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Ultrasonic synthesis and crystal structure analysis of two
trimethylsilyloxy-substituted bicyclo[2.2.2]octene derivatives

H T SRINIVASAa, H NAGARAJAIAHa, B S PALAKSHAMURTHYb,
S HARIPRASADa and NOOR SHAHINA BEGUMa,∗
aDepartment of Studies in Chemistry, Central College Campus, Bangalore University,
Dr. B R Ambedkar Street, Bangalore 560 001, India
bDepartment of Post Graduate Studies and Research in Physics, Tumkur University, Tumkur 572 103, India
e-mail: noorsb@rediffmail.com; noorsb05@gmail.com

MS received 27 August 2012; revised 25 May 2013; accepted 4 July 2013

Abstract. The compounds: 11-trimethylsilyloxy-1,2,3,4,4a,9a-hexahydro-1,4-etheno-anthraquinone and
4-benzyl-8-trimethylsilyloxy-4-aza-tricyclo[5.2.2.0]undec-8-ene-3,5-dione were synthesized by the Diels–
Alder [4πs +2 πs] cycloaddition reaction of 2-(trimethylsilyloxy)-1,3-cyclohexadiene with naphthaquinone
and N-benzylmaleimide under ultrasonic conditions. The crystal structure analysis was done using single
crystal X-ray diffraction method. In both the compounds, the trimethylsilyloxy- and naphthaquinone/
N-benzylmaleimide moieties are endo- to the bicyclic ring.

Keywords. Ultrasonication; trimethylsilyloxy-derivatives; bicyclo[2.2.2]octene; Diels–Alder reaction;
crystal structure; C–H. . . O and π . . . π interactions.

1. Introduction

The atomic radius of silicon is larger than carbon,
whereas the electronegativity of silicon is lower in
comparison to carbon.1 However, when elemental sili-
con is converted into organosilyl- based reagents, the
silyl- groups behave as weak electron donating groups,
becoming prone to attack by nucleophiles.2 This ren-
ders the organosilyl- moiety to behave as anionic syn-
thons. The synthons have wide applications in synthetic
organic chemistry.

Cyclohexa-1,3-dienes and silyl- substituted 1,3-
cyclohexadienes have been used for construction of the
bicyclo[2.2.2]octene derivatives employing the Diels–
Alder [4π s+2π s] reaction.3 Recent work has shown
that the endo- product is invariably predominant in the
reaction of dienes with dienophiles.4 The formation of
the endo- isomer plays an important role in the design
of drugs,5 natural products6 and other organosilicon
based reagents.7 Recently, the quantitative relationship
between structural studies and reactivity properties
of silyl- derivatives were studied.8 The structural
studies indicated a self-assembly facilitated via the
rare co-existence of dimeric and catemeric pat-
terns of bicyclo[2.2.2]octadiene, bicyclo[2.2.2]octane
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and bis(trimethylsilyl)-5-norbornene skeletons, respec-
tively.9,10 All these parameters were attributed to the
influence of the trimethylsilyl- group.

These findings prompted us to synthesize compounds
11-trimethylsilyloxy-1,2,3,4,4a,9a-hexahydro-1,4-etheno-
anthraquinone (3a) and 4-benzyl-8-trimethylsilyloxy-
4-aza-tricyclo[5.2.2.02,6]undec-8-ene-3,5-dione (3b).
The single crystal X-ray diffraction studies revealed
that the product with endo- stereospecific geometry
is preferred over the exo- product in the Diels–Alder
cycloaddition reactions.

2. Experimental

2.1 Materials and characterization

All the chemicals were reagent grade and used as
such without purification. Ultrasonic reactions were
performed using OSCAR ultrasonic cleaner-109 (9.5
litres, 34 KHz power and 250 watts ultrasonic power).
The reactions were monitored using TLC and the prod-
ucts purified by column chromatography on silica gel
(60–120) mesh using 5% ethyl acetate in hexane as
an eluent. The compounds were crystallized with ethyl
acetate to get good crystals for crystallographic studi-
es. IR spectra were recorded on Shimadzu FTIR-8400
spectrophotometer. The structures were confirmed
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using 1H-NMR, 13C-NMR (Bruker 400 spectrome-
ter). Elemental analyses were obtained using Carlo-
Erba1106 analyser.

2.2 Experimental procedure for the preparation of
11-trimethylsilyloxy-1,2,3,4,4a,9a-hexahydro-1,4-
e theno-anthraquinone (3a ) and 4-ben zy l -8-
trimethylsilyloxy-4-aza-tricyclo[5.2.2.02,6]undec-8-ene-
3,5-dione (3b)

Cyclohexenone (1) was treated with chlorotrimethyl-
silane and triethylamine in dimethylformamide as a
solvent to obtain compound 2-(trimethylsilyloxy)-
1,3-cyclohexadiene (2) under classical thermal
conditions.11 A mixture of naphthaquinone (1.58 g,
10 mmol); or N -benzylmaleimide (1.87 g, 10 mmol)
and 2-(trimethylsilyloxy)-1,3-cyclohexadiene (2)
(3.36 g, 20 mmol) in 10 mL toluene were irradiated in a
water bath under ultrasonication for 2 h at room temper-
ature (scheme 1).12 After completion of the reaction the
solvent was removed under reduced pressure, extracted
with ethyl acetate (10 ml), washed with water and dried
over anhydrous sodium sulphate. Single crystals of 11-
trimethylsilyloxy-1,2,3,4,4a,9a-hexahydro-1,4-etheno-
anthraquinone (3a) and 4-benzyl-8-trimethylsilyloxy-
4-aza-tricyclo[5.2.2.02,6]undec-8-ene-3,5-dione (3b)
were obtained individually by re-crystallization using
ethyl acetate at room temperature.

2.3 Physical measurements

2.3a 11-Trimethylsilyloxy-1,2,3,4,4a,9a-hexahydro-
1,4-etheno-anthraquinone (3a): Yield: 92%. M. p.:
112–113◦C. IR: 2922, 2852 (alkyl CH2), 1680 (C =
O), 1631 (Ar-CH = CH-), 1234 (-OSiMe3) cm−1; 1H-
NMR: δ 8.14 (m, 2H, Ar-H), 7.80 (m, 2H, Ar-H), 4.95
(d, 1H, J = 2.5, C = CH), 3.43–3.15 (m, 4H, 4× CH),

2.93–1.51 (m, 4H, 2 × CH2), 0.12 (s, 9H, -SiMe3)

ppm; 13C-NMR: δ 198.6 (C = O), 197.6 (C = O),
155.9 (C = C-O-Si), 136.4 (-C = C-, Ar), 132.3(CH =
CH, Ar), 127.1 (CH = CH, Ar), 102.5 (C = C–O),
51.6 (CH), 37.3 (CH2), 26.5 (CH), 0.0 (-SiMe3) ppm;
GC-MS: 326.3[M+1], 318, 292, 276, 271, 254 [base
peak], 73; Anal. Calcd for C19H22O3Si: C, 69.90%; H,
6.79%. Found: C, 69.81%; H 6.74%.

2.3b 4-Benzyl-8-trimethylsilyloxy-4-aza-tricyclo-
[5.2.2.02,6]undec-8-ene-3,5-dione (3b): Yield: 70%.
M. p.: 114–115◦C. IR: 2955, 2856 (CH2), 1770
(C = O), 1633 (Ar-CH = CH-), 1251 (-SiMe3) cm−1;
1H-NMR: δ 7.32 (m, 5H, Ar–H), 4.86 (m, 1H, -C =
CH), 4.84 (s, 2H, Ar-CH2-N), 3.13–2.74 (m, 4H, 4 ×
CH), 1.58 (m, 4H, 4 × CH2), 0.12 (s, 9H, -SiMe3)

ppm; 13C-NMR: δ 178.6 (C = O), 177.8 (C = O),
154.3 (C = C-O-Si), 135.9 (C = C, Ar), 132.3 (CH =
CH, Ar), 127.6 (CH = CH, Ar), 101.3 (C = C-O),
45.1 (Ar-CH2-N), 44.5 (CH), 32.2 (CH2), 25.2 (CH),
0.02 (-SiMe3) ppm; GC-MS: 355 [M + 1], 189, 168,
151, 91[base peak], 73; Anal. Calcd for C20H25NO3Si:
C, 67.57%; H, 7.09%; N 3.94%. Found: C, 67.74%;
H 6.80%; N, 3.57%.

2.4 X-Ray diffraction analysis

Good quality single crystals were obtained upon re-
crystallization of compounds 3a and 3b by slow
evaporation of their solutions in ethyl acetate sol-
vent. The X-ray diffraction data, for the compounds
3a and 3b were collected on a Bruker Smart CCD
Area Detector System using MoKα (0.71073 Å) radi-
ation. The data were reduced using SAINT-Plus.13

The structures were solved by direct method using
SHELXS9714 and refined by difference Fourier synthe-
ses using SHELXL97.14 The positions and anisotropic
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Scheme 1. Ultrasonic synthesis of compounds 3a and 3b.



Ultrasonic synthesis and crystal structure analysis 1081

displacement parameters of all non-hydrogen atoms
were included in the full-matrix least-square refine-
ment using SHELXL9714 and the procedures were car-
ried until convergence was reached. Then the hydro-
gen atoms were fixed geometrically and were refined
isotropically. Molecular diagrams were generated using
ORTEP.15 The mean plane calculations were done using
the program PARST.16

2.4a Compound (3a): Intensity data were collected
at 296 K in the ω–� scan mode. A total of 38323
reflections were collected, resulting in 7653 [R(int) =
0.0561] independent reflections, of which the number
of reflections satisfying I > 2σ (I) criteria were 4598.
The R factor on convergence R = 0.0676.

2.4b Compound (3b): Intensity data were collected
at 296 K in the ω–� scan mode. A total of 22289

reflections were collected, resulting in 4189[R(int) =
0.0428] independent reflections, of which the number
of reflections satisfying I > 2σ (I) criteria were 3155.
The R factor onconvergence R = 0.0451.

3. Results and discussion

3.1 Chemistry

The infrared spectrum of compounds 3a and 3b shows
a sharp band at 1251 cm−1 characteristic to the presence
of trimethylsilyl- group. The IR spectrum also showed
a strong band at 1770 cm−1 confirming the presence of
C=O group. In the 1H-NMR spectra of compound 3a a
doublet at δ 4.95 ppm indicated the vinylic proton and
multiplet signal at δ 8.14–7.80 ppm confirmed the aro-
matic protons. In compound 3b benzylic protons reso-
nate at δ 4.84 ppm in addition to vinylic and aromatic

Table 1. Crystal data and structure refinement of compounds 3a and 3b.

Compound 3a 3b

Empirical formula C19H22O3Si C20H25NO3Si
Formula weight 326.46 355.50
Temperature 296(2)K 296(2)K
Wavelength 0.71073 Å 0.71073 Å
Crystal system, space group Monoclinic, P21/c Triclinic, P ı̄
Unit cell dimensions

a 16.070(7)Å 9.0565(11)
b 17.935(7) Å 9.9342(12)
c 13.160(5)Å 11.7672(15)
α (◦) 90 84.659(4)
β (◦) 112.360(7) 69.482(4)
γ (◦) 90 77.424(4)
Volume Å3 3508(2) 967.6(2)
z 8 2
Calculated density (Mg/m3) 1.236 1.220
Absorption coefficient (mm−1) 0.146 0.139
F(000) 1392 380
Crystal size (mm) 0.18 × 0.16 × 0.16 0.18 × 0.16 × 0.16
Theta range for data collection 1.78 to 27.00 deg. 1.85 to 27.00
Limiting indices −20 <= h <= 20, −11 <= h <= 11

−22 <= k <= 22, −12 <= k <= 12
−16 <= l <= 16 −15 <= l <= 15

Reflections collected/unique 38323/7653 22289/4189
[R(int) = 0.0561] [R(int) = 0.0428]

Completeness to theta 27.00 100.0% 27.00 98.9%
Max. and min. transmission 0.9770 and 0.9742 0.9781 and 0.9754
Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2

Data/restraints/parameters 7653/0/431 4189/0/229
Goodness-of-fit on F2 0.968 0.962
Final R indices [I > 2sigma (I)] R1 = 0.0676, R1 = 0.0451,

wR2 = 0.1334 wR2 = 0.1044
R indices (all data) R1 = 0.1190, R1 = 0.0645,

wR2 = 0.1508 wR2 = 0.1122
Largest diff. peak and hole (e.A−3) 0.273 and −0.217 0.213 and −0.267
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protons. All this information attributed to the forma-
tion of compounds 3a and 3b. All other analytical data
were in good agreement with the reported chemical
structure.17

3.2 Crystallography

Summary of crystallographic data and other struc-
ture refinement parameters of the compound 3a are as
shown in table 1. Tables 2 and 3 show the respec-
tive hydrogen bond interactions in compounds 3a and
3b, respectively. The ORTEP diagram of the two inde-
pendent molecules present in the asymmetric unit of
compound 3a, showing 50% probability ellipsoids and
the atom numbering scheme is shown in figure 1.
The ORTEP view of the molecule 3b with atom
labelling (thermal ellipsoids drawn at 50% probability)

is shown in figure 2. Figures 3 and 5 show the C–
H. . . O intermolecular interaction in compounds 3a and
3b, respectively. Figure 4 shows the π–π interaction in
compound 3a.

In compound 3a there are two independent molecules
in the asymmetric unit. One of the oxygen atom of one
molecule is disordered over two sites with an occu-
pancy ratio of 0.754 (2):0.246 (1), resulting in a major
and a minor conformer. The bicyclic eight-membered
rings are substituted with naphthaquinone at the one
side and the silyloxy- group at the other side. Both the
substituents are endo- to the bicyclic rings with dihedral
angles of 108◦ and 115◦, respectively. In the molecule,
cyclohexene rings A(C6B/C9B/C8B/C5B/C10B/C7B)
and B(C7B/C8B/C9B/C10B/C11B/C12B), and the
cyclohexane ring C(C5B/C6B/C10B/C11B/C12B/C7B)
of the bicyclo[2.2.2]octene unit adopt distorted boat

Table 2. Non-bonded interactions and possible hydrogen bonds (Å, ◦) for compound 3a (D-donor;
A-acceptor; H-hydrogen).

D–H· · ·A D–H H· · ·A D· · ·A D–H· · ·A
C17A-H17A...O2Bi 0.930 2.494 3.182(5) 130
C18A-H18A...O2Aii 0.930 2.668 3.493(4) 148

Symmetry code: (i) −x, +y + 1/2, −z + 1/2, (ii) x, −y + 1/2 + 1, +z − 1/2

Table 3. Non-bonded interactions and possible hydrogen bonds (Å, ◦) for compound 3b (D-donor;
A-acceptor; H-hydrogen).

D–H· · ·A D–H H· · ·A D· · ·A D–H· · ·A
C2-H2...O1i 0.980 2.485 3.359 (2) 148
C4-H4A...O2ii 0.970 2.490 3.343(2) 146

Symmetry code: (i) −x + 1, −y + 2, −z + 1, (ii) −x, −y + 2, −z + 2

Figure 1. ORTEP diagram of the two independent molecules present in
the asymmetric unit of compound 3a, showing 50% probability ellipsoids
and the atom numbering scheme.
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Figure 2. ORTEP view of compound 3b, showing 50% probability ellipsoids and the atom-numbering scheme.

Figure 3. Crystal structure of 3a viewed along ‘c’ axis. Dotted lines indicate intermolecular C–H. . . O interactions.

like conformations as reported earlier.18 The ring
puckering parameters Q, θ and φ are 0.875 (2) Å,
−60.15 (2)◦ and 90.4 (1)◦, respectively for ring A,
0.786 (2) Å, −179.85 (2)◦ and 90.41 (2)◦, respectively
for ring B, and 0.816 (2) Å, 119.93 (2)◦ and 90.14 (2)◦,
respectively for ring C.19

The crystal structure of the compound 3a is stabi-
lized by two types of C–H. . . O intermolecular inter-
actions. These interactions result in the formation of
chains along ‘c’ axis (figure 3). The molecular pack-
ing is further stabilized by π–π stacking interac-
tions between naphthaquinone rings with the shortest

centroid–centroid distance being 3.636Ǻ for C3A-C2B
carbons (figure 4).

Compound 3b crystallizes in triclinic crystal system
with space group Pı̄ (figure 5). The bicyclo[2.2.2]octene

ring is substituted with N -benzylmaleimide at one end
and the trimethylsilyloxy-group at the other end. Due
to steric-hindrance in the ring both the substituents
adopt endo-conformation, this is in good agreement
with the theoretical predictions.20,21 The phenyl ring
of N -benzylmaleimide group is positioned axially to
the methyl-pyrrolidine-2,5-dione ring with a dihedral
angle of 67.36 (5)◦. In the molecule, cyclohexene rings
A(C6/C7/C8/C9/C10/C11) and B(C6/C7/C8/C9/

C1/C2), and the cyclohexane ring C(C6/C1/C2/C9/

C10/C11) of the bicyclo[2.2.2]octene unit, all the three
rings adopt distorted boat conformations as seen in
compound 3a. The ring puckering parameters Q, θ and
φ are 0.787 (2) Å, 89.29 (1)◦ and 0.787 (2)◦, respec-
tively for ring A, 0.81 (2) Å, 94.31 (2)◦ and 176.46
(2)◦, respectively for ring B, and 0.889 (2) Å, 90.7 (1)◦
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Figure 4. Compound 3a, showing π–π stacking interac-
tions between naphthaquinone rings.

Figure 5. Molecular packing of compound 3b viewed
along ‘a–c’ diagonal plane. Dotted lines indicate intermole-
cular C–H. . . O interactions.

and −176.25 (1)◦, respectively for ring C.19 Both the
oxygen atoms of the pyrrolidine-2,5-dione ring are
taking part in the hydrogen bond.

The crystal structure is stabilized by two types of C–
H. . . O intermolecular interactions, both the interactions
result in the formation of centrosymmetric head-to-head
dimers generating one-dimensional chain along ‘a–c’
diagonal plane with graph set motif R2

2(8) and R2
2(10),

respectively.
The overall conformation in compounds 3a and

3b are very similar. For example, the dihedral angle
between the three rings of bicyclo[2.2.2]oct-5-ene unit
of compound 3a is 108◦/108◦, 109◦/108◦, 108◦/108◦,
and the compound 3b is 108◦, 107◦and 106◦. The sub-
stituents in both the compounds are endo- to each other.

4. Conclusion

We report the synthesis of two trimethylsilyloxy-
substituted bicyclo[2.2.2]octene derivatives by Diels–
Alder [4π s+2π s] cycloaddition reactions using
ultrasound conditions. Single crystal X-ray diffraction
studies showed both the products to have endo- stereo-
chemistry. The molecular structures reveal that there
is presence of C–H. . . O and π–π interactions that
stabilize the structure.

Supplementary material

The CIF files are deposited at the Cambridge Crystal-
lographic Data Centre, The deposition number of com-
pound 3a is CCDC-892079 and 3b is CCDC-892080.
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