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Abstract. Dipole moment calculations of SF and ClO radicals have been carried out using the recently deve-
loped partial triples correction to Fock-space multi-reference coupled cluster method. Theoretical calculation
of the doublet SF and CIlO radicals is useful due to their importance in atmospheric chemistry. The dipole
moments of these radicals are extremely sensitive to correlation effects. A brief insight to the way the triples
correction has been implemented is presented. We compare the results obtained from our analytic response
treatment with that of restricted open Hartree-Fock (ROHF) calculations. Results are presented for both relaxed
and non-relaxed approach in the ROHF method. Results suggest the importance of triples corrections. The
effects of orbital relaxation are also analysed from the results.
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1. Introduction

The last couple of decades have seen a tremen-
dous development in the field of ab initio many
body methods, for study of molecular electronic
structure and properties. Among the available meth-
ods, coupled cluster (CC) theory!? has emerged
as the most promising tool for electronic struc-
ture calculations. The method is noted for inclu-
sion of size-extensivity and treatment of electron
correlation in an efficient manner. Single reference
coupled cluster (SRCC)*> method has been widely
used for energy, molecular properties and potential
energy surface calculations.®'® Exponential wave ope-
rator introduces the dynamic correlation, in an approxi-
mate manner. Even though single reference coupled
cluster singles and doubles (SR-CCSD) approximation
had been well implemented for energy calculations, the
inclusion of triples'”~>* is often important, as was evi-
denced by its comparison with full CI.'7 It has been
shown!? that the connected part of triples, i.e., T3 is
far more important than the disconnected triple excita-
tions like 7775 and %Tﬁ. The connected part of triples,
contributes to the energy from fourth order onwards.
Due to its expensive nature, in terms of computational
time, a full inclusion of triples is not sought after, even
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though it has been pursued by Bartlett et al.* for energy
calculation. The non-iterative, partial triples correction
provides an acceptable accuracy with much less com-
putational time. Quadruple level corrections in the sin-
gle reference context have also been pursued by Stanton
et al.** and Bartlett et al.?*

A computational framework to analytically calcu-
late various properties in SRCC theory was first out-
lined by Monkhorst® using response approach. Since
SRCC was formulated in a non-variational manner, it
did not have the advantages of generalized Hellmann—
Feynmann theorem nor the (2n+1) rule of variational
theories.?® Bartlett and co-workers>®!! took a step
towards eliminating this apparent disadvantage using
the idea of algebraic Z-vector technique introduced by
Handy and Schaefer.”’ But determining higher order
properties using the Z-vector technique is cumbersome.
Jorgensen and co-workers,'? developed an alternative
formulation of SRCC derivatives which automatically
incorporates the benefits of Z-vector technique to all
orders. This approach, also known as the constrained
variation approach (CVA), involves construction of a
functional with undetermined Lagrange multipliers.

Inspite of the above mentioned developments in
SRCC, it fails to provide satisfactory physical descrip-
tion in cases where more than one configuration con-
tributes dominantly to give the exact wave function
(quasi-degeneracy). Such cases may arise while deal-
ing with bond-breaking or bond-stretching. The use of
a linear operator, in restricted open-shell based coupled
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cluster method to take care of such quasi-degenerate
states, was implemented by Medved and co-workers. 8
Solving the SRCC equations involving highly excited
clusters, was another way to tackle this problem.? In
this regard, inclusion of selected triples and quadru-
ples* in SRCC proved efficient. However, due to the
enormous computational effort involved, the inclusion
of triples and quadruples are not practically feasible
for large scale applications. From a physical point of
view, a more satisfactory description starts with a multi-
reference description of what is known as a reference
or model space and subsequent use of an exponen-
tial wave operator. This class of methods is known as
multi reference coupled cluster (MRCC) methods. The
reference space takes into account the important non-
dynamical correlation effects. Among the various avail-
able MRCC methods, the effective Hamiltonian based
method?'=** which finds multiple roots via diagonaliza-
tion of the effective Hamiltonian of the entire model
space has been well explored. Within this class, two
different approaches are available, namely, the Hilbert-
space (HS-MRCC)3*3 approach and the Fock-space
(FS-MRCC) approach.?’* The Hilbert-space approach
is based on a state universal wave operator and is best
applied for handling potential energy surfaces* (PES),
also cases involving curve crossing. Mukherjee and co-
workers ¢ have developed the state selective MRCC
method, which has proved to be more attractive for
PES. On the other hand, FSMRCC as formulated by,
Kutzelnigg,*” Mukherjee®*** and Lindgren,*' is suit-
able for difference energy calculations. It was applied to
atoms and molecules by Kaldor et al.** and Pal et al.,*
respectively. FSMRCC approach is based on a valence
universal wave operator and assumes a common vac-
uum to describe various states. Classifying a subset
of holes and particles as active orbitals, the model
space determinants are sorted into different active hole-
particle sector by the addition and/or removal of elec-
trons from the reference wave function. FSMRCC has
the ability to correlate efficiently model spaces hav-
ing different number of electrons, thus describing ioni-
zation potentials (IPs), electron affinities (EAs) and
excitation energies (EEs) directly, where the results
obtained from EE can provide a way to obtain excited
states PESs t00.

Apart from these MRCC approaches, the equation-
of-motion (EOM) CC*-3* method and linear response
CC,>* built upon a combination of linear and expo-
nential excitation operator can also be used to handle
quasi-degenerate states. The development and imple-
mentation of direct energy methods based on the CC
formalism was initiated from a time-dependent linear
response framework by Monkhorst.”> The EOM-CC
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method has been well developed for ionized,*!

electron attached®> and excited state problems.*
Nooijen and co-workers,*® developed the similarity
transformed EOMCC (STEOMCC). Spin—flip EOMCC
(SF-EOMCC)°" method is another clever way to bring
in the flavour of multi-reference states.

Obtaining molecular properties using effective
Hamiltonian based MRCC theories was initiated by
Pal.® Specific expressions were obtained for one
valence-hole, one valence-particle and hole-particle
sectors of FSMRCC theory. Computation of first-order
molecular properties, such as dipole moments, was car-
ried out by Pal et al.®® and Ajitha and Pal®! extended the
formulation to enable calculation of frequency depen-
dent properties. Shamasunder and Pal®*® extended
the idea of Lagrange multiplier and developed the
response approach within the MRCC framework. The
constrained variation approach within the FSMRCC
method was first formulated within the CCSD approxi-
mation. It was successfully implemented for calcu-
lation of excited state properties of small molecules
and radicals. % Recently, Pal and co-workers® have
developed and implemented the FSMRCC response
approach for magnetic property calculations.

In the linear response (LR) CC formalism, Jorgensen
et al.®® pursued response theory for molecular proper-
ties. Stanton® proposed the theory for analytic deriva-
tives in EOMCC method. Stanton and Gauss™ carried
out the implementation of the same. EOMCC property
evaluation and transition probabilities between elec-
tronic states were done by Bartlett er al.”' Gradient
calculations were done by Nooijen and co-workers’
in STEOMCC using the Lagrange multipliers. In the
SF-EOMCC™ method, calculation of analytic gradi-
ents at the singles and doubles truncation have been
carried out.

In order to increase the accuracy of molecular
properties, inclusion of the effect of triples is nec-
essary. Iterative and non-iterative triples inclusion
for energy calculations, in EOMCC’™7® and state-
selective approaches’®’ have been attempted. Gauss
and Stanton®! introduced perturbative triples correction
to EOM-IP, while Manohar et al.®? applied the same to
EOM-EA. A non-iterative triples correction to spin-flip
EOMCC for excitation energies have been employed by
Krylov et al.®® and Piecuch et al.3* implemented the
non-iterative energy corrections to method of moments
coupled cluster (MMCC) for excitation energy. Ana-
lytic derivatives at the CCSD approximation with
various levels of triples inclusion has been ana-
lysed. Implementation of analytical gradients, for the
CCSDT model was pursued by Gauss et al.® Recently,
Pal and co-workers have implemented the partial
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triples to calculate first order molecular properties in
FSMRCC.? Since the triples were added on the basis
of perturbative order, hence it does not guarantee that
the inclusion of triples will improve the molecular
properties towards the full CI value.

In this paper, we will analyse the effect and impor-
tance of triples correction on the first order response
properties (dipole moment) of SF and ClO radicals
computed using the Fock-space multi-reference cou-
pled cluster theory. The results obtained from FSMRCC
are compared with the finite difference ROHF- coupled-
cluster calculations. The effects of relaxation are also
analysed. Both these radicals play an important role
in atmospheric chemistry. Hence a detailed knowledge
regarding their molecular properties is necessary.

In section 2, a brief review of the constrained vari-
ation approach in FSMRCC method is outlined. In
section 3, a detailed implementation of the partial
triples correction is described. Section 4 comprises the
computational details. The results and discussions are
presented in section 5, followed by the conclusions in
section 6.

2. Brief resumé of FSMRCC

The FSMRCC?* ¥4 and the Langrangian formula-
tion®% within the same have been well described. A
brief review of the same is given in this paper. The
FSMRCC approach is based on a common vacuum con-
cept. The Hartree—Fock solution for the closed shell N-
electron ground state is chosen as the vacuum. Particles
and holes are defined with respect to this vacuum. Fur-
thermore, these are subdivided into active and inactive
holes and particles. The number of active particles and
active holes in a function is represented by the super-
script. Thus, a general model space, containing m-active
particles and n-active holes is represented as:

(m,n)\ __ (m,n)
‘\D(O)u > - Zcui

i

"), ()

(m,n)

where, C ;" are the model space or combination co-
efficients of ®;. The total or the correlated wave func-
tion for the ™ state is given by,

wp) = 2w, @

O)p

Here 2 is the universal wave operator, which gene-
rate states by its action on the reference wave function.
The generated states are such that they satisfy the Bloch
Equation. €2 is denoted as:

=[], 3)
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where, the parenthesis denotes normal ordering of opera-
tors. Lindgren had introduced the normal ordered
operator. "> The cluster operator 7 ™" is expressed as:

T omn) — Xm: i: T(k’l), 4)

k=0 [=0

where T*! can create particles and holes in addition to
destroying exactly k active particles and / active holes.
In the Fock-space approach, 7" contains all the
lower valence amplitudes thus giving additional flexi-
bility to the theory. To calculate ionization potential, we
define our system as a specific problem of (0,1) sec-
tor, i.e. zero active particle and one active hole sector.
The Schrodinger equation for quasi-degenerate states is
given by,

H W) = £, [0 ®

which gives,
HQ (Z cov |q>lgo,1)>) — E.Q (Z cob ‘q)lgo,n)) .
(6)

An effective Hamiltonian (H,) is defined through the
Bloch equations:

poO.D (HQ _ QH;;’I)) pOb
0" (HR - QHG") POV =0, ()

where PV is the Projection operator for the model
space, defined as:

POV =3 |0 ) o). ®)

The complimentary space Q) is defined in the fol-
lowing manner

QY =1-pOY, )

The T amplitude equations are solved by the aid
of subsystem embedding condition (SEC). The ground
state coupled-cluster amplitudes 7% are solved fol-
lowed by the equation for TV amplitudes. Normal
ordering in the wave operator 2 ensures that the 7D
amplitudes do not occur while solving for the (0,0) sec-
tor i.e. ground state. While in the (0,1) valence sector ,
the 7% amplitudes occur as constant entities. This is
known as SEC. Thus, SEC and normal ordering ensures
a hierarchical decoupling of the various Fock-space
sectors.

A satisfactory formulation of analytic derivatives in
the context of effective Hamiltonian version of MRCC
methods could only be obtained using the constrained
variational approach (CVA). Szalay®® had been the first
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to apply CVA in FSMRCC context and analyse the
functional for gradient calculations. Based on the Lan-
granges method of undetermined multipliers, in CVA,
the Langragian is constructed for a specific root of
the effective Hamiltonian. Pal and co-workers formu-
lated the CVA-FSMRCC technique for specific root
of the effective Hamiltonian which is applicable for
general incomplete model spaces (IMS). The energy of
a specific state of the ionized system is given by,

DG (Ha)y " €D
ij

The Lagrangian is constructed to minimize the energy

expression given above, with the constraint that the

MRCC equations (i.e., the Bloch Equations) are satis-

fied for the specific state ‘@’
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where, cl)fo’”, d);()"), c[)?o"o) and cl)(]-o’o) are the model space
functions, i.e. functions in P space. On the other hand,
¢V and ¢? are the functions in the complimen-
tary space, i.e. in Q space. The A in the above equa—
tion are the Langrange multipliers. A(0 Y and A(O 0a
defined within the P—P space, whereas A( D and A(O 0)
are defined in the P—Q space for (0,1) and (0,0) sec-
tors, respectively. But in the case of complete model
space (CMS), the effective Hamiltonian has an explicit
expression in terms of the cluster operators, as a result
of which, the closed part in the Lagrange multiplier
vanishes, reducing the above equation to

Z C(O 1)
+ Z ALY <¢fxo’1) |(H — QH,yy)| ¢§0’1)>
+ Z Z A©OD <¢(0,0) |HQ d)§0,0>>

~(0,1) ~(0,1)
—Eu<§:Cm c —1).

i

(() 1)

0.1)
e)‘f ij lei

(12)
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Differentiation of the above equation with respect to
A gives the expression for cluster amplitudes, i.e. the
Bloch equations. Differentiating the same with respect
to the 7" amplitudes will furnish equations for Lan-
grange multipliers A. The equation for the cluster
amplitudes is decoupled from the A-amplitude equa-
tions. The A equations are however, coupled with those
of the T amplitudes. In the presence of an external field,
the Lagrangian and the parameters H., C, C , E, Q
and A all become perturbation dependent. Differentia-
tion of the Lagrangian with respect to the unperturbed
cluster amplitudes, generate equations for the Lagrange
multipliers, whereas differentiation of the same with
respect to the unperturbed Lagrange multipliers will
furnish equations for the cluster amplitudes. The energy
derivatives follow the (2n+1) rule with respect to the
cluster amplitudes and (2n+2) rule with respect to the
A-amplitudes (Lagrange multipliers). A (2n+1) rule
holds true for the eigen-vectors C " and C*V for the
evaluation of energy derivatives. It is worth mention-
ing that the coupling within the A-amplitudes in various
valence sectors is exactly opposite to that of SEC. Thus,
we first solve the A-amplitudes for the highest valence
sector and then move towards the lowest valence
sector.

3. Method of triples implementation

Several schemes for the inclusion of triples are available
in the literature. In this particular section, we describe
the scheme that we have implemented in our triples
formulation. This section will deal with the implemen-
tation of the triples to the dipole moment. We first dis-
cuss the implementation of the non-iterative triples in
T and then in A-amplitudes to the dipole moment in
FSMRCC response.

We start with the specific way the triples correction
have been added to the SRCC equations, i.e., the (0,0)
sector.

Canonical orbitals have been used for our calcula-
tion, i.e., the orbitals have not been allowed to relax
or change with the perturbation. Hence, this is a non-
relaxed approach. First the 7, and the 7,"” ampli-
tudes are solved in a completely iterative manner,
which is the general CCSD approximation. Using these
generated T(O 0 and T(O 0 amplitudes, T(O 0 s cal-
culated in a non-iterative manner from VT(0 ¥ and
VT(O 0 T(0 Y The contribution made by VT(0 0 and
VT(0 0 T(0 0 is at the second and third order of pertur-
bation, respectlvely. The CCSD equations are updated
by including the VT.”” term. Inclusion of VT7."”
in the 7,"” equation will convert the entire method
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iterative. Hence, the VT,*” is excluded from the
T3(0’°) equations in this particular scheme of triples
correction.

Now, the effective Hamiltonian for the one valence

sector, under this approximation is:
H, = PO (13 +FTOY 4 o
+FTO0 £ VTV POV (13)

It can be seen easily that W cannot contribute to H, s
and hence is not included. VT;O’]) is the only term
that contributes to the singles and doubles amplitude
equation along with H., ;.

The Fock-space Bloch equations, for the 7", 7,
and T3(O‘” amplitudes are given by,

0, T L 7O 37 7O, 7O,
o (F + FT"" +VI,"" + FT,""

+V'T3(0,1) _ Tl(o’l)Heff> P(O,l) — O (14)

0V (V4 FI + VI 4 VI + W1y

VIO FTO0 = T Hyg ) POD =0
15)

oV (W+ WIS + FT" + VI

- T;O*”Heff) POD = 0. (16)
Since, we want to be accurate only up to third order,
the term that contributes to T;O’I)Heff is only fT;O’I).
The equations 14 and 15 are first solved fully, excluding
those terms which involve T3(0’1) amplitude. This is the
normal CCSD approximation. Using the known ampli-
tudes equation 16 is solved in a non-iterative manner.
After solving for T3(0‘1) equation, equations 14 and 15
are solved in an iterative manner once again. This brings
in the effect of 7,*" via VT."" and FT"".

After the completion of the triples correction to
energy, we examine the way the triples correction is
added to the A amplitude and finally to the dipole
moment. While solving the A amplitude, we need to
first solve for the (0,1) sector and then the (0,0) sec-
tor, which is the opposite way to solve these equations
as compared to the 7 amplitudes due to reverse decou-
pling in the A-equations. First the A—amplitudes are
solved iteratively within the CCSD approximation for
both (0,1) and (0,0) sector. With those generated A—
amplitudes, the Lagrangian for the triples correction is
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constructed. The triples corrected Lagrangian is given
by,

S=8SD+VT"'CC+ APVTY
+ AW + APVFTSY
+ APV + APVFTSY
o A;O,I)TZ(O,I)VT;O,I) +ASO,I)VTS(O,I)Ago,O)VTZ(O,O)
+ A;O,O)VT?’(O,O) + AEO,O)VT?)(O,O) + AgO,O)FT;O,O)

+Ag0,1)WT2(O,O) +A§0,1)VT3(0,0) +AgO,])VT2(0,O),
a7

where, A; represents the Langrangian for triples, C
and C are the left and right eigenvectors of the H, ;.
The Lagrangian in equation 17 is differentiated with
respect to T;O’l) to get the Ago‘l) equation. The equation
comprising Ago'l) amplitude is:

(POD|VCE + ALVF 4 ALYV — APITSIY

+ AV [QOD) =o0. (18)
The Lagrangian in equation 17 is differentiated with
respect to T2(0,1> to get the A;O’l) equation. The Ag)’”
equation is given below:

SD +(POV| APV + APPW Q) =0. (19)
Equation 18 is solved in a non-iterative manner to
obtain A{"". Only the connected terms in A" ampli-
tude equation are considered here. vcc, Ago'”f,
A(ZO’I)V, A;O’l) TZ(O’I)V and A(IO’I)V are the terms con-
tributing to Ago’l). Their contribution occurs in the
first order, second order, second order, third order and
second order respectively. After obtaining Ago’l) its
effect on A" is felt through the third order terms
Aéo’l) and Ago’l)W. The A;O’l) amplitude equation is
solved by taking into account the Ago’l) terms calculated
previously.

In order to solve the Lagrange multipliers for the

(0,0) sector, we have to solve the A;O’O) equations
first. Following the footsteps of the (0,1) sector, here
too, the Ago’o) equation is obtained by differentiating
the Lagrangian in equation 17 with respect to T;O’O).
The terms which appear after differentiation is given
below:

<P(0,0)| AgO,O)F+A§O,O)V+A§O,O)V+A§O,1)V \Q(O,O)) =0.
(20)

Similar to its treatment in the (0,1) sector, the equation
for A;O'O) is obtained by differentiating equation 17 with
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respect to 7,"”. The AP” equation with the triples
correction is:

SD + <P(0,0)|A§0,0)V+A§O,1)V+A§O,0)VT2(0,0)‘Q(O,O)):O
21

Ago’o) is obtained by solving equation 20 in a non-
iterative fashion. The terms contributing to AL are
AgO’O)F , A;O‘O) v, AiO‘O)V and Ago’l)V. They contribute
at the second order, second order, third order and third
order, respectively. Due to reverse decoupling, the A
containing terms ie., AYVVT*Y and APV TO?
appear in A®®. The effect of A" on AL? is
obtained via the third order terms A"V, A"V and
AgO’O)VTz(O’O). Taking into account all the A§°'°> contain-
ing terms, equation 21 is solved. The triples contribu-
tion to EV is given below:

gD

triples

= APVOTY + APV OT ), (22)
where, O is the explicit derivative of the Hamiltonian
with respect to the external field.

In the evaluation of the final dipole moments for the
(0,0) as well as the (0,1) sector, the final triples cor-
rected A and T —amplitudes are used. The third order
terms which appear in the dipole moment equation are,
APPOT Y and AT?OT"”. The VI,""T,"” term
which is present in the T3(0’0) equation, will have a
higher order effect on the dipole moment. So, the final
dipole moment is corrected at least up to third order in
triples.

4. Computational details

The importance of SF and ClO radicals are seen
in atmospheric chemistry. Hence, a detailed theoreti-
cal knowledge regarding their inherent properties is
required.

The ground state electronic structure of ClO and SF
is 2T, as is expected from simple molecular orbital
consideration. The CIO and SF anions are closed
shell anions. Hence, they are chosen as the restricted
Hartree-Fock (RHF) vacuum for our calculations. The
highest occupied molecular orbital (HOMO) of both
CIO™ and SF~ are two-fold degenerate in nature. So
the HOMO’s are chosen as active holes in the Fock-
space (0,1) sector. The removal of an electron from
any one of these orbitals leads to a degenerate doublet
radical.

The restricted open Hartree-Fock (ROHF) based
couple-cluster calculations are done using the ACES
I package.® The ROHF based results (both relaxed
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and non-relaxed) presented in this paper have been
calculated through finite difference of energy points,
employing field displacements of +0.001 a.u. for
dipole moment computations. Both relaxed and non-
relaxed approaches have been used for ROHF based
calculations.

5. Results and discussions

In an earlier paper, the triples corrected code was tested
and pilot results were obtained for quite a few radi-
cals.®” In this paper, CIO and SF radicals are studied
using this triples corrected FSMRCC response theory.
We compare our results with the ROHF based coupled-
cluster finite-field method.

5.1 CIO radical

The importance of halogen monoxide in atmospheric
ozone depletion chemistry has motivated a detailed
study, both experimentally and theoretically. The
chlorine monoxide radical is an important participant in
the catalytic destruction of ozone in the earth’s strato-
sphere. The chlorine monoxide is a particularly inter-
esting molecule in that it possesses a *IT ground state
with an inverted spin doublet.”® The 215, level is the
lowest lying electronic state for this radical. Even
though the ClO radical has been studied extensively in
terms of experimental methods, theoretical calculations
are still lacking. The reason behind this could be that
the ClO radical is considered to be a ‘difficult’ case.!
Petersson et al.”'® stated that the *IT state of C1O is not
very well described by a single-reference configuration.
Thus, MRCC description seems to be appropriate for
this study.

The calculations have been presented with the CI-O
bond length as 3.1898 Bohr. The RHF of chlorine
monoxide anion is chosen as a vacuum and the radi-
cal has been described as one hole in Fock-space
description. Table 1 represents the dipole moments of
the ClO radical in cc-pVDZ and cc-PVTZ basis. These
have been compared with the non-relaxed ROHF dipole
moment values. The best MR-CI calculation led to a
dipole moment value”'® of 1.275 D for the ground
state. But this reported value also includes an approxi-
mate correction for quadruples. Our calculation of
triples correction shows a general trend towards this
value. The A-FSMRCC result shows the convergence
towards the experimental value on going from CCSD
to CCSD(T*). For a better correlated basis set, i.e.,
cc-pVTZ, the triples correction, over the singles and
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Table 1. Dipole moment results of ClO radical.
Basis A —FSMRCC ROHF*? non-relaxed ROHF* relaxed
CCSD CCSD(T¥) CCSD CCSD(T) CCSD CCSD(T¥)
Experimental dipole: 1.2974D %
MR-CI dipole: 1.275D%'®
cc-pVDZ 1.051 1.418 1.160 1.166 1.131 1.153
cc-pVTZ 1.081 1.147 1.148 1.152 1.112 1.150
All results in Debye.

CI-O bond length is 3.1898 Bohr, “ROHF results obtained from ACES II package®

doubles approximation is seen to improve the result,
from 1.081D to 1.147D, towards the experimental value
of 1.2974D. For the cc-pVDZ basis, the CCSD(T*)
result shows a much higher correction as compared to
that of cc-pVTZ basis. This is due to the fact that the
cc-pVDZ basis does not include correlation effects as
well as that included in the triple zeta basis. Hence, the
triples correction is more for that particular basis. Even
though in case of cc-pVDZ basis, the theoretical value
overshoots the experimental one, the qualitative trend
towards the experimental dipole moment and MR-CI is
obtained. On comparison of the ROHF relaxed and non-
relaxed approach, we find that the relaxed approach pre-
dicts a lower dipole moment than the non-relaxed one.
The A-FSMRCC method is an analytic non-relaxed
based method. So, in order to have a better compari-
son, we have employed non-relaxed approach for the
ROHF-CC calculations too. The same geometry and
basis set have been used for calculating dipole moments
in both the methods. The ROHF based coupled-cluster
dipole moment values for both relaxed and non-relaxed
cases also show an improvement towards the experi-
mental value on including the effects of triples. Hence,
we can conclude that the triples correction is essen-
tial for handling such “difficult” cases of radicals, in
order to have a more accurate description of their
properties.

Table 2. Dipole moments of SF radical.

5.2 SF radical

Sulphur containing molecules and radicals are very
important in atmospheric chemistry, thermal chemistry,
combustion chemistry and interstellar chemistry. As
one of the simplest sulphur containing molecule, the
SF radical is highly reactive and has been extensively
studied both experimentally and theoretically. SF is one
of the degradation products of SF¢ formed in high volt-
age power systems, where it is employed as an insulator.
Traces of SF are also formed when SF; is dissociated in
a shock tube at temperatures above 2000 K. %8

Since the SF radical is highly reactive, it is diffi-
cult to handle in the laboratory. This makes theoreti-
cal approach a useful source of information. We treat
the SF radical in a similar manner as the ClO radi-
cal. For SF radical, we report the dipole moment cal-
culated at the experimental ground state geometry of
ro = 1.600575 A.”

CI(SD) and CEPA-3(SD) theoretical calculations,**
done a couple of decades ago, shows the dipole
moments to be 1.106 and 0.968, respectively calculated
at the S-F bond distance 3.02 Bohr (1.5981 A) for small
basis sets. The experimental value is stated as 0.87D
(approx).**

In table 2, we report the dipole moment values of the
SF radical calculated at cc-pVDZ and cc-pVTZ basis

Basis A —FSMRCC ROHF? non-relaxed ROHF? relaxed
CCSD CCSD(T*) CCSD CCSD(T) CCSD CCSD(T#*)
Experimental dipole: 0.8740.05D%*
CI(SD) = 1.106D 3, CEPA-3(SD) = 0.968D %3
cc-pvDZ  1.027 1.127 1.046 1.049 1.128 1.062
cc-pVTZ  0.892 1.064 0.895 0.878 0.895 0.878

All results in Debye. ry = 1.600575 A.%2 “ROHF results obtained from ACES II

package®’
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sets. It is observed that the dipole moment value con-
verge towards the reported experimental dipole moment
value on moving from cc-pVDZ to cc-pVTZ basis. The
dipole moment calculated via CCSD method in the cc-
pVTZ basis is already very close to the experimental
value and hence the triples correction is seen to over-
shoot the experimental value. In both the basis set it is
observed that the triples correction tends to increase the
dipole moment value, as opposed to the trend observed
in ROHF-based cases. The cc-pVTZ basis set improves
the dipole moment value towards the experimental one.
Hence the cc-pVTZ is seen to be a better basis set due
to its inbuilt triple zeta correlated wave function than
the cc-pVDZ basis.

The dipole moment values obtained from the A-
FSMRCC calculations tend to move away from the
experimental value. But it tends to converge towards
the reported CI value. The ROHF based calculations
are done in finite difference method, while the A-
FSMRCC is an analytic approach. The difference in the
non-relaxed ROHF- coupled-cluster and A-FSMRCC
dipole moment results may have arisen due to the differ-
ence in approaches to calculate the first derivatives. The
opposite trend of the triples correction as seen in the
A-FSMRCC and ROHF-CC calculation is rather dif-
ficult to explain at the first glance. However, the way
the partial triples are included in both the approaches
are not exactly the same and this could have led to
discrepancies in this particular case.

We have also reported relaxed finite difference calcu-
lations in ROHF. A comparison between the relaxed and
non-relaxed ROHF CC calculations shows the effects
of relaxation. It is also seen that in a better basis
(i.e., cc-pVTZ) the calculated dipole moment in ROHF-
CCSD(T) approximation shows very good agreement
with the experimental value.

6. Conclusions

In this paper, we have presented the recently imple-
mented Lagrange based Fock-space multireference
coupled cluster response approach with the inclusion
of partial triples for electric properties of radicals. The
dipole moment values for the ClO radical shows that
the inclusion of partial triples i.e., A-FSMRCCSD(T%*)
converge the dipole moment values toward the experi-
mental value, hence the inclusion of triples lead to more
accurate results. Even though in the case of the cc-
pVDZ basis the triples correction goes beyond the pre-
dicted experimental value, its basic trend is in the right
direction. ROHF also predicts the same trend in the
triples correction. On the other hand, in case of the SF

Lalitha Ravichandran et al.

radical, the CCSD value of 0.892D is already in good
agreement with the experimental value of 0.87D. On
including the partial triples it overestimates the dipole
moment value to 1.064D. The triples correction in the
ROHEF calculation is seen to match fairly well with the
predicted experimental dipole moment. However, the
CISD and CEPA-3(SD) results are in better agreement
with that of A-FSMRCCSD(T#*). In case of the SF radi-
cal, it is seen that the ROHF and FSMRCC triples addi-
tion follow opposite trend. A probable reason could be
the way, the effect of triples have been implemented in
both the methods and the different manner in which the
dynamical correlation has been taken into account.
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