
J. Chem. Sci. Vol. 125, No. 5, September 2013, pp. 1285–1292. c© Indian Academy of Sciences.

Simulating chemical systems: MPI and GPU parallelization
of novel SD algorithms

N GOGA1,2

1Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials,
University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
2Politehnica University of Groningen, Faculty of Engineering in Foreign Languages, Splaiul Independentei
313, Bucharest, Romania
e-mail: n.goga@rug.nl

MS received 21 March 2012; revised 9 April 2013; accepted 28 June 2013

Abstract. Molecular dynamics is used for simulating chemical systems with the goal of studying a large
range of phenomena starting from cell structures to the design of new materials, drugs, etc. A very important
component of molecular dynamics is the use of well-suited atomistic and molecular modelling of the chemi-
cal systems. This article presents the MPI and GPU-CUDA parallelization of novel stochastic-Langevin dyna-
mics algorithm that is used in molecular dynamics for controlling the temperature of simulated systems. The
research has been performed in the Molecular Dynamics Group of the University of Groningen and it is going
to be included in the next version of Gromacs tool of molecular dynamics (www.gromacs.org). The Langevin
algorithm implemented is original and is based on impulse application of friction and noise. Theoretical back-
ground, implementation, an efficiency discussion and relevant simulation results are presented in the different
sections of this article. The simulations used Martini water. The parallelization of the algorithms was done in
two versions: one in MPI using domain decomposition and another version was done in CUDA.

Keywords. Molecular dynamics; GPU; paralelisation; simulations.

1. Introduction

Molecular dynamics is used for simulating chemical
systems with the goal of studying a large range of phe-
nomena starting from cell structures to the design of
new materials, drugs, etc. A very important compo-
nent of molecular dynamics is the use of well-suited
atomistic and molecular modelling of the chemical sys-
tems. The purpose of this article is to present the MPI
and GPU-CUDA parallelization of a novel algorithm of
stochastic dynamics.

Stochastic thermostats have the advantage above the
global thermostats that they maintain the correct canoni-
cal distribution and show a robust first-order decay of
temperature deviations towards the reference tempe-
rature. Global thermostats of the weak-coupling type1

show a convenient first-order decay of temperature
deviations, but do not maintain a canonical distribu-
tion; in fact, the resulting distribution is in between a
canonical and a microcanonical distribution, depend-
ing on the coupling constant used.2 Moreover, it is
known that such thermostats may cause uneven dis-
tribution of kinetic energy among different collec-
tive degrees of freedom, resulting in overheating of
collective degrees of freedom that are only weakly

coupled to other degrees of freedom at the expense of
cooling of these other degrees of freedom (the flying
ice-cube effect).3 Global thermostats of the extended-
system type, such as the Nosé–Hoover thermostat,4

will maintain a canonical distribution in configurational
space, but show strong oscillatory behaviour of the
temperature deviation as a result of the order of the
differential equation related to the system’s extension.
The Nosé–Hoover chain thermostat,5 using a cascade
of thermostats, alleviates but does not solve this prob-
lem. See Berendsen6 for a comparative discussion of
thermostats.

The purpose of this article is to present a simple and
efficient algorithm for stochastic dynamics, in particu-
lar for simple Langevin dynamics and its implementa-
tion in Gromacs and CUDA. The design of stochastic
algorithms for molecular simulation has been an impor-
tant subject of research in the 1980’s.7–10 The paper10

describes a sophisticated algorithm that fully maintains
the accuracy of the Verlet algorithm by integrating the
stochastic term over the time step. This algorithm is
still standard in both the GROMOS and Gromacs simu-
lation packages. Traditional stochastic algorithms8,10,11

that integrate the stochastic equations of motion over
a time step become very complex, requiring the

1285

http://www.gromacs.org

1286 N Goga

sampling of two random variables from a bivariate
distribution.

A different approach, pioneered by Peters12 for the
case of dissipative particle dynamics (DPD), leads to
simpler and still correct algorithms. The principle is
to consider the physical process as a sequence of a
Hamiltonian evolution over one time step, followed
by an impulsive action of friction and noise. The lat-
ter modifies the velocities without advancing the time.
Thus the evolution in phase space is the approximate
application of the Liouville operator over a time step,
followed by a transformation defined by the impulsive
friction and noise. If it can be proven that this impul-
sive action also leads to convergence to a canonical (i.e.,
Maxwellian) distribution at the reference temperature,
this physical process is equally valid to achieve our goal
of introducing an effective thermostat. The energy and
momentum transfer implicit in the impulsive friction
will influence transport properties in a controllable way.
The behaviour as a thermostat will be robust, while the
algorithm remains very straightforward and simple to
implement. The main difference with the usual stochas-
tic differential equation is that the time evolution of the
system is not described by a single stochastic differen-
tial equation, but by a sequential application of a Hamil-
tonian evolution over a time step and an impulsive
stochastic action on the velocities. Both steps should
conserve the canonical distribution in phase space.

This approach is reminiscent of the principle of the
Andersen thermostat,13 which applies impulsive redis-
tributions to particle velocities with a given probabili-
ty �h from a Maxwellian distribution. In the follow-
ing, we extend Peters’ DPD-type impulsive friction and
noise (which applies relative velocity changes in the
interparticle direction only) to Langevin dynamics.

This article is organized as follows. In section 2
the impulsive scheme for Langevin dynamics using the
leap-frog algorithm is discussed. Section 3 describes
the simulation details and reports the computational
efficiency of the different methods; section 4 gives
the results of various tests of the algorithms on Mar-
tini coarse-grained water. Both thermostat and diffu-
sion behaviour are considered. Section 5 describes the
implementation of the stochastic algorithm in CUDA.
Discussion and conclusions are provided in section 6.

2. The impulsive Langevin leap-frog algorithm
for systems without constraints

Consider a system of n particles with 3n degrees of
freedom and consider every degree of freedom sepa-
rately. Assume v(t − 1

2 h), x(t) and F(t) = ma are the

known velocity, coordinate and force component, and
a the acceleration at time t of that degree of freedom.
The impulsive Langevin extension of the leap-frog
algorithm then reads as follows.

For all degrees of freedom do:

1. v = v(t − 1
2 h) + ah

2. �v = − f v + √
f (2 − f)(kB Tref/m) ξ

3. x(t + h) = x(t) + (v + 1
2�v)h

4. v(t + 1
2 h) = v + �v.

Here, step 1 is the usual MD velocity-update of the leap-
frog scheme, step 2 is the impulsive application of fric-
tion (reducing the velocity by a fraction f : 0 ≤ f ≤ 1)
and noise (ξ is a random sample from a normal dis-
tribution). Step 3 updates the coordinates, taking into
account that �v is applied only between t + 1

2 h and
t + h: in fact, step 3 can be considered as two half steps
(see figure 1):

3a. x(t + 1
2) = x(t) + v 1

2 h,
3b. x(t + h) = x(t + 1

2 h) + (v + �v) 1
2 h.

Step 4 assigns the modified velocity to the velocity
at the end of the time step. It is irrelevant whether
these steps are carried out sequentially per degree of
freedom, sequentially per 3-D vector per particle, or
each performed on a 3n-D vector over all degrees of
freedom.

The variance of the noise term is chosen such that the
variance of the velocity

〈(v + �v)2〉 = (1 − f)2〈v2〉 + f (2 − f)
kBTref

m
, (1)

tends to the stationary value of kBTref/m. This is easily
seen from (1) by substituting kBTref/m for each of the
mean squared velocities.

In this algorithm it is assumed that all degrees of
freedom are subjected to the same friction and noise

Figure 1. Traditional leap-frog scheme (top), and leap-
frog scheme with impulsive phase (bottom).

MPI and GPU parallelization of novel SD algorithms 1287

at every time step; this is just a convenient scheme
that could be replaced by other variants, e.g., different
f ’s for different particles, or application of friction and
noise to a (randomly) selected subset at every step. Note
that the limiting case f = 1 completely removes the
velocity and replaces it by a sample from a Maxwellian
distribution. Thus, if the impulsive friction and noise is
applied with f = 1 and with a probability �h per par-
ticle per step, the Andersen thermostat is recovered. A
smoothed Andersen thermostat with the same average
velocity reduction factor will be obtained by applying
the impulsive friction and noise with f = �h at every
step to every degree of freedom.

The algorithm is expected to be robust, in the sense
that the impulsive term is exact, independent of the time
step used. There is a lot of freedom of choice in the
way the impulsive term is applied: the damping factor
f may be applied to a random selection of particles and
may differ for different particles.

It is obvious that the new velocity of any particle
does not have the same direction and magnitude as
its old velocity. As the random changes are uncorre-
lated, the total momentum is not conserved and nei-
ther is the total energy conserved. However, the average
kinetic energy and hence the temperature will be stable:
they tend toward the values determined by the reference
temperature.

2.1 Is the velocity distribution canonical?

In order to judge the acceptability of the proposed pro-
cedure, we ask the following questions: Assume the
velocity distribution before the impulse is ρ0(v): (a)
What will the distribution ρ1(v + �v) be after the
impulse? (b) What is the stationary distribution?

After the impulse, the distribution ρ1(v + �v) is the
convolution of the original distribution ρ0(v) and the
Gaussian distribution of the random term �v + f v,
which has a variance of f (2 − f)kBTref:

ρ1(w) = [2π f (2 − f)kBTref]−1/2

×
∫ ∞

−∞
dv ρ0(v) exp

[
− {w−(1− f)v}2

2 f (2− f)kBTref

]
, (2)

where w = v + �v.
This is the answer to question (a). The answer to

question (b) is found by inserting the canonical distri-
bution for v:

ρ0(v) = [2πkBTref]−1/2 exp

[
− v2

2kBTref

]
(3)

into (2). Carrying out the integration over v we find
that ρ1(w) is exactly equal to the same canonical distri-

bution ρ0. So ρ0(v) is the stationary distribution. Thus,
the impulsive application of friction and noise preserves
not only the variance (as designed), but it preserves the
complete canonical distribution.

2.2 How does the temperature behave with time?

A good thermostat should force a deviation from the
reference temperature back to zero. How does the
impulsive Langevin thermostat behave in this respect?

Consider one-dimension. The temperature is given
by

T = m

kB
〈v2〉. (4)

The energy change �E1 resulting from a single
application of friction and noise to one degree of free-
dom is

�E1 = 1

2
m(v + �v)2 − 1

2
mv2. (5)

Using (1) and (4) this rewrites to

�E1 = 1

2
f (2 − f)kB(Tref − T); (6)

the total energy change per time step h is the sum over
all one-dimensional frictional events that occur per time
step:

�Etot = 1

2
kB

∑
f (2 − f)(Tref − T). (7)

The energy change is initially supplied to the kinetic
energy of the system, thus changing the temperature.
However, when the rate of change is small, the energy
change will be distributed over kinetic and potential
energy. The temperature change is then determined by
the total heat capacity CV of the system:

�T = �Etot

CV
, (8)

yielding a differential equation for the time-dependence
of the temperature

dT

dt
= 1

2
kB

∑
f (2 − f)

CV h
(Tref − T). (9)

In the case of a three-dimensional application to N
particles (9) has the form

dT

dt
= 3kB

2cV

f (2 − f)

h
(Tref − T), (10)

where

cV = CV

N
, (11)

is the specific heat per particle.

1288 N Goga

Equation (10) shows that any deviation from the
reference temperature will decay to zero according to a
first-order kinetic process

dT

dt
= kth(Tref − T), (12)

with rate constant

kth = 3kB

2cV

f (2 − f)

h
. (13)

Alternatively, the decay can be characterized by a
time constant τT = 1/kth. Note that for an ideal gas
cV = 3

2 kB, reducing the left fraction in (13) to 1; for
atomic fluids this fraction is usually 2 to 3 times smaller.

The thermal rate constant can be expressed in an
effective friction rate γeff, defined by the continuous
friction rate that would reduce the velocity per time step
h by a fraction f :

γeff
def= 1

h
ln(1 − f), (14)

yielding

kth = 3kB

2cV

[1 − exp(−2γeffh)]
h

≈ 3kB

2cV
2γeff, (15)

the latter value being a good approximation for small γ h.
Thus, the thermostat is robust: the system tempe-

rature automatically decays to the reference tempera-
ture and the velocity distribution evolves into the proper
canonical (Maxwellian) distribution.

2.2a Slow and fast thermostats: We note that this rate
equation is valid when the constant rate of the thermo-
stat is smaller than the rate of exchange between kine-
tic and potential energy of the system, which gives the
system time to equilibrate between kinetic and poten-
tial degrees of freedom. Usually, this condition is ful-
filled. If on the other hand, kth is much larger (‘fast’
thermostats), CV in (8) should be replaced by Ekin/T =
1
2 kBndof, where ndof is the number of degrees of free-
dom in the system. The equivalent of (9) for fast
thermostats is

dT

dt
=

∑
f (2 − f)

ndofh
(Tref − T), (16)

where the sum is taken over all one-dimensional fric-
tional events that occur per time step. This means that
for a fast thermostat cV in equation (15) should be
replaced by its ideal-gas value 3kB/2.

For the Langevin application, where a velocity reduc-
tion to (1 − f)v is applied to every degree of freedom
at every time step, we defined an effective friction rate

γeff = − ln(1 − f)

h
. (17)

3. Computational details

3.1 Simulation details

The algorithm presented in the previous sections was
implemented in the GROMACS program package14

version 4.0.7, using parallelization based on domain
decomposition.

One type of systems was used to test performance of
the investigated coupling schemes: MARTINI15 water.
All simulations were performed in a periodic cubic box
with dimensions longer than twice the cut-off distance.
A cut-off distance for non-bonded interactions was set
at 1.2 nm for MARTINI water systems. For MARTINI a
potential shift function was applied,16 with switch value
of 0.9 to remove cut-off effects. The neighbour list was
updated every step in order to remove any deviations
due to computational errors. In all simulations a time
step of 2 fs was used. For equilibration, weak pressure
coupling1 was applied with time constant of 2.0 ps and
reference pressure of 1 bar; production runs were per-
formed under constant volume conditions. The refer-
ence temperature was set to 320 K for MARTINI water
system.

The MARTINI water system consisted of 3200 par-
ticles with mass 72 u in a cubic box of (7.28856 nm)3.
The initial velocities of the particles were obtained
from a Maxwell–Boltzmann distribution correspond-
ing to the chosen initial reference temperature. Simula-
tions were either 10 ns or 50 ps long, for diffusion and
thermal rate calculations, respectively.

For the computation of the diffusion coefficient, we
used the mean square displacement (MSD) and applied
the Einstein relation D = 〈r 2(t)〉/(6t). The diffu-
sion coefficient was calculated by least squares fitting a
straight line through the MSD from 500 ps to 2 ns. Ther-
mal rate constants were determined from least-squares
fits to a single exponential of the temperature after
switching the reference temperature at time t = 0 from
350 to 320 K. Each case was repeated 8 times, yield-
ing 8 independent determinations ki of the constant rate;
we report the averages k with standard uncertainty σ

computed from σ 2 = ∑8
i=1(ki − k)2/56.

4. Results

4.1 MARTINI coarse-grained water

In the presence of an intrinsic diffusion coefficient,
there is no reliable theory for the behaviour of the dif-
fusion coefficient as a function of applied friction. One
might naively suppose that internal and external fric-
tion would be additive, i.e., that the inverse diffusion

MPI and GPU parallelization of novel SD algorithms 1289

coefficient would be the sum of the inverse intrinsic
diffusion coefficient and the inverse diffusion coeffi-
cient of the ideal gas. However, this assumption leads
to a much higher diffusion coefficient than is actually
observed. It turns out that the observed inverse diffusion
coefficient obeys the following empirical linear relation
to γ :

1

D
= 1

Dintr
+ Cγeff, (18)

where C is a proportionality constant with dimension
ps2 nm−2, which depends on the nature of the intrinsic
interaction between the particles. The inverse diffusion
coefficient is given in figure 2 and has the value C =
250 ps2 nm−2.

For prediction of the thermal rate the following prop-
erties of MARTINI water at 320 K are needed:

cV = 0.0234(3) kJ mol−1 K−1, 〈1 − r/rc〉 =
0.24336, 〈(1 − r/rc)

2〉 = 0.089437. For the Langevin
case, the equation for the thermal rate constant kth (see
section 2.2) is for a fluid

kth = 3kB

2cV

f (2 − f)

h
= 3kB

2cV

[1 − exp(−2γ h)]
h

, (19)

where γ = −[ln(1 − f)]/h. As MARTINI water is
governed by an intrinsic potential, cV is larger than its
ideal-gas value of 3kB/2; in fact 3kB/(2cV) = 0.533.
Thus, we expect a ‘slow’ thermostat at low friction rates
and an almost twice as large ‘fast’ thermostat at high
friction rates (see section 2.2).

Figure 3 compares the theoretical prediction with
the simulated thermal rate constants. The agreement
with the theory is good. The full-drawn line gives the
‘slow’ behaviour and the broken red line indicates the
‘fast’ behaviour. The cross-over time between the two

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 0 5 10 15 20 25 30

1/
D

 (
ps

 n
m

−2
)

γ (ps–1)

Figure 2. Inverse diffusion coefficient versus friction rate
for MARTINI coarse grained water, simulated with impul-
sive Langevin algorithm. Black dots simulations, red line fit
to (D−1

intr + Cγ ; C = 250 ps2 nm−2).

0

10

20

30

40

50

60

0 5 10 15 20 25 30

k t
h

(p
s–

1)

γ

Figure 3. Thermal relaxation rate versus friction rate for
MARTINI coarse grained water, simulated with impulsive
Langevin algorithm. Black dots simulations; red lines theory,
full-drawn for ‘slow’ and dotted for ‘fast’ thermostats.

regimes occurs around γ = 10, or 0.1 ps, which is in
the expected range.

We also did measurements for temperature. The aver-
age temperature for different friction coeficients dif-
fers very slightly as compared to reference temperature
(320 K), the deviations being bellow 0.5 K.

4.2 Performance

We ran efficiency measurements on a workstation with
Dual Core AMD OpteronTM 865 (1800 Mhz) processor.
The comparison was done on a Martini water system
with 3200 CG particles and with a time step of 10 fs,
using Gromacs version 4.0.7. For Langevin dynamics
we compared the ‘new’ impulsive algorithm with the
‘old’ algorithm available in Gromacs, which is based on
integration of continuous friction,10 and with pure MD
without and with global thermostat. In the table below
the ‘speed’ is reported as the number of nanoseconds
simulated per day (24 h).

Method ns/day

MD, no thermostat 69.90
MD, Berendsen thermostat 69.81
SD, Langevin, ‘old’ 59.79
SD, Langevin, ‘new’ 67.44

From these efficiency experiments, we can conclude
that our new algorithm performs better than the existing
algorithms from the literature or those implemented in
Gromacs.

1290 N Goga

5. Implementation on CUDA

The Gromacs package is composed not only of an MD
simulator, but it also has a variety of tools for analysing
and visualizing the output of the simulations.16 Its func-
tionality is enabled by many lines of code and is depen-
dent on the mathematical models implemented in it. It
also employs a multitude of scientific algorithms and
several dozen functions (called ńon-bonded kernels)́ for
the short-range non-bonded interactions, each offering
a different combination of methods for electrostatic and
van der Waals forces.

The OpenMM library17 is developed by a team
from Stanford University, that Gromacs interfaces in
order to be able to run simulations on GPU as well.
The OpenMM library has support both for CUDA
architecture provided by NVIDIA and OpenCL, the
open standard defined by Khronos Group. It has a
quite wide range of algorithms implemented that run
on GPU, but still it is not a valid equivalent of
Gromacs: its functionality is lower as compared to
Gromacs. This is explained by the fact that OpenMM
has a recent development history while Gromacs has
a much longer development history. In the combina-
tion of Gromacs/OpenMM our new algorithms were
developed.

5.1 Algorithms implementation

We developed an implementation of the new SD ther-
mostat for the CUDA architecture. The main computa-
tional flow is represented in figure 4 while in figure 5
we represent the GPU parallelization information flow.

First the integrator object is created. After creating it,
its corresponding function will be executed. The func-
tions that use the integrators are written in plain C, but
they call methods and functions that use CUDA, impli-
citly the kernel functions. Once a kernel is launched, it
is executed on GPU.

In consequence, thousands of threads are created,
prepared to execute the same piece of code that resides
in the kernel. Once the kernel is prepared to be

executed, the data from structures that are called inside
the kernel code are brought in the memory of the GPU
and also the relevant data, in the memory of each multi-
ple processors. This way, the threads have direct access
to the data relevant to them. Once all the threads are fi-
nished and the kernel code has been executed, the
results are sent to the processor and RAM, and the
execution is continued on the CPU.

In order to use this integrator, the friction factor
and the reference temperature must be specified in the
*.mdp file. In the openmm_wrapper.cpp file of Gro-
macs, when this integrator is called, a new object from
the SDNew Integrator is instantiated. This way, the spe-
cific methods and kernels are called. The main algo-
rithm is located in the kSDNewUpdate.h. The kernel
methods are called in the file CudaKernels.cpp, where
the SDNew integrator is created and used.

5.2 Performance results

The SD thermostat was tested on the same system of
Martini coarse grained water. The number of particles
varied from small systems to bigger systems. All the
systems were tested on a quadcore machine with a pro-
cessor type Intel (R) Core (TM) i7 with 2.67 Mhz fre-
quency and 1.5 Gb internal memory per core and a
NVIDIA GEForce 9600 GT graphical card with 512 Mb
memory and 64 GPU processors. When comparing the
new algorithm with the old SD algorithms, the differ-
ence in performance was not that visible as in the pre-
vious case due to the overhead introduced by the com-
munication between main memory and NVIDIA CARD
(see below) which makes the performance improvement
not to be visible.

Comparing the ns/day obtained for one processor,
for two processors and on NVIDIA, it can be noticed
that the performance on NVIDIA is increased with
almost 70% comparing to one processor for the same
machine. But this happens on systems, with less than
80000 particles. For larger systems the performances on
NVIDIA card start to be comparable to just one proces-
sor (see figure 6). Because of the reduced memory of

Figure 4. Main computational flow.

MPI and GPU parallelization of novel SD algorithms 1291

Figure 5. Main information flow on CUDA.

the GPU, a big number of particles cannot be loaded
on the board. Also it means that the interchange of data
between the GPU shared memory of each micropro-
cessor and the main slow memory of the GPU occurs

Figure 6. Performance results.

very often, which increases the latency. For larger sys-
tems there it is needed more data transfers between the
GPU memory and the ram memory, fact that explains
the decrease in the performance of the algorithm.

6. Discussion and conclusions

In this article, we have shown that the application of
impulsive friction and noise, as introduced by Peters,12

provides a valid implementation for Markovian stochas-
tic dynamics with predictable thermostat behaviour.
This is true for the traditional particle-based simple
Langevin dynamics.

What are the advantages and disadvantages of the
application of impulsive friction and noise? Firstly,
the phase space distribution remains canonical, which
cannot be guaranteed for weak-coupling global ther-
mostats.1 Secondly, the temperature response is a
smooth first-order decay, which avoids many problems
of extended-system global thermostats.4,6

We also described the MPI and the GPU paralleliza-
tion of novel SD of molecular systems simulations.
The new algorithms were developed by the Molecular
Dynamics Group of the University of Groningen. The

1292 N Goga

algorithms were parallelized on the Gromacs/OpenMM
software for molecular dynamics. The new SD algo-
rithm is going to be introduced in the next release of
Gromacs tool of molecular dynamics. For MPI effi-
ciency experiments, we can conclude that our new algo-
rithm performs better than the existing algorithms from
the literature or implemented in Gromacs.

For CUDA, the performances of the new SD algo-
rithms are similar with the previous SD algorithms
implemented in Gromacs because of the overhead pro-
duced by the communication between internal memo-
ry and Nvidia card. The performances of the algo-
rithm have also been compared with the performances
of the code on one, two and four processors. It can be
observed that the performance obtained on the GPU is
greater than on a single processor, but not equivalent
with two processors. Comparing the ns/day obtained
for one processor, for two processors and on NVIDIA,
it can be noticed that the performance on NVIDIA is
increased with almost 70% compared to one processor.
This happens on systems with less than 80000 parti-
cles. For larger systems the performances on NVIDIA
card start to be comparable to just one processor. Simi-
lar conclusions for larger atomistic systems were drawn
for other MD algorithms on GPU in literature (see for
example ref 18). It can be concluded that the paralleliza-
tion through the use of graphical cards improves the
performances of the runs as compared to the serial ver-
sion of the code (for the case of atomistic systems with
smaller number of particles).

Based on the observed results, for the case of sys-
tems with larger number of particles, the performances
on GPU are not as good as for the ones with smaller
number of particles. Therefore there is room for more
improvements, for designing and implementing better
computational algorithms (in future) that will improve
the GPU performances for the case of systems with
larger number of particles (larger than 80000 particles).
This can be a direction for future work.

The presented algorithms are going to be included in
the new Gromacs tool release. As applications of the
novel SD algorithms presented, this model is going to
be used for studying a large range of chemical systems
for a large range of phenomena.

References

1. Berendsen H J C, Postma J P M, van Gunsteren W F,
Dinola A and Haak J R 1984 J. Chem. Phys. 81 3684

2. Morishita T 2000 J. Chem. Phys. 113 2976
3. Harvey S C, Tan R K Z and Cheatham T E 1998

J. Comput. Chem. 19 726
4. Hoover W G 1985 Phys. Rev. A31 1696
5. Martyna G J, Tuckerman M E and Klein M L 1992

J. Chem. Phys. 97 2635
6. Berendsen H J C 2007 Simulating the physical world,

A hierarchy of models for simulation (Cambridge, UK:
Cambridge University Press)

7. Van Gunsteren W F, Berendsen H J C and Rullmann
J A C 1981 Mol. Phys. 44 69

8. Van Gunsteren W F and Berendsen H J C 1982 Mol.
Phys. 45 637

9. Van Gunsteren W F and Berendsen H J C 1983 in The
physics of superionic conductors and electrode materi-
als (ed) J W Perram, NATO ASI Series B92 (New York:
Plenum) p. 241

10. Van Gunsteren W F and Berendsen H J C 1988 Mol.
Simul. 1 173

11. Allen M P 1980 Mol. Phys. 40 1073
12. Peters E A F J 2004 Europhys. Lett. 66 311
13. Andersen H C 1980 J. Chem. Phys. 72 2384
14. Hess B, Kutzner C, van der Spoel D and Lindahl E 2008

J. Chem. Theory Comput. 4 435
15. Marrink S J, Risselada H J, Yefimov S, Tieleman D P

and de Vries A H 2007 J. Phys. Chem. B 27 7812
16. van der Spoel D, Lindahl E, Hess B, van Buuren A R,

Apol E, Meulenhoff P J, Tieleman D P, Sijbers A L T M,
Feenstra K A, van Drunen R and Berendsen H J C 2005
Gromacs User Manual version 4.0, www.gromacs.org

17. OpenMM, https://simtk.org/home/openmm
18. Friedrichs S, Eastman P, Vaidyanathan V, Houston M,

LeGrand S, Beberg A L, Ensign D, Bruns C M and
Pande V S 2009 J. Comput. Chem. 30(6) 864872

http://www.gromacs.org
https://simtk.org/home/openmm

	Simulating chemical systems: MPI and GPU parallelization of novel SD algorithms
	Abstract
	Introduction
	The impulsive Langevin leap-frog algorithm for systems without constraints
	Is the velocity distribution canonical?
	How does the temperature behave with time?
	Slow and fast thermostats

	Computational details
	Simulation details

	Results
	MARTINI coarse-grained water
	Performance

	Implementation on CUDA
	Algorithms implementation
	Performance results

	Discussion and conclusions
	References

