupling: We consider again the het-
eronuclear decoupling in the doubly rotating frame of
the I and S spins. The truncated dipolar interaction and
the RF irradiation is given by84

H = dIZSZ + ω1IX + �ωIZ, (48)

where ω1 is the RF irradiation frequency along the X

axis of the I spin, �ω denotes the off resonance, and
the first term stands for the dipolar interaction. The
propagator is given by

U(t) = e−iH t = e(−iω1IXt)T e
(−i

t∫
0
H0(t1)dt1)

, (49)

where the relevant Hamiltonian in the toggling frame is
given by

H0(t) = A(IZ cos ω1t + IY sin ω1t) (50)

with

A = �ω + dSZ. (51)

Using eq. (39) of single-mode Floquet Hamiltonian
for simplicity reason and after lengthy calculation, the
average Floquet Hamiltonian for the first two orders is
found to be

H
(0)

F loquet = 0, (52)
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H
(1)

F loquet = A2

2ω1
IX, (53)

H
(2)

F loqet = A3

2ω2
1

IZ. (54)

The third-order Floquet expansion is too complicated,
and hence it is not calculated.

3.2b CW decoupling under MAS: We assume a two-
spin system, I-S with rf irradiation on the I spin. The
Hamiltonian describing this system, in the rotating
frame, is giving by

H(t) =
2∑

n=−2

ω
(n)

S einωr tSZ −
2∑

n=−2

ω
(n)

I einωr t IX

−
2∑

n = −2
n �= 0

ω
(n)

SI einωr t2SZIX + ω1IlZ (55)

The coordinate system of the I spin is tilted by 90◦

around the y axis such that the rf is along the z axis. The
transformation into an interaction frame with the rf:

H̃ (t) = e(iω1IlZt)H(t)e(−iω1IlZt) (56)

gives

H̃ (t) =
2∑

n=−2

ω
(n)

S e(inωr t)SZ

−
2∑

n=−2

ω
(n)

I e(inωr t)(
1

2
I+eiω1t + 1

2
I−e(−iω1t))

−
2∑

n = 2
n �= 0

ω
(n)

SI e(inωr t)2SZ(
1

2
I+eiω1t + 1

2
I−e(−iω1t))

(57)

The Fourier coefficients of the above Hamiltonian H̃ (t)

can be written:
(0,0)H̃ = ω

(0)

S SZ (58)

(n,0)H̃ = ω
(n)

S SZ (59)

(0,±1)H̃ = −ω
(0)

I

2
I± − ω

(0)

SI SZI± (60)

(n,±1)H̃ = −ω
(n)

I

2
I± − ω

(n)

SI SZI± (61)

(n,±2)H̃ = 0 (62)

The first index describes the rotation in real space
(MAS), while the second index describes the rotation in
spin space (interaction frame).

Decoupling is irradiation outside any resonance con-
dition, i.e., only n0 = 0 and k0 = 0 have to be
considered. The effective Hamiltonian is reduced to

Ĥ = (0,0)Ĥ − 1
2

∑
ν,κ

[
(−ν,−κ)Ĥ , (ν,κ)Ĥ

]
νωr + κωm

+ ...

= ω
(0)

S SZ

+ 1
4

∑
ν

(
ω

(ν)

I ω
(−ν)

I +ω
(ν)

SI ω
(−ν)

SI

νωr +ω1
IZ

+ω
(ν)

I ω
(−ν)

SI +ω
(ν)

SI ω
(−ν)

I

νωr +ω1
2SZIZ

)

− 1
4

∑
ν

(
ω

(ν)

I ω
(−ν)

I +ω
(ν)

SI ω
(−ν)

SI

νωr −ω1
IZ

+ω
(ν)

I ω
(−ν)

SI +ω
(ν)

SI ω
(−ν)

I

νωr −ω1
2SZIZ

)
Such a result cannot be obtained with average Hamilto-
nian theory without making assumptions about the ratio
of ω1 and ωr .

3.2c Multipole-multimode Floquet theory in NMR:
Nearly three decades ago, Sanctuary proposed the
multiple theory approach to describe spin dynamics
in NMR.139–141 The theory treats the spin dynam-
ics in the operator space (Liouville space) with an
explicit time-dependent density operator. The Sanctu-
ary approach has been successful in describing the
dynamic behaviour and it presents some limitation
when dealing with calculations that involve the exper-
imentally detectable magnetization. Furthermore, the
approach does not give insights into experiments that
involve relaxation such as polarization transfer exper-
iments or multiple-quantum NMR phenomena. Typi-
cally, the spin Hamiltonian is described by irreducible
tensor operators. However, the spin basis expressed in
terms of operators, which are also irreducible under
rotations, is still not yet a common practice.142–144 The
multipole formalism exploits this method to the extent
of applicability of multiple spins. Sanctuary et al.145

used the following notation for the density operator in
the multipole approach:

ρ(t) = 1
N∏

i=1
(2Ii + 1)

∑
k,q,α

�(k)
q (α, t)T (k)q(α), (64)

where α represents all the quantum numbers described
in the operator space.139 Similarly, the time-independent
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Hamiltonian of the system can be expressed on the same
basis as that of the density operator:

H =
∑
l,m,α

Clm(α)T
(l)m(α), (65)

where l and m denote the rank and component of the
tensor, respectively, with l ≤ 2 being the standard case
in NMR experiments. Clm(α) are coefficients in the eq.
(65) representing the interaction parameters (Zeeman,
dipole–dipole, and quadrupolar).

Substituting ρ(t) and H from eqs. (64) and (65) in
the following Liouville equation34–36

i
dρ(t)

dt
= [H, ρ(t)] , (66)

we obtain a set of differential equations,

i
d�(k)

q (α, t)

dt
=

∑
k′,q ′,α′

∑
l,m,α1

Clm(α1)T r
{
T (k)−q(α)

×L(l)m(α1)T
(k′)q ′

(α′)
}
�

(k′)
q ′ (α′, t)

(67)

where Llm(α1) = [
T lm(α1)

]
represents the Liouville

super-operator. Re-writing eq. (67) in the form of a
matrix, we have

i
d�(k)

q (α, t)

dt
= [A]kq,k′q ′ �

(k′)
q ′ (α′, t). (68)

�
(k′)
q ′ (α′, t) are the spin polarizations represented by col-

umn vectors. [A] is the tensor representing the super-
matrix whose elements can be calculated by using the
Wigner–Eckart theorem.146,147 Details in the evaluation
of the super-matrix can be found in the article.139

Consider the time-dependent Hamiltonians to solve
eq. (68). Floquet theory is appropriated to solve these
equations involving the time-dependent coefficients that
govern periodic time-dependent phenomena.

However, the application of Floquet theory to mul-
tiple spins and quadrupolar systems

(
I > 1

2

)
is very

often difficult due to the base employed (Fourier trans-
formation). The multipole-multimode Floquet theory
(MMFT) offers some possible extensions that yield
interesting results in the field of solid-state NMR. The
MMFT is useful for providing an intuitive understand-
ing of spin dynamics processes under synchronous and
asynchronous time modulations in solid-state NMR
experiments. Writing the time-dependent spin Hamil-
tonian, the density operator, and the Liouville super-
operator in Fourier expansions, we have139

H(t) =
∞∑

n1→m=−∞
Hn1→m

eit ω.n, (69)

ρ(t) =
∞∑

n1→m=−∞

∑
k,q,α

�(k)
q,n1→m

(α, t)T (k)q(α)eitω.n (70)

and

L(t) =
∞∑

n1→m=−∞
L(α1)

(l)m
n1→m

eitω.n (71)

The following notations were used: n1→m = n1, n2, ...,

nm, An1→m
= An1,n2,...,nm

, ω = {ω1, ω2, ..., ωm}, n =
{n1, n2, ..., nm}, and ω.n = ω1n1+ω2n2+...+ωmnm. ni ,
and ωi correspond to the Fourier index and frequency
associated with a particular time modulation, respec-
tively. The notation L(α1)

(l)m

n1→m−n′
1→m

includes the inter-

action coefficients as well as the spin and Fourier
operators. The substitution of eqs. (70) and (71) in
the Liouville equation produces the following set of
coupled differential equations:

i
d�(α, t)(k)

q,n1→m

dt
=

∞∑
n′

1→m=−∞

∑
k′,q ′,α′

∑
l,m,α1(

T r
{
T (k)−q(α) × L(α1)

lm
n1→m−n′

1→m
T (k′)q ′

(α′)
}

+ (n.ω)δ
)

�(α′, t)(k′)
q ′,n′

1→m
.

(72)

Re-writing the eq. (72) in matrix notation, we have

i
d�

(k)
q,n1→m

(α, t)

dt
= [ [A]kq,k′q ′ ]n1→m,n′

1→m

× �
(k′)
q ′,n′

1→m

(α′, t), (73)

where [ [A]kq,k′q ′ ]n1→m,n′
1→m

represents the super-matrix
defined in the infinite dimensional Floquet–Liouville
space. The Floquet density operator and the Hamilto-
nian operator can be written as

ρF (t) =
∞∑

n1→m=−∞

∑
k,q,α

�(k)
q,n1→m

(α, t)T (k)q(α)F 1
r1
F 2

r2
...F m

rm
,

(74)

HF =
∞∑

r1→m=−∞

∑
k,q,α

T (k)q(α)F 1
r1
F 2

r2
...F m

rm
+

m∑
i=1

ωiN
i.

(75)
HF corresponds to the Floquet Hamiltonian. This Flo-
quet Hamiltonian is constructed from the direct product
of operators defined by the spin (T (k)q) and the Fourier
dimensions (F m

rm
) corresponding to mth time modula-

tion. The indices q and rmrepresent the off-diagonality
in eqs. (74) and (75). The approach presented here pro-
vides a more intuitive and analytical understanding of
spin dynamics processes in spite of spanning infinite
dimensionality of the problem. An analytical solution
given in the form of effective Hamiltonians derived
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from contact or van Vleck transformation procedure can
substantiate this formalism.139

3.2d Bloch–Siegert shift: It is valuable to give a sim-
ple application of a Floquet Hamiltonian in the cal-
culation of Bloch–Siegert shift in solid-state NMR.
We examine a single spin in a strong magnetic field
undergoing an RF irradiation. The Hamiltonian in the
laboratory frame with an on-resonance RF irradiation is
given by

HLab(t) = 2ω1 cos(ωRF t)IX + ω0IZ, (80)

where ω0 is the Larmor frequency of the simple spin,
ωRF is the off-resonance value, and ω1 is the nutation
frequency. For a single spin-1/2, the matrix representa-
tion by Pauli matrices is written as

HLab(t) = 1

2

(
ω0 2ω1 cos(ωRF t)

2ω1 cos(ωRF t) −ω0

)
.

(81)
Using the formula cos(ωRF t) = e(iωRF t)+e(−iωRF t)

2 , we
can write the Fourier expansion of time-dependent
Hamiltonian as

HLab(t) = 1

2

(
ω0 0
0 −ω0

)
+ 1

2

(
0 ω1

ω1 0

)
e(iωRF t)

+1

2

(
0 ω1

ω1 0

)
e(−iωRF t) (82)

and construct the Floquet Hamiltonian from Fourier
coefficients.83 The approximation by a two-level system
equal to

HLab(t)= 1

2

(
ω0 − ωRF + ω2

1

4ωRF
ω1

ω1 −(ω0 − ωRF + ω2
1

4ωRF
)

)
(83)

which gives the following resonance offset and RF irra-
diation, and the well-documented Bloch–Siegert shift

H = (ω0 − ωRF )IZ + ω1IX + ωR

(
ω1

2ωRF

)2

IZ. (84)

Alternatively, Vega’s group38 has recently provided an
interesting review of the Floquet theory on the Bloch–
Siegert shift. The ωRF frequency was set equal to ω0 in
order to work with a simple form of a Floquet Hamil-
tonian. For simplicity reasons, the Hamiltonian in the
laboratory frame has the form

HLab(t) = −2ω1 cos(ω0t)IX + ω0IZ. (85)

The Hamiltonian in the toggling frame has a constant
part and a time-dependent part expressed as

H̃ (t) = −ω1IX − ω1

2
I−e(i2ω0t) − ω1

2
I+e(−i2ω0t) (86)

which can be represented in the Fourier space by

H̃ F (t) =
∑

n=0,±2

HnF
Z
n e(inω0t), (87)

with
H0 = −ω1IX, (88)

H±2 = −ω1

2
I∓ (89)

where F Z
n are the ladder operators in the Zeeman

interaction frame. The Floquet representation can be
obtained from the above Fourier space.

HF = e(−iω0N
Zt)
{
H̃ F (t) + ω0N

Z
}

e(iω0N
Zt)

=
∑

n=0,±2

HnF
Z
n + ω0N

Z (90)

where NZ is the number operator in the Zeeman frame.
The knowledge of the effective Hamiltonian is impor-
tant to understand how the pulse sequence work. Using
the van Vleck transformation (VVT) to diagonilize the
Floquet Hamiltonian,

S
(1)

F = −i
ω1

2

(
I−

2ω0
F2+ − I+

2ω0
F2−

)
, (91)

the effective Hamiltonian to first order can be
obtained,38

Heff
∼= H

(0)

eff + H
(1)

eff (92)

H
(0)

eff = −ω1IX (93)

and

H
(1)

eff = − ω2
1

4ω0
IZ (94)

The first-order correction term is the Bloch–Siegert
shift, and is negligible in most of NMR experiments.

3.3 Advantages and limitations

Floquet theory delineates the finite-dimensional time-
dependent Hilbert (or Liouville) space onto an infinite-
dimensional but time-independent Floquet space.94

Floquet theory is an exact method and does not imply
any assumptions or approximations. The expressions
of the effective Hamiltonian in the spin-Hilbert space
without detailed knowledge of the structure of the spin
Hamiltonian can be calculated. Results of the operator-
based Floquet theory are given above in the useful
equations and propagators’ subsection (III.1). Operator-
based Floquet theory can be easily broadened to mul-
tiple incommensurate frequencies with expressions that
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are independent to the complete structure of the spin–
Hilbert–space Hamiltonian. This operator can be used
to study systems with many spins as long as the commu-
tators can be calculated. However, this operator cannot
investigate resonance conditions that involve concomi-
tant or synchronous transition in Fourier space and
spin space. Matrix-based Floquet description provides
a precise description of time-dependent Hamiltonians
including the sidebands. The matrix representation
and analytical calculations are limited to small spin
systems. For multi-mode Floquet calculations, the
matrices can become very large, and then require
truncation of the Fourier dimensions that introduce
artefacts.

4. Fer expansion

The Fer expansion is an alternative to the Magnus
expansion and was proposed by Fer more than half
a century ago to the study of systems of differen-
tial equations.63,180–185 Because the Fer approach was
less known in the scientific community until recently,
several information relevant to this expansion have
been misleading.185 For instance, Wilcox in his semi-
nal paper on perturbation theory associated Fer’s name
with an infinite-product expansion, which is instead
a continuous analogue of the Zassenhaus formula.180

The past two decades and half have witnessed a
renewed interest in the Fer expansion, which con-
tinues till date.44,180,183,185 Different directions have
been followed. In 2001, Zanna181 introduced a sym-
metric version of the Fer expansion by showing that
the schemes are time-symmetric for linear problems.
While Zanna’s general procedure is more complicated
than the classical Fer expansion, it prevents numer-
ous advantages such as time-symmetric for linear prob-
lems. In 2004, Suying and Zichen presented an algo-
rithm based on Fer’s expansion for numerically solving
generalized Hamiltonian systems using the Lie trans-
formation technique.90 Furthermore, these two authors
extended their algorithm to any nonlinear dynamic sys-
tem. Recently, Madhu and Kurur introduced the Fer
expansion to the NMR community.182 For the pur-
pose of illustration, Madhu and co-worker applied the
Fer expansion to two simple cases: the Bloch–Siegert
shift and the heteronuclear dipolar decoupling.63 This
approach is still in its infancy in the NMR commu-
nity; therefore, more effort is required to permit the Fer
approach to defeat complications including studies that
involve non-periodic and non-cyclic cases.186–188

As performed for the Magnus expansion, Blanes and
co-workers extended the similar analysis to the Fer
expansion.168 These authors attached a matrix factor to

the exponential (eq. (3)), and presented the solution in
the form

U(t) = exp(−
t∫

t0

iH(t ′)dt ′)M(t, t0)U0. (95)

The expansion gives an iterative multiplicative prescrip-
tion to find M(t, t0).

4.1 Useful Equations and Propagator

The formalism of the Fer expansion expresses the
solution to the differential time-dependent Schrodinger
equation in the form of an infinite-product of series of
exponentials as62

U(t) =
∞∏

k=1

eFk(t) = eF1(t)eF2(t).... (96)

In the above solution, the argument of the exponential
is written as

F1 = −i

t∫
0

dt ′H(t ′) (97)

and the first-order correction Hamiltonian, which dif-
fers from that obtained with Magnus expansion, is given
by

H 1
F = e−F1(t)HeF1(t) −

1∫
0

dxe−xF1(t)HexF1(t). (98)

After n iterations, Madhu and co-workers obtained the
following results:

Fn = −in

t∫
0

dt ′H(n−1)

F (t ′), (99)

H
(0)

F = H, (100)

H
(n)

F = −1

2

[
Fn,H

(n−1)

F

]
+ 1

3

[
Fn,

[
Fn,H

(n−1)

F

]]
+ ...

(101)
where n = 1, 2, 3, .... Eq. (101) shows a series of
nested commutators in the expression of H

(n)

F . The dis-
similarity between the Fer expansion and the Magnus
expansion stems from the structure of the correction
expressions.

The Fer expansion with respect to eqs. (96)–(101)
allows the calculation of the results (eqs. (105)–(112)),
which involves a series of nested commutators result-
ing in eq. (106). The results of F1 obtained for chemical
shift, dipolar, and quadrupolar interactions are similar
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to the average Hamiltonian, H , in the sense of the Mag-
nus expansion under the following circumstances:65

F1(τC)

τC

= H, (102)

where τC is the cyclic time (period of H). The result
of eq. (97) and the knowledge of the Hamiltonian H(t)

in the Fer approach leads to a straightforward calcu-
lation of eq. (101). H

(1)

F is the time integral function,
which is used in the calculation of F2. The iteration
process can continue easily when the initial values of
Fn(t) and H

(n)

F are found. One major advantage of the
Fer expansion over the AHT (Magnus expansion) is that
only an evaluation of nested commutators is required in
the calculation of H

(n)

F (eq. (101)). The Magnus expan-
sion requires the calculation of nested commutators and
their integrals to obtain the correction terms of a Hamil-
tonian. Blanes et al.44,167,169,172 had proved the conver-
gence of the Fer expansion and showed that the con-
vergence of Fer expansion is much faster than that of
Magnus expansion. Blanes and co-workers studied the
convergence and error bounds for Fer’s expansion.167

The authors obtained various bounds for Fer (ξ =
0.8604065) and Magnus (ξ = 1.086869) expansions.
These results widen the range ξ = 0.628 originally
given by Fer,63 and the range ξ = 0.693147 given by
Pechukas and Light regarding the Magnus expansion.189

An upper bound appears already in Fer’s original paper.
Because for a prescribed precision, more 
′

ks (Mag-
nus argument) are needed than F ′

k (Fer argument);167

hence, in this sense, the Fer expansion converges more
rapidly. Furthermore, in the Fer expansion, each argu-
ment of the exponentials contains infinity of orders in
the expansion parameter, which could greatly favour its
convergence rate. Note that Blanes and co-workers used
different arguments than those used by Fer,63 Pechukas
and Light.189 Madhu and Kurur62 also highlighted the
observations such that the calculation of a term like H

(1)

F

will contain several of the important signatures of the
various higher-order terms in Magnus expansion, where
all terms need to be calculated independently. In addi-
tion, they mentioned that the calculation of the infinite
number of commutators in Eq. (101), although appears
imposing, may turn out to be simpler to handle in most
experimentally interesting cases due to the fast conver-
gence and the negligible value of many of the commu-
tators. Both approaches (Fer and AHT) may be com-
plementary and provide solutions to the time-dependent
Schrodinger equation:

dU

dt
= −iH(t)U(t). (103)

However, the Fer expansion expresses the propaga-
tor in the form of an infinite-product of a series of
exponentials given by Eq. (96).

4.2 Applications of Fer expansion

4.2a Bloch–Siegert Shift: In an article by Haeberlen,31

the untruncated rotating frame Hamiltonian during an
on-resonance RF irradiation with HRF = −2ω1IX

cos(ωt + φ) is giving by

H = Hon
R (t) = −�ωIZ − ω1 [IX cos φ + IY sin φ]

−ω1 [IX cos(2ωI t − φ) + IY sin(2ωI t − φ)]

(104)

where ωI is the Larmor frequency of the I spins.31,87

�ω is the off-resonance value, and ω1 is the RF nutation
frequency. The period of Hon

R (t) is τC = π

ωI
. A direct

integration of eq. (97) gives

F1 =
t∫

0

Hdt = −�ωIZt − ω1t [IX cos φ − IY sin φ]

− ω1

2ωI

{IX [sin(2ωI t − φ) + sin φ]

+IY [cos(2ωI t−φ)−cos φ]} . (105)

Using eq. (101), we can calculate the expression for
H

(1)

F with the relation H
(0)

F = H .

H
(1)

F =
∞∑

k=1

(−1)kk

(k + 1)!
{
F k

1 (t),H
}
. (106)

In eq. (106), the repeated commutator bracket{
F k

1 (t),H
}

is defined by88

{
F 0

1 (t),H
} = H (107)

and {
F n+1

1 (t),H
} = [F1(t) ,

{
F n

1 (t),H
}]

(108)

The first commutator of eq. (106) is − 1
2

[F1(τC),H ].
The computed coefficient term of (−IZ) is the well-
documented Bloch–Siegert shift given by ωI(

ω1

2ωI
)2.

4.2b Heteronuclear dipolar decoupling: Haeberlen31

and Ernst87 presented the Hamiltonian in the doubly
rotating frame of the I spin by

H(t) = dISSZ(IZ cos ω1I t − IY sin ω1I t)

−�ω(IZ sin ω1I t − IY cos ω1I t) (109)

where dIS is the dipolar coupling constant. �ω is the
off-resonance value, and ω1I is the nutation frequency
of the RF irradiation on the I spins. H(t) is the periodic
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Hamiltonian with period τC = 2π

ω1I
. A direct integration

of eq. (97) results in

F1(t) =
t∫

0

Hdt = 1
ω1I

dISSZ(IZ sin ω1I t + IY cos ω1I t)

−�ω

ω1I
(IZ cos ω1I t + IY sin ω1I t) + 1

ω1I
dISSZIY − �ω

ω1I
IY

.

(110)
From eq. (110) and from the evaluation of the first com-
mutator given by − 1

2
[H,F1(τC)], both Madhu et al.62

and Haeberlen31 obtained the result

H
(1)

F
∼= − 1

2ω1I

d2
ISS

2
ZIX+�ω

ω1I

dISSZIX−�ω2

2ω1I

IX (111)

Madhu et al.62 obtained the expression of H
(1)

F for the
second commutator in eq. (101) when dealing with on-
resonance conditions

H
(1)

F
∼= − 1

2ω1I

d2
ISS

2
ZIX + 1

6

d3
ISS

3
Z

ω2
1I

IZ. (112)

In eq. (112), the second term on the right-hand side
is derived within the first-order correction in the case
of Fer expansion, while in the case of AHT, this term
corresponds to the second-order correction term.

4.2c Interactions in solid-state NMR when irradiated
with magic echo pulse sequence: Using the Fer expan-
sion, one can easily calculate the integrations of the
toggling frames of the various Hamiltonians described
above to obtain the function F1(t). The following
results are obtained for the chemical shift, dipolar and
quadrupolar interactions.64

F1(CS)(t) = 2�ω

ωRF

Ix(cos ωRF t−1)+ �ω

ωRF

[−Ix(sin ωRF t

+ sin ωRF (t−ξ)+sin ωRFξ)+Iy(−cos ωRF t

+1 − cos ωRF (t − ξ) + cos ωRFξ)] (112)

F1(D) = 2ωD(3IzIz − I.I)t

+ ωD

ωRF

{3IzIz

(
1

2
sin 2ωRF t + ωRF t

)
+IxIx

(
−1

2
sin 2ωRF t + ωRF t

)
− 4ωRF I.It

+3

2
IxIx

(
1

2
sin 2ωRF t + ωRF t

+1

2
sin 2ωRF (t − ξ) + ωRF (t − ξ)

)
+

+3

2
IyIy

(
−1

2
sin 2ωRF t + ωRF t

−1

2
sin 2ωRF (t − ξ) + ωRF (t − ξ)

)
−3

4
(IxIy + IyIx)(cos 2ωRF t + cos 2ωRF (t − ξ))}

(113)

F1(Q) =ωQ(12Iz,1Iz,1 + 24Iy,1Iy,1 − 9I.I)t

+ ωQ

2ωRF

{(12Iz,1Iz,1 + 12Iy,1Iy,1 + 24Ix,1Ix,1)(
1

2
sin 2ωRF t+ωRF t

)
+(12Iz,1Iz,1+24Iy,1Iy,1

+12Ix,1Ix,1)

(
−1

2
sin 2ωRF t + ωRF t

)
12Ix,1Ix,1

(
1

2
sin 2ωRF (t − ξ) + ωRF (t − ξ)

)
+12Iz,1Iz,1

(
−1

2
sin 2ωRF (t−ξ)+ωRF (t−ξ)

)
−6(Iy,2+Iz,2) cos 2ωRF t+6Iy,2 cos 2ωRF(t−ξ)}

(114)

where
ξ = 2τ − α. (115)

To proceed further, H(1)

F can be computed using the
value of F1(t). The iteration process can continue
easily when the initial values of Fn(t) and H(n)

F are
calculated.64

While the Magnus expansion is now well developed
and has been successfully applied to NMR, the Fer
expansion instead has had an odd history. Unlike the
Magnus expansion, which has had a persistent impact
in the scientific literature since the 1954 seminal paper
by Magnus, much less attention has been paid to the
Fer expansion. From the 1958 seminal paper of Fer,63

the work by Klarsfeld and Oteo in 1989185 seems to be
the first application of the Fer expansion to any phys-
ical problem. The authors applied the FE to two sim-
ple problems of physical interest: the time-dependent
forced harmonic oscillator and a particle of spin-1/2 in a
constant magnetic field.185 Some authors misquoted the
seminal Fer paper (1958) as a reference for the Mag-
nus expansion.190 Other authors associated Fer’s name
with an alternative approach.88 In NMR for instance, it
is only recently (2006) that a tentative of introduction
of the FE to the NMR community was done by Madhu
and Kurur.62 Unlike the FE, instead the Magnus expan-
sion was introduced to NMR nearly half a century ago.
Eqs. (112)–(115) are the results from a limited endeav-
our to present the Fer expansion for the computation of
effective Hamiltonians.62

4.2d Fer Expansion as Numerical Integrator: The
Fer expansion can also be applied as a numerical
method to solve eq. (2). Imitating the same three-steps
methodology as previously done for the case of Magnus
expansion, the Fer expansion inspection comes to

Fk(h) = O(h2k−1) (116)
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where
k = 1, 2, ... (117)

The functions F1, F2 serve to construct methods up to
order six in h44. The methodology of the Fer expan-
sion as numerical integrator is similar to the Magnus
expansion with the difference that a fourth-order Fer
integrator yields

un+1 = exp(−iH (0)) exp(−i
[
H(1), H (0)

] − i

2

[
H(0),[

H(0), H (1)
]]

)un. (118)

4.3 Advantages and Limitations

The Fer expansion180–185 is a sophisticated approach
that involves the product of exponentials for the
computation of effective propagators and effective
Hamiltonians in time-dependent problems, which are of
a regular phenomenon in solid-state NMR. In the Mag-
nus expansion, the evaluation of nested commutators
and their integrals is required to compute the correc-
tion terms of a Hamiltonian. However, the Fer expan-
sion needs only the evaluation of nested commutators.
The computation of the infinite number of commuta-
tors, although appearing impressive, may turn out to be
straightforward to manipulate in most experimentally
fascinating cases due to the rapid convergence and the
minor value of many of the commutators. The rapid
convergence of the Fer expansion can be explained by
its lower bounds compared to the Magnus expansion.73

This has been highlighted previously (section IV.1.).
Furthermore, the Fer expansion can also be used as
a numerical method for solving the time-dependent
Schrodinger equation.

5. Floquet–Magnus expansion

Recently, Mananga and Charpentier introduced the
Floquet–Magnus expansion approach to nuclear mag-
netic resonance.18,82 The approach was developed by
Casas and co-workers166 as a Magnus expansion well
suited for the Floquet theory of linear ordinary differ-
ential equations with periodic coefficients. This method
is unique in spin physics and useful to shed new
light on AHT and FLT.18–28,44,166–185 The FME scheme
is a new theoretical tool that explains spin dynam-
ics in solid-state NMR. Furthermore, the FME is
an extension of the popular Magnus expansion and
average Hamiltonian theory and calculations could
be developed in a finite-dimensional Hilbert space
instead of an infinite-dimensional space within the
Floquet theory. This approach governs the spin dynamic
systems in solid-state NMR and makes use of its unique

solution that has the required structure and evolves in
the desired Lie group. All three theoretical approaches
(AHT, FLT, and FME) are equivalent in the first order,
which corresponds to the popular average Hamiltonian.

H
(0)

AHT = H 1
eff (FT ) = H1(FME) = H0. (119)

The FME approach can be considered an improved
AHT or a new version of FLT, which could be very
useful in simplifying calculations and providing a more
intuitive understanding of spin dynamics processes.
The FME is essentially distinguished from other the-
ories with its famous function �n(t) (n = 1, 2, 3, ..),
which facilitates the evaluation of the spin behaviour
in between the stroboscopic observation points. The
�n(t) functions represent the nth-order term of the
argument of the operator that introduces the frame
such that the spin system operator is varying under the
time-independent Hamiltonian F . Therefore, the
function �n(t) can be viewed as the argument of the
operator that introduces the frame that varies under
the time-independent Hamiltonian F . The relationship
with the regular Magnus expansion can be obtained
from18


(T )

T
= e−i�(0)F ei�(0). (120)

Eq. (120) points out that it is only in the case

�(0) = 0, (121)

that the FME gives the AHT as provided by the ME. Eq.
(120) is the general approach of the AHT called FME,
which gives also the option of

�(0) �= 0. (122)

The function �n(t) is connected to the appearance of
features such as spinning sidebands in MAS. The FME
general formulas are given in the next section.18 The
evaluation of �n(t) is useful in many different ways
such as in rotating experiment of NMR. The �n(t) func-
tion can be used to quantify the level of productiv-
ity of double quantum terms.84,85 The Floquet–Magnus
expansion is more appropriate for sample-spinning
experiments. The technique of AHT was found to be
less descriptive for rotating systems that were more
conveniently described using Floquet theory.45 Like the
FLT, the FME describes the time evolution of the spin
system at all times. In the article by Mananga and
Charpentier,18 we showed that the lowest-order term F1

as provided by AHT, FLT, and FME is identical. Next,
using the FME, we computed for each interaction the
first-order function (�1(t)) that provides an easy way
for evaluating the spin system evolution. This function
�1(t) is connected to the appearance of features like
spinning sidebands in MAS. The evaluation of �1(t) is
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important for the analysis of the non-stroboscopic evo-
lution. The same article by Mananga et al.18 showed
that the second order (�2(t)) is small in comparison to
the first order (�1(t)), and will be less useful in many
cases. The function �1(t) is available only in the FME
approach. It could be used to explain the spin dynamics
in solid-state NMR.

5.1 Useful Equations and Propagators

Considering the initial conditions to be �(0) = 0
(i.e., P(0) = I ), Blanes and co-workers derived
explicitly the first set of Floquet–Magnus expansion
equations.44,66,166 These equations are now considered
to be a particular case (�(0) = 0) of a more general
representation of the FME with �(0) �= 0. The general
formula for the contribution of the FME is given by18

�n(t) = �n(0) +
t∫

0

Gn(x)dx − tFn, (123)

with

Fn = 1

T

T∫
0

Gn(x)dx. (124)

The first-order contributions to the FME give explicitly

G1(x) = H(x), (125)

G2(x) = − i

2
[H(x) + F1,�1(x)] , (126)

G3(x) = − i

2
[H(x) + F1,�2(x)] − i

2
[F2,�1(x)]

− 1

12
[�1(x), [�1(x),H(x) − F1]] (127)

Symbolic calculation software can enable formal
derivation of higher-order terms. In the above equa-
tions (eqs. (123–127)), the �n(t) functions with n =
1, 2, 3, .. , represent the nth-order term of the argu-
ment of the operator that introduces the frame such
that the spin system operator is varying under the time-
independent Hamiltonian F . This function (�n(t)) can
be useful to quantify the level of productivity of dou-
ble quantum terms such as in the article.66,67 The FME
propagator is given by

U(t) = P(t) exp {−itHF } P +(0). (128)

Here the constraint of stroboscopic observation is
removed. P(t) is the operator that introduces the frame
that varies under the time-independent Hamiltonian

HF . The function �(t) given explicitly above is the
argument of the operator P(t) such that

P(t) = exp {−i�(t)} . (129)

5.2 Applications of the Floquet–Magnus expansion

5.2a Simple cases:

5.2a1 Common form of a Hamiltonian in solid-
state NMR: Here, we revisited the static perturbation
theory,18,68,81 which has been shown to yield the cor-
rect form of Zeeman-truncated NMR interactions with-
out the limit of stroboscopic observation of the AHT.
This gave us the opportunity to shed light on the FME
scheme and the derivation of a criterion for the two
theories being compatible.

For the sake of simplicity, let us consider the
Hamiltonian

H = ω0IZ + λ
∑

m

(−1)mR2,−mT2,+m (130)

where ω0IZ is the Zeeman interaction, R2,m are the lat-
tice parts of the internal interaction which encode its
orientational dependence with respect to the magnetic
field, T2,m are second-rank m-order spherical tensor
describing the spin system as defined by

[
IZ, T2,m

] =
mT2,m. The static perturbation theory (SPT) in terms
of the irreducible tensor operators gives the diagonal
Hamiltonian (with respect to ω0IZ)

HSPT = ω0IZ + λR2,0T2,0

+ λ2

2ω0

∑
m�=0

R2,mR2,−m

m

[
T2,m, T2,−m

]
. (131)

Goldman 68 discussed the discrepancies between AHT
and FT in the rotating frame representation where the
Hamiltonian becomes time-dependent such as

H̃ (t) = e+iω0IZtHe−iω0IZt = λ
∑

m

(−1)mR2,−mT2,meim ω0t .

(132)
The above FME eqs. (123) and (124) produce the first-
order terms

F1 = λR2,0T2,0 (133)

�1(t) = λ
∑
m�=0

(−1)m
R2,−mT2,+m

imω0
eim ω0t (134)

whereas the AHT (stroboscopic detection) produces18

�1(t) = λ
∑
m�=0

(−1)m
R2,−mT2,+m

imω0
(eim ω0t − 1) (135)
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Also, the FME scheme18 gives identical results for the
second-order term as the SPT theory

F2 = λ2

2ω0

∑
m�=0

R2,mR2,−m

m

[
T2,m, T2,−m

]
. (136)

This is proof that FME provides an expansion in
the rotating frame, which is in agreement with the
static perturbation theory and Van Vleck transforma-
tions. However, this is different for the Magnus expan-
sion. The agreement can be viewed as the connection
between the FME and SPT propagators as explained in
the original article.18

5.2a2 Extension to multimode Hamiltonian: The
application of FME to multimode Hamiltonian with
frequencies �ω = (ω1, ..., ωN) is straightforward.
Considering the generalized Fourier expansion of the
Hamiltonian ( �ω = (ω1, ..., ωN) represented by the
frequency indices)

H(t) =
∑

�m
H �m exp(−i �m. �ωt) (137)

we obtain

�1(t) =
∑
�m. �ω �=0

H �m
i �m. �ωe−i �m. �ωt (138)

and
F1 =

∑
�m. �ω=0

H �m. (139)

Similarly, the computation of the second-order terms
is straightforward.18 These expressions highlight the
fact that the multimode Hamiltonian case can be easily
treated in Hilbert space with the FME.

5.2b Investigation of the Effect of Finite Pulse Errors
on BABA Pulse Sequence: The basic BABA pulse
sequence shown in figure 4 is built as[(

900
X − τR

2
− 900

X

) (
900

X − τR

2
− 900

Y

)]
,

where the 90◦ pulses in the middle of the pulse sequence
and between different cycles are placed Back-to-Back
(BABA). As shown below, the timing of the BABA

Figure 4. BABA pulse sequence with δ − pulse width.

sequence is important for full synchronization of the
sample rotation that can generate a pure DQ Hamilto-
nian. Using the FME, we calculated the degree to which
the dipolar Hamiltonian leads to the maximum strength
of the DQ Hamiltonian as a result of irradiating an
ensemble of dipolar-coupled spin-pairs with the basic
and the broadband BABA pulse sequence acting on τR.
The BABA pulse sequence acting on one rotor period
τR is constructed from four rf pulses, with flip angles{

π

2 , π

2 , π

2 , π

2

}
and rf phases {X,−X, Y,−Y }.

In figure 5, the relation θX(t) = 1 − θY (t) is valid
only during the interval where θ(t) acted. We inves-
tigated the finite-pulse-widths effects for the BABA
pulse sequence using the Floquet–Magnus expansion
approach.67,102 We studied the case m = 1and consid-
ered a system of two spins. Only DQ terms are consid-
ered for the function �1(t). We considered the simple
case where the rotations are:

αij = βij = γ ij = 0.

The coefficient Cij
n are C1 = −1√

3
sin(θ) cos(θ)e−iφ ,

C−1 = 0, C2 = 1
(2

√
6)(sin2(θ)e−2iφ )

, C−2 = 0. For example,

with θ = π

4 and φ = 0, the coefficients are C1 = −1
2
√

3

and C2 = 1
4
√

6
. The function �1(t) is written as

�1(t) = 3

2
√

6
bij[

a−1C1(
τ + 4τp

2
)ψ + a−2C2(

τR + 4τp

2
)ψ

]
(IYY −IXX)

(140)

where

ψ = t

τR

, (141)

φ = 2τp

τR

(142)

a−1 = −1

2πi
e−iπ(1+φ)

[
e−iπ(1−2φ) − 1

]
. (143)

and

a−2 = −1

4πi
e−i2π(1+φ)

[
e−i2π(1−2φ) − 1

]
(144)

which lead to

�1(ψ, φ)

bij τR

= 3

2
√

6
(−a−1+ 1

2
√

2
a−2)(

1

2
+φ)ψ(IYY−IXX)

(145)
As reported by Mananga and Reid,67 we considered the
case, 0.1 ≤ φ ≤ 0.606, which corresponds to the spin-
ning frequencies ωR

2π
= 5−10kHz, and to the recoupling

RF fields ωRF

2π
= 25−50 kHz. We generated two types of

plots from eq. (145). First, the plot of the function �1(t)

bij τR
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Figure 5. BABA pulse sequence with finite pulse width.

a) For b)  For  and 

Figure 6. Numerical Functions of Finite Pulse BABA Sequence with �1(t)

bij τR
versus ψ = t

τR
.

versus ψ = t

τR
, with φ = 2τp

τR
kept constant, corresponds

to figure 6. The plot of �1(t)

bij τR
versus φ = 2τp

τR
, while

keeping the time t constant, corresponds to figure 7.

5.2b1 Analysis of Figures: Figure 6 (a) is a plot
of the dimensionless function �1(t)

bij τR
for BABA pulse

sequence with finite pulse widths versus the dimension-
less number ψ = t

τR
, for φ = 0.1. Figure 6 (b) is the

plot of the same function �1(t)

bij τR
versus ψ = t

τR
, for the

two cases: φ = 0.1 and φ = 0.606. Due to the com-
plexity of the function �1(t)

bij τR
, we plotted the real, imag-

inary, and absolute parts separately as a function of ψ .
In figure 6 (b), the symbols ‘square’, ‘plus’, and ‘hexa-
gram’ represent the real, imaginary, and absolute parts,
respectively, of the function �1(t)

bij τR
for φ = 0.606. These

functions depend on the DQ terms. Therefore, the inves-
tigation of the amplitude of DQ terms can be considered

as a viable approach for controlling the complex spin
dynamics of a spin system evolving under the dipolar
interaction of BABA pulse sequence with finite widths.
The plot represents a quantitative aspect of the ampli-
tude of the DQ coherence as a function of ψ . The size
of the function �1(t)

bij τR
determines the amplitude of the DQ

coherence, which indicates the degree of efficiency of
the scheme. A closer look at figures 6 and 7 (BABA
with finite pulse widths) compared BABA with delta-
pulse sequences66 shows that the magnitude of the DQ
terms of BABA with finite pulses is small compared to
the magnitude of BABA with δ − pulse sequences,∣∣∣∣�1(t)

bij τR

∣∣∣∣
f inite−pulse

<

∣∣∣∣�1(t)

bij τR

∣∣∣∣
δ−pulse

(146)

as expected. Figure 7 (a) shows the plot of the func-
tion �1(t)

bij τR
for BABA pulse sequence with finite pulse
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a) For t = 1 ms b)    For t = 1 ms and t = 2 ms

Figure 7. Numerical Functions of Finite Pulse BABA Sequence with �1(t)

bij
versus φ = 2τp

τR
.

widths versus the dimensionless number φ = 2τp

τR
, for

t = 1 ms. Figure 7 (b) shows the plot of the same func-
tion �1(t)

bij
versus φ = 2τp

τR
for the two cases: t = 1 ms

and t = 2 ms. As with figure 6, due to the complex-
ity of the function �1(t)

bij
, real, imaginary, and absolute

parts are plotted separately as functions of φ. In
figure 7 (b), the symbols ‘square’, ‘plus’, and ‘hexa-
gram’ represent, respectively, the real, imaginary, and
absolute parts of the function �1(t)

bij
for t = 2 ms. These

functions depend on the DQ terms. We remark that,
when φ = 2τp

τR
increases, the magnitude of the double-

quantum terms decreases, as expected. When φ → 0,
the magnitude of the DQ term maximum, which cor-
responds to the delta-pulse sequence. However, when
φ = 0.5 corresponding to τp = τR

4 , we have �1(t)

bij
= 0.

The strength of the DQ terms decreases, cancels and
builds up again. This dynamic predicts that a full decou-
pling is possible, which occurs at φ = 0.5. The plot of
the magnitude of the double quantum term of �1(t) as
a function of the pulse length gives a basic understand-
ing of the experiment such as how to select robust finite
pulse widths and how to select finite pulse widths that
maximize or minimize double quantum terms. The
study of this function could be much appropriated to
forecast the cases of decoupling.

5.2b2 Numerical Analysis of BABA: Let us consider
a system of two spins, for m = 1. We only examine
the DQ terms for the functions �1(t) and �2(t). We
assumed the simple case where the rotations are: αij =
βij = γ ij = 0.

The coefficients Cij
n are C1 = −1√

3
sin θ cos θe−i�,

C−1 = 0, C2 = 1
2
√

6
sin2 θe−2i� and C−2 = 0. For

example, with θ = π

4 and � = 0, the coefficients are

C1 = −1
2
√

3
and C2 = 1

4
√

6
. The functions �1 (t) and

�2 (t) in terms of the rotor period are given by

�1 (t)

bij τR

= BABA1 (ϕ)

= 1(
16

√
2π

) (
i − 1

π
√

2

)
(e−12πϕ − 1)

(
I

ij

YY − I
ij

XX

)
(147)

�2(t)

b2
ij τ

2
R

= BABA2(ϕ)={ 1
768 [−1

2 (e−4πiϕ−1)+(e−i2πϕ −1)]
+ i

768π3 [ 1
8
√

2
(e−i4πϕ − 1) − (e−i2πϕ − 1)]}(I ij

YY − I
ij

XX)

−{ 1
6144π2 (1 − 1

2
√

2
)(ei2πϕ + e−i2πϕ − 2)}(I ij

YY − I
ij

XX)

(148)
where the variable is a dimensionless number ϕ = t

τR
.

BABA functions (real, imaginary and absolute parts)
are plotted versus the dimensionless number ϕ.

5.2b3 Analysis of Figures: Figure 8 shows the plot
of both functions �1 (t) and �2 (t) versus ϕ. Due to
the complexity of these functions (�1 (t) and �2 (t)),
real, imaginary, and absolute parts are plotted sepa-
rately as functions of ϕ. These functions depend on the
DQ terms. Therefore, the study of the amplitude of DQ
terms can be considered as a viable approach for con-
trolling the complex spin dynamics of a spin system
evolving under the dipolar interaction of BABA pulse
sequence. The plot can be considered as a quantitative
representation of the amplitude of the DQ coherence as
a function of ϕ. The size of BABA1 (ϕ) = �1(t)

bij τR
deter-

mines the amplitude of the DQ coherence, which indi-
cates the degree of efficiency of the scheme. Figure 8
shows the graphs of the functions �1(t)

bij τR
= BABA1 (ϕ),

�2(t)

b2
ij τ

2
ij

= BABA2 (ϕ) and (BABA1 (ϕ) , BABA2 (ϕ))

as a function of ϕ = t

τR
. A closer look at figure 8 shows

that the magnitude of BABA2 (ϕ) is smaller than the
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Figure 8. Numerical functions of BABA sequence with
�1 (t) and �2 (t) versus φ = 2τp

τ
R

.

magnitude of BABA1 (ϕ) , that is, | �2(t)

b2
ij τ

2
R

| < | �1(t)

bij τR
| as

expected. As a result, �2 (t) will be less useful in many
cases. We can also observe that all curves are strictly
monotonous. Therefore, the strength of the DQ terms
increases continuously with time and no decoupling
conditions occur in the BABA pulse sequence.

5.2c Criteria to average out chemical shift anisotropy
for BABA: In a recent work64,65 we showed that the
condition for the CSA to be averaged out in each rotor
period τR can be obtained by applying the first con-
tribution terms of the Floquet–Magnus expansion to
the chemical shift anisotropy when irradiated with the
BABA pulse sequence. The average of the CSA dur-
ing sample rotation about a fixed axis and application
of a BABA pulse sequence can be evaluated explic-
itly if we consider the CSA interaction representation
Hamiltonian term in the following general form:

HCSA(t) =
∑

i

δi
CSA(t)I i

Z (149)

where

δi
CSA(t)=

+2∑
n=−2

f i
n(α, β, σ ii) exp {−in(ωrt+γ )} Rspin(t),

(ii = XX, YY,ZZ). (150)

The coefficients f i
n(α, β, σ ii) are related to the orien-

tation of the molecule and to the CSA tensor elements.
Following Tycko formalism,77 let us write the following
notation:

Rspin(t)IZ = IZ cos ε + 1

2
sin ε(I+e−iζ + I−eiζ ) (151)

where ε(t) and ζ(t) specify the direction of Rspin(t)IZ

determined by the BABA pulse sequence. We inves-
tigated the particular case where ε(t) is small, then
cos ε(t) → 1, sin ε(t) → 0, and Rspin(t)IZ ≈ IZ.
For sake of simplicity, we rewrite the chemical shift
coefficient as following:

δi
CSA(t) =

+2∑
n=−2

f i
n(α, β, σ ii) exp {−in(ωrt + γ )} .

(152)
We can compute the toggling frame during each half of
the rotor period. We have for

0 ≤ t ≤ tR

2
, (153)

H̃CSA(t) =
∑

i

δi
CSA(t)R+

X(
π

2
)I i

ZRX(
π

2
)

=
∑

i

δi
CSA(t)I i

Y = HY (154)

and for τR

2 ≤ t ≤ τR,

H̃CSA(t) =
∑

i

δi
CSA(t)R+

Y (
π

2
)I i

ZRY (
π

2
)

= −
∑

i

δi
CSA(t)I i

X = HX. (155)

Considering the BABA pulse sequence in the same
picture as in reference66

The toggling frame is written as

H̃CSA(t) = HY(t)θ(t) + HX(t)(1 − θ(t)) (156)

Expending the time-dependent function θ(t) in the form
of Fourier expansion, we have

θ(t) =
∑

n

ane
−inωRt (157)

where an represents the time-dependent Fourier
coefficients corresponding to the Fourier index n. These
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coefficients are described in the appendix. The toggling
Hamiltonian can be written more explicitly as following

H̃CSA(t) =
∑

i

(I i
X + I i

Y )

+2∑
n=−2

f i
na−n︸ ︷︷ ︸

AHT =f̄ i
n

(0)

+
∑

i

(I i
X+I i

Y )

+∞∑
m=−∞

e−im(ωRt+γ )

+2∑
n=−2

f i
nam−n︸ ︷︷ ︸

f̄ i
n

(m)

+

+1

2

∑
i

+2∑
n=−2

f i
n(α, β, σ i)e−in(ωRt+γ )(−I i

X+I i
Y ).

(158)

The calculation of the first-order average Hamiltonian
or the first-order contribution to the Floquet–Magnus
expansion is given by

F1 = 1

T

T∫
0

H̃CSA(t)dt = 1

τR

τR∫
0

H̃CSA(t)dt

=
∑

i

+2∑
n=−2

f i
na−n(I

i
X + I i

Y ), (159)

which allows to obtain the following result:

F1 =
∑

i

(f i
−1a1 + f i

0 a0 + f i
1 a−1)(I

i
X + I i

Y ) (160)

or
F1 =

∑
i

[
1

πi
(f i

1 − f i
−1)+

1

2
f i

0

]
(I i

X + I i
Y ). (161)

The criterion for the CSA to be averaged out in each τR

period is
1

πi
(f i

1 − f i
−1) + 1

2
f i

0 = 0. (162)

Similar analysis was also applied to dipolar interaction
in the article.66 The first order of the argument of the
propagator operator in FME approach can be calculated
as follows:

�1(t) =
t∫

0

H̃CSA(t ′)dt ′ − tF1, (163)

which gives the result:

�1(t) = 1

2

∑
i

+2∑
n=−2

f i
ne

−inγ i

(
−1

in ωR

)(e−in ωRt −1)

×(−I i
X+I i

Y )+
∑

i

+∞∑
m=−∞

(
−1

im ωR

)(e−im ωRt−1)e−imγ i

×
+2∑

n=−2

f i
nam−n(I

i
X + I i

Y ) (164)

This is the first-order term of the argument of the
time evolution with periodically time-dependent coeffi-
cients. A simple case can be study for numerical analy-
sis by considering one spin system with m = 1, γ i = 0.
The function �1(t) is simplified as

�1(t) = f1(
−1

iωR

)(e−iωRt − 1)IY + 1

2
f−1(

1

iωR

)(eiωRt−1)

(−IX + IY )

+f2

[
1

2
(

−1

i2ωR

)(e−i2ωRt−1)(−IX+IY )

+ 1

πωR

(e−iωRt −1) (IX + IY )

]
+f−2

[
1

2
(

1

i2ωR

)(ei2ωRt − 1)(−IX + IY )

−(
1

3πωR

)(e−iωRt − 1)(IX + IY )

]
(165)

Or writing this function in terms of the rotor period,
ωR = 2π

τR
, we have

�1(t)

τR

= f1(
−1

4πi
)(e−i2πϕ−1)IY +f−1(

1

4πi
)(ei2πϕ−1)

(−IX + IY )

+f2

[
(

1

8πi
(e−i4πϕ − 1) + 1

2π 2
(ei2πϕ−1))IX

+(
1

8πi
(e−i4πϕ−1) + (e−i2πϕ − 1))(

1

2π 2
)IY

]
+f−2

[
(
−1

8πi
(ei4πϕ−1)− 1

6π 2
(e−i2πϕ − 1))IX

+ (
1

8πi
(ei4πϕ−1)− 1

6π 2
(e−i2πϕ−1))IY

]
(166)

where the variable is chosen to be a dimensionless num-
ber ϕ = t

τR
. We plotted the real, imaginary, and absolute

parts of the function versus the dimensionless number
to get information of the magnitude of the CSA in dif-
ferent orientation of the molecule. In this particular con-
sideration, it appears that initially (t = 0, ϕ → 0) and
at one rotor period (t = τR, ϕ → 1), the magnitude of
the CSA is null, which corresponds to �(0)

τR
= �(τR)

τR
= 0.

For t = τR

2 → ϕ = 1
2 , we have

�1(
τR

2 )

τR

= f1(
−1

4πi
)(−2)IY + f−1(

1

4πi
)(−2)(−IX+IY )

+f2

[
1

2π 2
(−2)IX + (−2)(

1

2π 2
)IY

]
f−2

[ −1

6π 2
(−2)IX − 1

6π 2
(−2)IY

]
(167)
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For t = τR

4 → ϕ = 1
4 , we have

�1(
τR

4 )

τR

=f1(
−1

4πi
)(−2)IY +f−1(

1

4πi
)(i−1)(−IX+IY )

+f2

[
(

1

8πi
(−2) + 1

2π 2
(i − 1))IX

+(
1

8πi
(−2) + (

1

2π 2
)(−i − 1))IY

]

+f−2

[
(
−1

8πi
(−2) − 1

6π 2
(−i − 1))IX 0

+(
1

8πi
(−2) − 1

6π 2
(−i − 1))IY

]
(168)

These instantaneous values of �1(t)

τR
mean that the

magnitude of the CSA in different orientation of the
molecule depends on the orientation of the molecule
and on the CSA tensor elements.

5.3 Advantages and limitations

The goal of the FME in NMR is to bridge the AHT
to the Floquet theorem but in a more succinct and
efficient formalism.18 Calculations can then be exe-
cuted in a finite-dimensional Hilbert space instead of
an infinite-dimensional space within the Floquet the-
ory. We expected that the FME will provide means to
more accurately and efficiently perform spin dynam-
ics simulation and for devising new RF pulse sequence.
The FME provides a quick means to calculate higher-
order term, allowing the disentanglement of the strobo-
scopic observation �(t) and effective Hamiltonian F

that will be useful to describe spin dynamics at all times
in solid-state NMR and understand different synchro-
nized or non-synchronized experiments. This is due
to the convergence issues when comparing the vari-
ous theories used in NMR. Recent developments on the
improvement of the bound for the convergence domain
by Blanes et al.167 and Casas et al.166 reported that
the bounds for the Fer, Magnus, and Floquet–Magnus
expansions areξFE = 0.8604065, ξMagnus = 1.086869,
and ξFME = 0.20925, respectively. These results were
obtained using a similar procedure and arguments. The
rate of convergence of the FME is faster than the Fer
and Magnus expansions in the sense that, for a pre-
scribed precision, one needs both more 
′

ks (for the
Magnus expansion) and F ′

ks (for the Fer expansion)
than �′

ks (for the Floquet–Magnus expansion); even
if from the computational point of view, the Fer and

Magnus expansions could require more work than the
FME.

The FME offers a simple way to handle multi-
ple incommensurate frequencies and thus open per-
spectives to deal with multi-mode Hamiltonian in the
Hilbert space. This approach can provide new aspects
not present in AHT and FT such as recursive expansion
scheme in Hilbert space that can facilitate the imple-
mentation of new or improvement of existing pulse
sequence.

We expended the Floquet–Magnus expansion to the
case of �(0) �= 0. This gives the FME a new oppor-
tunity to construct the operator �(t) to obtain the
evolution of the system in between the stroboscopic
detection points. The secular averaging theory (SAT)
known as Floquet theory is a general approach devel-
oped more than a century ago for solving differen-
tial equations. Comparing the SAT and AHT results, a
supplementary non-secular term appears in the second-
order effective Hamiltonian, which is the main reason to
invalidate the use of AHT in the interpretation of many
NMR experiments.81

6. Potential approaches and future directions

All theories used in NMR rely on exponential Hamil-
tonian operator propagators. Therefore, computing the
exponential of a matrix is a crucial task in quantum
mechanics and NMR in particular. In the literature of
numerical mathematics,44,151,152 the approximation of
the matrix exponential has a long history in its own
right. Noteworthy are mathematical models of systems
of linear, constant coefficient of ordinary differential
equations, which describe many physical, biological,
and economic processes. Although several powerful
algorithms have been carried out in more systematic
ways and show the vitality of the matrix exponential,
efforts still need to be done to bring out some salient
features not yet covered. As an example, the estima-
tion of the function exp (C), where C is a (real or com-
plex) N x N matrix, constitutes the main component in
all parts of the computational penalty required by this
category of algorithms and, as known, one of the most
complicated characteristic. Moler and van Loan present
in references151,152 twenty distinct numerical algorithms
for evaluating the exponential of a matrix. Methods
such as Pade approximation, Chebyshev approxima-
tion, and Krylov space or splitting methods have been
utilized to advance the understanding of the exponen-
tial matrix problem. In molecular quantum dynamics,
simulation is essential particularly when dealing with
chemical exchange or the restoration of equilibrium fol-
lowing disturbance where spectral lineshapes can be
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imbricating. The major complication faced during sim-
ulation of spectra stems from the fast computational
demands with an expanding number of spins. This is
due to the expansion of the Hilbert space with the expo-
nential scaling of the spin vector space. For instance, a
state of n spin system is represented by 22n-dimensional
vector. Therefore, the development of powerful numer-
ical algorithms for dealing with cumbersome matri-
ces that arise from complicated simulations is crucial.
Numerical solution of the Liouville von Neumann equa-
tion or alternatively the numerical exponential of a
Liouville matrix allows the simulation of spin system
dynamics.88

In the next section, we present the Chebyshev
approximation as a potential addition to the approaches
described in this review. The Chebyshev approach has
the prospective to expend its application in spin quan-
tum including NMR. The enthusiasm of presenting the
Chebyshev approach as a possible surrogate of the pop-
ular expansions in nuclear magnetic resonance for the
assignment of numerical simulations in spin dynam-
ics paradigm stems from its numerical steadiness and
high precision. The theoretical lead of the Chebyshev
method is still not utterly realized for present feasible
computations.88 Furthermore, in addition to the Cheby-
shev approximation, we are introducing another possi-
ble approach called Cayley transformation that could be
assessed in some contexts.

6.1 Chebyshev approach

The past three decades witnessed the introduction of
the Chebyshev approximation method of solving the
time-dependent Schrodinger equation in the domain
of molecular dynamics.153–155 Tal-Ezer and co-workers
proved that the superior approach to expand the evo-
lution operator can be obtained by using the com-
plex Chebyshev polynomials. Using the Chebyshev
approximation, one can expand the evolution opera-
tor exp(−iτH) in a truncated series. Special mention
should be given to a paper by Suli and Mayers156 in
which a useful function F(x) in the interval [-1,1] is
given and the Chebyshev polynomial approximations
are most favourable in the sense that that the greatest
error in the approach is reduced compared to most of the
polynomial approximations. In particular, this method
is used by connecting the extreme eigenvalues Emin and
Emax of H. This allows the following inspection44,157

of a reduced Chebyshev expansion of exp(−ix) on the
interval [τEmin, τEmax]:

exp(−ix) ≈
m∑

n=0

cnPn(x), (169)

where

Pn(τ) = Tn(
2x − τEmax − τEmin

τEmax − τEmin
) (170)

with well-chosen coefficients cn. One usually distin-
guishes two types of Chebyshev polynomials: (Tn(x))

and (Un). The Chebyshev polynomials of the first kind,
which are denoted, Tn(x), on the interval [−1, 1]can be
defined recursively as

Tn+1(x) = 2xTn(x) − Tn−1(x); (171)

T1(x) = x; (172)

T0(x) = 1 (173)

which gives the final approximation

exp(−iτH) ≈
m∑

n=0

cnPn(τH). (174)

Chebyshev polynomials are polynomials with the great-
est possible dominant coefficient, but subject to the
state where their complete value is bounded on the
interval by 1. Using the Chebyshev method leads to
major advantages such as utilizing the sparsity of the
Hamiltonian by indicating the propagator in terms of
a sequence of the Liouville superoperator (L) matrix
multiples or the accuracy of the propagator of the
Chebyshev expansion. The expansion converges very
fast to the point where the truncation inaccuracy is
smaller than the typical round-off errors succeptible to
be present in most of the numerical calculation. Fur-
thermore, the output expression in the expansion is
close to the small number with the best performance for
the exponential function represented by an orthogonal
polynomial expansion.88,155 The Chebyshev approach
is regularly applied in numerical quantum dynamics
to calculate exp(−iτH)ψ0 over very long times. One
way of approaching this problem is to consider the
m matrix-vector products with the above approxima-
tion used with a large truncation index m. The index
m used to complete a particular precision is a linear
function of the step size τand the spectral radius of
H . The step size augmentation reduces the calcula-
tion work per unit step. In practice, m is chosen such
that the round-off error governs the precision.44,158,159

Although the Chebyshev approach presents several
advantages and has been successfully applied to a num-
ber of problems, there are also existing drawbacks that
need to be addressed. One such drawback concerns the
unitary of the scheme. The Chebyshev method is not
unitary and the norm is not conserved, but the differ-
ence with the unit is negligible due to the accuracy



Theoretical approaches to control spin 2105

of the technique. Another open drawback concerns the
large time durations of propagation in the Chebyshev
approach, which prevent intermediate results. To sum-
marize, despite these drawbacks, we believe that the
Chebyshev method will successfully serve the quan-
tum spin dynamics community in establishing quantum
mechanical time-dependent methods as a routine tool in
quantum dynamics studies.

6.2 Cayley method

The Cayley transform is an alternative method to the
exponential mapping relating the Lie algebra to the Lie
group. The approach was developed more than a cen-
tury ago by Cayley (1846) as a mapping between skew-
symmetric matrices and special orthogonal matrices.
The concept of relating the Lie algebra to the Lie group
is particularly important for numerical methods where
the calculation of the exponential matrix is the most dif-
ficult task of the algorithm.44,174 Blanes and co-workers
show that the solution of eq. (2) can be written as

U(t) = (I − 1

2
C(t))−1(I + 1

2
C(t))U0 (175)

with C(t) obeying the so-called dcayinv equation80,161

dC

dt
= −iH + i

1

2
[C,H ] + i

1

4
CHC, (176)

t ≥ t0, C(t0) = 0.

−iH is element of the Lie algebra such that if B and C

are also elements of a Lie algebra that can be combined
by the Lie bracket, which we represent by [H,B] =
iC, with the consideration of the orthogonal group, the
Calyley transform can be written by

H = i(I − αB)−1(I + αB). (177)

The choice of α = 1
2 is arbitrary but it ensures a par-

ticularly simple form of various expansion coefficients.
Based on the above Cayley transform, Blanes et al.
obtained the following time-symmetric methods of the
orders 4 and 6.
Order 4:

C[4] = 
[4](I − 1

12
(
[4])2) = α1 − 1

12
[α1, α2]

− 1

12
α3

1 + 0(h5), (178)

where
C[4] = C(h) + 0(h5). (179)

Order 6:

C[6] = 
[6](I− 1

12
(
6)2(I− 1

10
(
[6])2))=C(h)+0(h7).

(180)

For a total of nine matrix–matrix products per step,
three matrix–matrix products are required in addition
to the three commutators involved in the computation
of 
[6]. The articles44,160,174 give the complete formula
tion of the scheme of 
[6]. Manifestly, the Magnus-
based integrators can generate efficiently the Cayley-
based methods. However, truncated Caley expansions
do not use some advantages related to the time sym-
metry. In the article,160 Iserles demonstrated that the
time symmetry is obtained when integrals are replaced
by appropriate quadrature results. The Cayley method
involves using explicit schemes for solving the differ-
ential equation on the Lie algebra of the group that
leads to semi-implicit techniques where no recurrence
is needed. The applications of the Cayley methods in
the numerical solution of matrix differential systems on
quadratic groups include but are not limited to the Pen-
rose regression problem (PRP) where this approach has
been used to obtain numerical solution of PRP,161,163,164

the computation of Lyapunov exponents of Hamiltonian
systems,162,164 the solution of Hamiltonian isospectral
problems,161,164 etc.

7. Conclusion

In this article, we have thoroughly reviewed the abiding
applications of the two main useful theories in NMR,
the average Hamiltonian theory (Magnus expansion)
and the Floquet theory from very different aspects of
spin dynamics. We have also presented some applica-
tions and perspective of the developing and emerging
theories in NMR (FE and FME). We have calculated the
effective Hamiltonians of all these approaches. Effec-
tive Hamiltonians are important to understand how the
pulse sequences work. We have presented results of
Bloch–Siegert shift and CW decoupling for the AHT
(Magnus expansion), Floquet theory, and Fer expan-
sion to highlight the similarities and differences among
these approaches. While the calculations involved in the
Fer expansion are easier than in the Magnus expansion
and Floquet theory, the later schemes give a clear per-
spective of the size of the correction associated with
the order n.188 Rather than being competitive, the AHT,
the Floquet theory, the Fer expansion, and the Floquet–
Magnus expansion can be considered as complemen-
tary. The level of success of each theory depends on the
type of the physical problem to deal with. Combining
two or more of the theories therein described could lead
to a more general and unique framework for treating the
time-dependent Hamiltonian in spin dynamics of NMR
in a fashion that can be extended to synchronized and
non-synchronized modulations.
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We hope this review will encourage the use of
Magnus and Fer expansions as numerical integrators.
While we expect the use of Floquet–Magnus expansion
as numerical integrator, we also encourage its use as
an alternative approach in designing sophisticated pulse
sequences, analyzing, and understanding of different
experiments. Although the average Hamiltonian theory,
the Floquet theory, and the developing theories such
as the Fer expansion and the Floquet-Magnus expan-
sion explain all aspects of spin dynamics in NMR, we
insist on the fact that other perspectives and approaches
beyond the scope of the current popular theories in the
field of NMR need to be appraised.

Several phenomenal applications of the theories in
NMR have not been discussed in this review paper.
One which has shown itself very useful was the mul-
tiple quantum NMR dynamics. Special recommen-
dation should be made for the new field of quan-
tum information processing and computing in which
NMR quantum calculations of the Jones Polynomial is
performed.

Although the theories in NMR, such as those con-
sidered here, in principle, to solve time-dependent
Schrodinger equation, there are still several problems
that have not been explored in the field of NMR. A
general theoretical description of NMR experiments
assists many time-dependent perturbations with incom-
mensurate frequencies. However, formalized theoret-
ical approaches such as “operator-based Floquet” do
not present a theoretical treatment of problems beyond
four incommensurate frequencies. With the multiplica-
tion of the degree of refinement of NMR experiments,
higher-order expressions are of expending importance,
such as in diffusion experiments. We believe that the
domain of applications of Floquet–Magnus expansion
and Fer expansion will also widen over the years.
We also expect the FME to generate new contribu-
tion like the generation of efficient numerical algorithm
for geometric integrators. We hope that this overview of
the theories and applications in NMR spectroscopy will
continue to strenghten interactions between NMR spec-
troscopists and other specialists such as in Mathematics,
Physics, Chemistry, and Chemical Physics.
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