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Abstract. In the present study, both classification and correlation approaches have been successfully
employed for development of models for the prediction of CDK4 inhibitory activity using a dataset comprising
of 52 analogues of 4-aminomethylene isoquinoline-1,3-(2 H ,4 H)-dione. Decision tree, random forest, moving
average analysis (MAA), multiple linear regression (MLR), partial least square regression (PLSR) and prin-
cipal component regression (PCR) were used to develop models for prediction of CDK4 inhibitory activity.
The statistical significance of models was assessed through specificity, sensitivity, overall accuracy, Mathew’s
correlation coefficient (MCC), cross validated correlation coefficient, F test, 2 for external test set (pred_r?),
coefficient of correlation of predicted dataset (pred_ r>Se) and intercorrelation analysis. High accuracy of pre-
diction offers proposed models a vast potential for providing lead structures for the development of potent

therapeutic agents for CDK4 inhibition.
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1. Introduction

Dysregulation of cell-cycle leading to an uncontrolled
cellular proliferation is a universal characteristic of
cancer.! Progression of cells through the cell-cycle is
dependent on the formation of specific protein kinase
complexes called as cyclin dependent kinases (CDKs)
which form in a cyclical fashion.> The CDKs are a
family of heterodimeric Ser/Thr protein kinases each
consisting of a catalytic CDK subunit and an activat-
ing cyclin subunit.>* Activities of CDKs are controlled
by association with cyclins and reversible phosphory-
lation reactions.’> The association of the CDKs with
their requisite cyclin partner results in the CDKs adopt-
ing a substrate-specific catalytic subunit.® The biologi-
cal activity of CDKs is negatively controlled by direct
interactions with proteins referred to as CDK inhibitors.
CDK inhibitors are divided into two major families:
the Ink4 family, which specifically inhibit cyclin D-
associated kinases (CDK 4 and 6) and the Cip/Kip
family which inhibit most of the CDKs.” The CDK4
initiate the functional change from quiescence (Gy)
to proliferation. The major Cdk4/cyclin D substrate is
the product of the retinoblastoma gene (pRB).® Dur-
ing G1, pRB induces the members of a family of

*For correspondence

cell cycle regulatory transcription factors, collectively
referred to as E2Fs, to activate the transcription of genes
whose products are required for S phase.”!* Alter-
ations in the cascade involving CDK4, CDK®6, cyclin D,
Ink4, pRB and E2F have been observed in more than
80% of human cancers. Therefore, the development
of selective CDK4 inhibitors is a promising approach
for cancer therapy.''~'* In addition, the identification
of specific amino acid residues of the kinase super-
family around the ATP-binding pocket of CDK4 have
enabled the researchers to develop potent and selec-
tive CDK4 inhibitors.'> The structure-based design
of potent and selective CDK4 inhibitors led to the
development of several classes of compounds, includ-
ing pyrido[2,3-d] pyrimidines,'® 2-anilinopyrimidines,
diaryl ureas, benzoyl-2,4-diaminothiazoles, indolo[6,
7-a] carbazoles,!” pyrrolo[3,4-c]carbazoles'®! and
oxindoles.”” The various CDK inhibitors that are
currently in pre-clinical and clinical trials are UCN-
01, PD 0183812, Flavopiridol,?! R547,% AT7519,%
SNS-032, Roscovitine (CYC202) JNJ-7706621, AG-
024322, AT7519, AZD5438, P1446A-05, P276-00 and
PD-0332991. Among the above mentioned, the com-
pound PD 0332991 and P1446A-05 are selective CDK4
inhibitors.>** Despite more than a decade of inves-
tigation, none of the CDK inhibitors resulted in drug
approval owing to low activity and toxicity in the
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clinical trials.'>* Therefore, there is a strong need to
develop potent and selective CDK inhibitors.

The search for novel active compounds and the opti-
mization of these compounds to increase their acti-
vity or reduce their toxicity requires huge sum of money
and time as a large number of compounds are needed
to be synthesized and subsequently evaluated for bio-
logical activity.?® The technological contributions like
high-throughput synthesis and screening have enhanced
the impact of computational chemistry on the drug dis-
covery process by efficiently managing costly resources
and dramatically shortening the drug discovery cycle
time.?” A contemporary trend over the years has been
the expansion of the QSAR concept to encompass a
variety of pharmaceuticals. The major goal of QSAR
research is to assign to the structure a number or a set
of numbers which must correlate well with the biologi-
cal activity value measured experimentally. This numeri-
cal representation of the structure which describes the
structure is called a molecular descriptor. Molecu-
lar descriptors can be derived in either empirical or
non-empirical ways.?® The traditional QSAR is nor-
mally based on large number of empirical parame-
ters. Non-empirical parameters of chemical structure
derived from graph theoretic formalism are being used
more frequently by many researchers in QSAR studi-
es pertaining to molecular design and pharmaceutical
drug design. When a single number represents a graph
invariant, it is known as topological index.?’ In con-
trasting graph theoretical schemes to traditional quan-
titative structure-activity relationship (QSAR) meth-
ods, one cannot fail to observe the complementarity of
the two approaches. But the prime distinction between
graph theoretical schemes and traditional QSAR is that
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the former is ‘structure-explicit’ while the latter is
‘structure-cryptic’.*

In the present study, both classification and correla-
tion approaches have been successfully employed for
development of models for the prediction of CDK4
inhibitory activity of 4-aminomethylene isoquinoline-
1,3-(2H ,4H)-dione derivatives. !

2. Experimental
2.1 Data set

All the 52 4-aminomethylene isoquinoline-1,3-(2H,
4 H)-dione derivatives reported by Tsou et al. as CDK4
inhibitors were selected as a data set for the purpose of
present study.*' The basic structures for the said deriva-
tives are shown in figure 1 and various substituents
enlisted in table S1.

2.2 Molecular descriptors (MDs)

MDs of diverse nature were used in the current
study. These included physico-chemical descriptors,
path count, path cluster, estate contribution descriptors,
polar surface area descriptors, element counts, topologi-
cal descriptors and a variety of alignment independent
descriptors. All computational work was performed on
Apple workstation (8-core processor) using V-life MDS
QSAR plus developed by V life sciences technolo-
gies Pvt. Ltd, Pune, India. The values of other MDs
which are not the part of V-life MDS QSAR plus were
computed using an in-house computer program.

(A)

Figure 1.

(B)

(D)

Basic structures and arbitrary atom numbering scheme for the 4-aminomethylene isoquinoline-1,3-dione.
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MDs with significant degenerate values were omit-
ted from a large pool of descriptors initially calcu-
lated both through V-life MDS QSAR plus software
and an in-house computer program. For the remaining
descriptors, a pair wise correlation analysis was car-
ried out (one of any two indices with r > 0.97 was
excluded to reduce redundant information). The said
exclusion method was used to reduce the collinearity
and correlation between descriptors.

Finally, 46 descriptors were shortlisted on the basis
of non-correlating nature and classification ability and
subsequently employed for present study are enlisted in
table S2.3-63

3. Classification techniques
3.1 Decision tree (DT)

DT provides a useful solution for many problems of
classification where the information contained in the
datasets is relatively complex.® In the present study,
decision tree was grown to identify the importance of
molecular descriptors. In DT, the molecules at each par-
ent node are categorized or classified, based upon the
descriptor value, into two child nodes. The prediction
for molecule reaching a given terminal node is obtained
by majority vote of molecules reaching the same
terminal node in a training set.®” In the present study, R
program (version 2.1.0) along with the RPART library
was utilized to grow DT. The active compounds were
labelled as ‘A’ (n = 15) and the inactive compounds
were similarly labelled as ‘B’ (n = 37). Each analogue
was assigned a biological activity which was subse-
quently compared with the reported CDK4 inhibitory
activity.

3.2 Random forest (RF)

Random forests (RF) were grown for CDK4 inhibitory
activity. RF grows numerous classification trees. RF
is an ensemble of unpruned decision trees created by
using bootstrap samples of the training data and random
subset of variables to define the best split at each node
(tree fork).®® Besides preserving most of the appealing
features of DT, RF performs a type of cross-validation
in parallel with training step by using so called Out-Of-
Bag (OOB). OOB data is used to calculate prediction
accuracy. In the present study, the RFs were grown sep-
arately for CDK4 inhibitory activity with the R program
(version 2.1.0) using the random forest library.
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3.3 Moving average analysis (MAA)

MAA of correctly predicted compounds is the basis
of development of single molecular descriptor based
model.“*%° For the selection and evaluation of range
specific features, exclusive activity ranges were discov-
ered from the frequency distribution of response level
and subsequently identify the active range by analysing
the resulting data by maximization of the moving aver-
age with respect to active compounds (<35% = inac-
tive, 35-65% = transitional, >65% = active). For the
purpose of MAA-based models the compounds having
reported ICsy values of <0.25 uM were considered to
be active (and labelled as ‘A’ (n = 18)) while those
possessing ICsy values > 0.25 uM were treated to be
inactive (and labelled as ‘B’ (n = 38)). The CDK4
inhibitory activity assigned to each compound was sub-
sequently compared with the reported biological acti-
vity.’! The average ICso(uM) values for each range
were also calculated.

4. Correlation techniques
4.1 Multiple linear regression (MLR)

MLR is also commonly referred to as the linear
free-energy relationship (LFER). This method repre-
sents an extension of the simple regression analysis to
more than one dimension.”® MLR normally generates
QSAR equation by performing standard multivariable
regression calculations to facilitate identification of the
dependence of a drug property on any or all of the
descriptors under investigation. !

4.2 Partial least square regression (PLSR)

PLSR is an iterative regression procedure that pro-
duces its solutions based on linear transformation of a
large number of original MDs to a small number of
new orthogonal terms called latent variables.”> PLSR
gives statistically robust solution even if the indepen-
dent variables are highly interrelated among themselves
or when the independent variables exceed the number
of observations.

4.3 Principal component regression (PCR)

Principal component analysis (PCA) is a substitute for
MLR when explanatory variables are correlated. It is
another data reduction technique that generates a new
set of orthogonal descriptors referred to as principal
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Table 1. Confusion matrix for CDK4 inhibitory activity using models based on decision tree and random forest.
Number of
d predicted
compOUN@Predicted g pecificity  Sensitivity 0OB
Model Description Ranges Active Inactive (%) (%) MCC (%)
Decision Training set Active 13 2 100 86.6 0.9 -
tree Inactive 0 37
Cross validated set Active 9 6 72.9 60 0.3 -
Inactive 10 27
Random Active 12 3 97.2 80 0.7 8
forest Inactive 1 36
Table 2. Proposed MAA based models for the prediction of CDK4 inhibitory activity.
Total Number of Overall
Nature of compounds compounds predicted accuracy of Average
Index range Index value in the range correctly prediction ICso (UM)
SssOE Lower inactive <24.868 17 17 93.3 5.17
Active 24.868 to 25.02 11 10 0.13
Transitional >25.02-25.1 8 NA NA
Upper inactive >25.1to >46.56 16 14 18.38
AcgC Inactive <19.28 21 21 90.6 5.71
Transitional 19.28 to <20.46 20 NA NA
Active 20.46 to <22.04 11 8 0.18
x4 Lower inactive <14.47 18 18 94.4 5.19
Lower transitional 14.47 to <14.89 8 NA NA
Active 14.895 to <15.26 8 7 0.12
Upper inactive 15.26 to <16.07 9 8 7.33
Upper transitional >16.07 9 NA NA
Céc Inactive <5.42 20 20 96.2 5.17
Transitional 5.42 to <5.64 25 NA NA
Active 5.64 to <5.85 7 6 0.10

NA: Not applicable

*Values in brackets are based upon correctly predicted analogues in the particular range

components (PCs) which describe most of the infor-
mation contained in the independent variables in order
of decreasing variance. Consequently, PCA reduces
dimensionality of a multivariate data set of descriptors
to the actual amount of data available. When PCs are
employed as the independent variables to perform a
linear regression, the method is termed as PCR.”

In the present study, the dataset was divided into
training and test set by random selection method for
MLR, PLSR and PCR methods using pICsy [pICsy =
—log(ICs, * 107%) as dependent variable and vari-
ous descriptors as independent variables. These mod-
els were generated using a training set of 36 molecules.
Predictive power of the resulting models was evaluated
by test set of 16 molecules. The biological activities
of all the compounds had uniform distribution ranging
from 0.027 to 50 uM.

5. Data analysis and validation

The validation of the DT based models and self-
consistency test were performed by 10-fold cross vali-
dation (CV) method. For classification models the sen-
sitivity and specificity values were calculated which
represent the classification accuracies for the active and
inactive compounds, respectively. The randomness of

Table 3. Intercorrelation matrix for MDs used in MAA.
SssOE AcgC x4 Cée
SssOE 1 0.15 0.04 -0.2
AcgC 1 0.46 0.025
x* 1 0.36
Céc 1
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model was also determined by calculating Mathew’s
correlation coefficient (MCC). The MCC values rang-
ing between —1 and +1 indicate the prediction potential
of model. MCC takes into consideration both the sensi-
tivity and specificity and is generally used as a balanced
measure in dealing with data imbalance situation.’™
The intercorrelation between estate contribution index
(SssOE), augmented eccentric connectivity topochemi-
cal index (*£S), molecular connectivity index (x*)
and connective eccentricity topochemical index (C%)
was also investigated. The degree of correlation can be
appraised by correlation coefficient ‘r’. Pairs of MDs
with r > 0.97 are normally considered highly inter-
correlated, those with 0.90 < r < 0.97 are apprecia-
bly correlated, those with 0.50 < r < 0.89 are weakly
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correlated and finally the pairs of indices with r < 0.50
are not intercorrelated.”>’® Results are summarized in
tables 1-3 and figures 2 and 3.

The following statistical measures were used to cor-
relate biological activity and molecular descriptors for
correlation models; n, number of molecules; k, num-
ber of descriptors in a model; df degree of freedom; r?,
coefficient of correlation; g2, cross validated r*; pred_r?,
r? for external test set; pred_r*Se, coefficient of corre-
lation of predicted dataset; Z score, Z score calculated
by the randomization test; best _ran_ r*; best _ran_g?,
highest g value in randomization test; «, statistical
significance parameter obtained by randomization test.
Validation was done to study the internal stability and
predictive ability of the correlation models. Internal

3

o

Figure 2. The decision tree for distinguishing active analogue (A) from
inactive analogue; (B) AS5-connective eccentricity topochemical index,
A3-augmented eccentric connectivity topochemical index, Al-molecular
connectivity index, A19-alignment independent descriptor T_C_O_7, A2-
eccentric adjacency topochemical index.
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Figure 3. Average IC5y (nM) values (based on correctly
predicted analogues) of 4-aminomethylene isoquinoline-1,
3-dione derivatives for CDK4 inhibitory activity in various
ranges of MAA-based models.

validation of correlation models was carried out using
leave-one-out (q?, LOO) method which described the
internal stability of a model.”” For external valida-
tion, the activity of each molecule in test set was
predicted using the model developed by training set.”®
The pred_r* value is indicative of the predictive power
of the current model for external test set. The robust-
ness of the models for training sets was analysed by
comparing these models to those derived for random
datasets. Random sets were generated rearranging the

Table 4. Statistical parameters of MLR, PLS and PCR.
Parameters MLR PLS PCR
N 36 36 36

df 30 32 31

2 0.72 0.72 0.72
q? 0.63 0.60 0.60
F Test 15.59 27.72 20.24
2 se 0.51 0.49 0.52
q° se 0.61 0.59 0.63
pred_r? 0.59 0.53 0.52
pred_ r’Se 0.86 0.87 0.78
best_ran_ r? 0.31 0.38 0.34
best_ran_ q° 0.11 0.21 0.13
7 score_ran_ 12 7.83 7.41 9.63
Z score_ran_ q° 4.61 4.57 5.86
o_ ran_ 2 0.00 0.00 0.00
o_ran_ q> 0.001 0.001 0.000
o_ran_ pred_r2 0.050 0.100 0.000

MLR = Multiple linear regression, PLS = partial least
square, PCR = principal component regression, n = number
of molecules of training set, df = degree of freedom, =
coefficient of correlation, q> = cross validated 12, pred 1> =
12 for external test set, pred_ r>Se = coefficient of correlation
of predicted data set
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activities of molecules in the training set. The statistical
model was derived using various randomly rearranged
activities (random sets) with the selected descriptors
and the corresponding values of q*> were calculated. The
significance of the models hence obtained was derived
based on a calculated Z score.”*’ The probability (o)
of significant of randomization test is derived by com-
paring Z score value with Z score critical value as
reported.®! Results are summarized in tables 4, 5 and
S3 and figures 4-7.

6. Results and discussion

In the present study, decision tree was built from a set
of 46 descriptors (table S2).3*%* The descriptor at root
node is most important and the importance of descrip-
tor decreases as the length of tree increases. The clas-
sification of 4-aminomethylene isoquinoline-1,3-dione
analogues (figure 1) as inactive and active using a sin-
gle tree, based on connective eccentricity topochemical
index A5, augmented eccentric connectivity topochemi-
cal index A3, molecular connectivity index Al,
alignment independent descriptor T_C_O_7 A19 and
eccentric adjacency topochemical index A2 is shown
in figure 2. The decision tree identified the connec-
tive eccentricity topochemical index A5 as the most
important index. The decision tree has classified the
analogues with an accuracy of 96%. The specificity
and sensitivity of the training set was found to be in
the order of 100% and 86.6%, respectively (table 1).
In ten-fold cross-validation, 69% of aminomethylene
isoquinoline-1, 3-diones analogues were correctly clas-
sified with regard to biological activity. The specificity
and sensitivity of cross validated set was found to be
72.9% and 60%, respectively (table 1).

The random forests were grown with 46 descriptors
enlisted in table S2. The importance of node was deter-
mined by mean decrease in accuracy. The RF classified
aminomethylene isoquinoline-1,3-diones analogues as
inactive and active with an accuracy of 96.4% with
respect to CDK4 inhibitory activity. The out-of-bag
(OOB) estimate of error was found to be only 8%. The
specificity and sensitivity were of the order of 97.2%
and 80%, respectively and the value of MCC was found
to be 0.7 as given in table 1. High values of MCC simply
indicate robustness of the proposed DT and RF based
models for CDK4 inhibitory activities.

Using a single descriptor at a time, four independent
MAA-based models using E-state contribution index
(SssOE), augmented eccentric connectivity topochem-
ical index (“£¢), molecular connectivity index (x*)
and connective eccentricity topochemical index (CEC)
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Table 5. Reported and predicted activity of 4-aminomethylene isoquinoline-1, 3-dione derivatives used in test set for CDK4
inhibitory activity by MLR.
Plcgo
S. No. Index R ICs50 (UM)* Reported Predicted Residual
1. 13a @S 12.1 49172 6.1262 —1.209
2. 14a ) 0.48 6.3188 6.1262 0.1926
3 15a @g:gf 41 43872 42038 0.1834
4. 16a )e=e- 1.62 5.7905 6.3819 —0.5914
5. 18a — ) 0.1 7 5.9013 1.0987
6. 18b — )« 29 4.5376 5.5510 ~1.0134
7. 19b @OH 33 5.4815 6.1262 —0.6447
8. 20b —()-on 3.5 5.4559 5.6047 —0.1488
9. 21b @m 0.92 6.0362 6.3819 —0.3457
10. 22b —)ome 34.7 4.4597 5.9013 —1.4416
11. 23b 0O 0.037 7.4318 6.9340 0.4978
12. 24b -CN 27.8 4.5560 4.9132 —0.3572
13. 25b —NAN—cHa 0.32 6.4948 6.1262 0.3686
)_/
ad
14. 5¢ {Jrew 2.8 5.5528 5.1650 0.3878
15. 5d N e 0.13 6.8862 4.9292 1.957
—N
16. 6d ()N e 1.25 5.9031 6.75 —0.8469

* = Compound concentration in micro mole required to inhibit CDK4 activity by 50%
#=—Log (ICs5p * 107%)

were developed (table S1). The proposed models have
been illustrated in table 2. The overall accuracy of
prediction varied from 90.6% for augmented eccen-
tric connectivity topochemical index (“£5) to 96.2%
for connective eccentricity topochemical index (CSC).
Transitional ranges were observed in all the models
indicating a gradual change in CDK4 inhibitory activ-
ity. The average ICs, (table 2 and figure 3) for
- active range in all the models varied from 0.15 uM
e °o% . * to 0.32 uM. The observation of extremely low average
R o ICs values indicates high potency of the active ranges
© in the proposed models. Consequently, these models
offer vast potential for development of potent CDK4
inhibitors.

Intercorrelation analysis (table 3) revealed that E-
state contribution index (SssOE), augmented eccen-
tric connectivity topochemical index (*£5) molecular

Predicted activity pIC50
S
.
o

Actual activity pIC50

Figure 4. Graph of reported vs. predicted activities for

training and test set molecules by multiple linear regres-
sion (MLR) model. Training set (solid squares) and test set
(hollow squares).

connectivity index (x”) and connective eccentricity
topochemical index (C SC) are not correlated with each
other.
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Figure 5. Plot of percentage contribution of each descrip-
tor in developed MLR model explaining variation in the
activity.

After QSAR study by MLR using forward—backward
step-wise variable selection method, the final equa-
tion developed and the statistical data observed are
illustrated below.

plCy, = 0.1841 (T_C_O_7)
— 0.4806 (rotatable bond count)
+ 0.1247 (SsOHE-index)
—0.7727 (T_2_C1_7)
— 0.1639 (SssOE-index) + 7.4965.

8

Predicted activity pIC50
(=)}

Actual activity pIC50

(a)

Figure 6.
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The QSAR model had a correlation coefficient (r*) of
0.72, significant cross validated correlation coefficient
(g% of 0.63, F test of 15.59, r* for external test set
(pred_r*) 0.59, and degree of freedom 30. The model
developed predicts 63% of variance and is validated by
an external set of compounds with a predictive corre-
lation coefficient of 0.59. The model is validated by
o_ran_r> = 0.00, o_ran_g*> = 0.001, «_ran_pred_r*> =
0.05, best_ran_r* = 0.31, best_ran_q* = 0.11, Z
score_ran_r> = 7.83, Z score_ran_q*> = 4.61 (table 4).
The randomization test suggests that the developed
model has a probability of less than 1% and that the
model is generated by chance. The predictability of
model was evaluated by test set of compounds.

The reported and predicted pICs, for training set
along with residual values are presented in table S3.
The predictive ability of model evaluated using test
set is presented in table 5. The plot of reported vs
predicted activity and contribution of descriptors for
the CDK4 inhibitory activity is shown in figures 4
and 5, respectively. The major group of contributing
descriptors involved subgroups like rotatable bond
count, SSOHE-index, SssOE-index and alignment inde-
pendent descriptors. These descriptors help in under-
standing the effect of substituent at different position of
4-aminomethylene isoquinoline-1,3-(2 H ,4 H)-dione.

The direct relationship of descriptor T_C_O_7
(27.23%) suggested that the presence of oxo-group
at position one in the basic ring 4-aminomethylene
isoquinoline-1,3-(2 H ,4 H)-dione should necessarily be
separated from the substituent at position six by seven
bonds.

The presence of T_2_Cl_7 (having negative MLR co-
efficient —16.43%) in the model revealed that the

30 30

20 20
€ 10 l 10
| 0 0

I . -10

-20

-30 -30
olecular descriptors

PLS Contribution %
[CR
(=]

=

T_C_0_7(26.99%)

SsOHE-index (16.29%)
T_2_Cl1_7 (-16.67 %)
SssOE-index (14.63%)

(b)

Rotatable Bound Count (-25.44%)

(a) Graph of reported vs. predicted activities for training and test

set molecules by partial least square (PLS) regression model. Training set (solid
squares) and test set (hollow squares). (b) Plot of percentage contribution of
each descriptor in developed PLS model explaining variation in the activity.
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T_C_0_7 (17.18%)

ChiSchain (28.25%)
T_2_N_4(-19.53%)
SssOHE-index (22.40%)
T_2_0_3 (-12.63%)

(b)

(a) Graph of reported vs. predicted activities for training and test

set molecules by principal component (PCR) regression model. Training set
(solid squares) and test set (hollow squares). (b) Plot of percentage contribution
of each descriptor in developed PCR model explaining variation in the activity.

presence of halides at position seven i.e., chloro at
position seven separated by seven bonds from doubly
bonded oxo at position three have negative effect on the
activity.

The directly related descriptor SsOHE-index
(16.22%) indicated that the presence of hydroxyl group
in six phenyl substitued basic ring have positive effect
on the activity. SssOE-index (—14.6%) is an estate
contribution descriptor which represent electrotopo-
logical estate indices for the number of oxygen group
connect with two single bonds. This term is negatively
correlated and indicated that compound with higher
SssOE-index values show less activity and vice-versa.

The presence of descriptor rotatable bond count (hav-
ing negative MLR coefficient —25.53%) signifies that
the unsaturated bonds, and single bonds connected
to hydrogen or terminal atoms are favourable for the
biological activity.

After QSAR study by PLS using forward—backward
step-wise variable selection method, the final equa-
tion developed and the statistical data observed are
illustrated below.

plICs, = 0.1827 (T_C_O_7)
— 0.4797 (rotatable bond count)
+ 0.1253 (SsOHE-index)
—0.7850 (T_2_C1_7)
— 0.1645 (SssOE-index) + 7.5007.

The QSAR model had a correlation coefficient (1?)
of 0.72, significant cross validated correlation coeffi-
cient (q*) of 0.6, F test of 27.72, r* for external test
set (pred_r*) 0.53, and degree of freedom 32. The
model was validated by «_ran_r*> = 0.00, &_ran_q*> =
0.00, o_ran_pred_r> = 0.01, best_ran_r*> = 0.38,

best_ran_q* = 0.21, Z score_ran_r’* =
score_ran_q*> = 4.57 (table 4).

The plot of reported vs predicted activity and con-
tribution of descriptors for the CDK4 inhibitory acti-
vity is shown in tables S4-S5 and figure 6. The major
groups of descriptors involved in developing the equa-
tion by PLSR are subgroups like rotatable bond count,
SsOHE-index, SssOE-index and alignment indepen-
dent descriptors. The descriptors are common between
MLR and PLSR. These only differ from each other in
their percentage of contribution.

After QSAR study by PCR using forward-backward
step-wise variable selection method, the final equa-
tion developed and the statistical data observed are
illustrated below.

pICs, = 7.2205 (chi5chain)
+0.1097 (T_C_O_7)
—0.3324 (T_2_N_4)
+ 0.1682 (SsOHE-index)
—0.2061 (T_2_0_3) +9.2238.

7.41, Z

The QSAR model had a correlation coefficient (r?)
of 0.72, significant cross validated correlation coeffi-
cient (q*) of 0.6, F test of 20.24, r* for external test
set (pred_r*) 0.52, and degree of freedom 30. The
model is validated by «_ran_r*> = 0.00, «_ran_q> =
0.00, «_ran_pred_r> = 0.001, best_ran_r* = 0.34,
best_ran_q*> = 0.2 (table 4).

The plot of reported vs predicted activity and contri-
bution of descriptors for the CDK4 inhibitory activity is
shown in tables S6-S7 and figure 7.

The major groups of descriptors involved in develop-
ing the equation by PCR are subgroups like chi5chain,
SsOHE-index and alignment independent descriptors.
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The QSAR model by PCR reveals that the descriptors
SsOHE-index and T_C_O_7 are common in MLR and
PCR. These only differ from each other in their percent-
age of contribution. The other contributing descriptors
are the chiSchain, T_2 N 4and T_2_0O_3.

The chiSchain (28.25%) is directly proportional
to the biological activity. The descriptor T_2_N_4
(—19.53) is negatively correlated with activity shows
that increasing the distance between 4-amino phenyl-
methylene from oxo by increasing number of carbon
atoms in the basic ring have negative effect on the
activity. The descriptor T_2_0O_3 (—12.63) which is
also negatively correlated with activity shows that the
increase and decrease of distance between two oxo-
group have negative effect on the activity.

This study has helped to understand the molecu-
lar properties/features that play an important role in
governing the variation in the activities. In addition,
this study allows us investigate the influence of very
simple and easy-to-compute descriptors in determining
biological activities, which could shed light on the key
factors that may aid in design of potent molecules.

Combined approaches using molecular properties
and well selected MDs are not only likely to produce
superior correlations but are expected to do so in a
most efficient way. Structure—activity studies are highly
complex and various methodologies, even if address-
ing limited aspects of the QSAR problem, ought to be
exhaustively explored and amalgamated if possible.

7. Conclusion

In the present study, both classification and corre-
lation approaches have been successfully employed
for development of models for prediction of CDK4
inhibitory activity of 4-aminomethylene isoquinoline-
1,3-(2H ,4H)-dione. The accuracy of classification of
single descriptor-based models using MAA varied from
90% to 96%. High accuracy of prediction offers the pro-
posed models a vast potential for providing lead struc-
tures for the development of potent therapeutic agents
for CDK4 inhibition.

Supporting information

The electronic supporting information (tables S1-S7)
can be seen at www.ias.ac.in/chemsci.
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