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Abstract.

An extended Longuet-Higgins formalism recently utilized to obtain generalized Born-

Oppenheimer equations including the geometrical phase effect has been used to study a three-fold pseudo-
Jahn-Teller type electronic degeneracy. The results of dynamics calculations carried out with the novel formal-
ism are compared with Born—Oppenheimer (geometrical phase ignored), extended Born—Oppenheimer, and
coupled three-state ones for the same system. The theory shows unprecedented simplicity while depicting all

features.
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1. Introduction

The geometrical phase (GP) effect is a quantum phe-
nomenon that plays an important role in molecular
dynamics. The Born-Oppenheimer (BO) treatment'
considers the fact that slow-moving nuclei are distin-
guishable from fast moving electrons in molecular sys-
tems. This distinction helps to impose the BO approx-
imation,? which states that the nuclear and electronic
motions are essentially uncoupled. Accordingly, the
nuclei move on a single potential energy surface (PES).
For polyatomic systems, such PES’s can intersect coni-
cally with the topology of a diabolo, and under such a
situation the BO approximation breaks down. Herzberg
and Longuet-Higgins® have shown in their pioneer-
ing work that a real-valued electronic wave function
changes sign when the nuclear coordinates traverse a
closed path encircling a conical intersection, and cor-
rected this deficiency with a complex phase factor in
the electronic part that makes unique the total elec-
tronuclear wavefunction. An ab initio demonstration
of the Longuet-Higgins (LH) theorem* has been pro-
vided, which stressed that the crossing need not be
forced by symmetry.’ Because a formal systematiza-
tion of the involved closed-path geometrical phase in
quantum mechanics has been given by Berry, © the effect
1s also known under his name. Moreover, due to the
similarity of the involved differential equations with

#Dedicated to Prof. N Sathyamurthy on his 60th birthday
*For correspondence

those of a charged particle moving in the presence of
a magnetic solenoid, it is also often referred to” as the
molecular Aharonov—-Bohm effect. Suffice to say that it
arises in the vibronic problem whenever one insists to
separate the fast motion of the electrons from the slow
vibrational degrees of freedom as it is done in the BO
approximation.

Conical intersections have important consequences
in dynamics, with the subject having achieved modern
interest after the Mead and Truhlar vector potential
approach.® The signature of GP in reaction dyna-
mics has since been the theme of debate, and the sub-
ject has been studied extensively both by theoreticians
and experimentalists for the last four decades.’™" The
effect of GP has been observed in many Jahn-Teller
molecules from the simplest H] ion? to fullerenes?'
(the list can be numerous and hence only two references
have been indicated from which others can be obtained
by cross-referencing).

The Jahn—Teller (JT) effect?? arises from the coup-
ling of degenerate electronic states with degenerate
vibrational modes in highly symmetrical molecules,
clusters or crystals.!© Ham?* has shown that the two-
mode E ® e Jahn—Teller system is an example of GP
and later Aitchison?* has also discussed it in a more
general context. The linear octahedral 7 ® (e @ 1)
JT system, which couples an electronic triplet state to
triply and doubly degenerate phonon modes, has a sign
change phenomenon similar to that found in E ® e.”
Another important example is the coupling of a triply
degenerate electronic state (73) with a triply degene-
rate normal mode (#,) in systems of tetrahedral or cubic
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symmetry, so-called 7, ®1, JT effect.?*>® The T, ®¢, JT
effect is a widespread phenomenon in transition-metal
complexes or crystals of tetrahedral or cubic symme-
try.?’ In organic chemistry, the methane cation (CH}) is
a fundamental system exhibiting the T, ® 1, JT effect.®

Manolopoulos and Child*' used a model of Hamilto-
nian to study the sets of possible sign changes when N
real quantum states are transported adiabatically around
a N-fold degeneracy. Baer et al.*>3? and Sarkar and
Adhikari**** focused on the topological features and
formulated an extended Born—-Oppenheimer equation
for a three-state electronic manifold. The relationship
between the mixing angle and GP has also been esta-
blished.**® From the electronic structure point of view,
the theme has been popularized by Yarkony.'? Opalka
and Domcke*® having modelled a PES for a three-fold
degeneracy in CH} system. Recently, Varandas® used
Lie group symmetry to study N-fold degeneracies in JT
systems and demonstrated by the method of reductio
ad absurdum the following extension of the LH theo-
rem: No N-fold linear JT degeneracy can have more
than one pair of adiabatic electronic states that change
sign upon being parallel transported in configuration
space along a loop that encircles the degeneracy point.
More recently, the systematic derivation of the dynami-
cal equations for such a JT and pseudo-JT system has
been communicated.*” In the present work, we discuss
the Generalized Born—Oppenheimer (GBO) formula-
tion of such dynamical equations using the extended LH
(ELH) theorem for three-fold electronic JT manifolds
which is readily extendable to manifolds of arbitrary
dimension. Comparisons of the dynamics using various
methods on this model are also presented.

2. Theoretical development

The detailed approach from Schrddinger’s equation
(SE) of the complete many-body problem has been dis-
cussed earlier,”’ but for the sake of completeness we
will give a brief account of the equations involved in
the dynamics. Consider the nuclear motion restricted
to a three-state electronic manifold. Without lacking
generality, let the three states be real and decoupled
from the rest keeping the three states coupled among
themselves. Any two of them (say, the nuclear wave
functions x; and x;) may be coupled first, followed
by coupling of the resultant to the third (x;). Assum-
ing that the electronic wave functions (say, ¥;, ¥,
and ;) form a real orthogonalized set, and following
Longuet-Higgins,* define next the intermediate wave
function

Xii = Xi 11X, (1)

where 1 is the imaginary unit, and the complex nature
of the wave function is indicated by the tilde. Using
the fact that V; >~ V; in the vicinity of the degeneracy,
where the nuclear wave functions (x; and ;) are also
known*!' to approach zero, one may write after some
mathematical manipulation 3¢/

2

R _h .
— ﬂv Xij + (Vi = E)Xij — Z((‘/fiwl/fj)) Xij

h2 -
+ ;—M[2<w/f,-|wj> Y+ VIV
—0. 2)
", R .
_Zv Xij + (Vi — E)xij — E((%IVW) Xij
2

R
n ’Z—M[zwvw,» Y+ VIV
= 0. 3)

Similarly, the new intermediate hybrid wave function
Xij» can now be coupled with y;. Defining next

Xijk = Xi +1X; + 1k, “4)

and recalling that V; 2~ V; and the fact that y; is known
to vanish at the conical intersection,*! gives:
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where the intermediate complex electronic wave func-
tion is ¥;; = ¥; —1;. Rewriting now equation 2 as

__(<¢‘l|vw ))ZXIJ
+ ’2—[2<w,~|w_f> Y+ VIV R

=-|- zh—vzx,, +Vi-B%| O

one gets upon substitution in equations (5) and (6):
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examination of the above equations, finally gives
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Expansion of the intermediate hybrid electronic wave
function yields
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Note that the equations 14 and 15 contain an anti-
Hermitian operator (a Hermitian operator becomes
anti-Hermitian whenever it is multiplied by ¢ or —i).
Another way of considering the complex wave function
is ;i = (tx;+x) , followed by xi;i = 1 xx+x;+x1)
also leading to the same set of equations [like equa-
tions 13-15] but with the anti-Hermitian part exactly
the opposite of the one in equations 13—15. Averaging
this set of equations eliminates such an anti-Hermitian
contribution yielding the following equation:
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where éij = %()Zij + X;i) and &jk = %(f(ijk‘F)iji)- Yi’s
and ¥”’s are the real adiabatic electronic wave func-
tions given by the three rows of a 3 x 3 unitary matrix
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which can be obtained by proper choice of multiplica-
tion (clockwise and anticlockwise) of the planar rota-
tion matrices, respectively. One of the possible choice
is described in the next paragraph. Equations 17 and 18
contain coupling terms while equation 16 does not,
indicating that GP is expected to manifest only from the
former equations. In summary, GP will appear on elec-
tronic states v; and i, with the PES’s of these two
electronic states having a non-zero slope at the degene-
racy locus.* Indeed, as shown later, numerical calcu-
lations with GP included on the above two states give
reactive transitions in good agreement with available
results from other approaches.

For the three-fold electronic degeneracy in T & (e &
1,), the JT Hamiltonian including linear vibronic coup-
ling has Lie group symmetry SO (3), which implies
dimension 3 and hence 3 Lie group parameters. Since
a norm-preserving adiabatic electronic wave vector one
the electronic sphere S? can be unambiguously char-
acterized by two angles (so called coordinates of the
Lie group; for a finite-dimensional Lie group G, they
vary in some region of the Euclidean space :” where
p is the dimension of the group), there will be free-
dom of choice for selecting the latter out of the three
coordinates in SO (3).

The remaining parameter can, however, be sampled
in principle by considering all three two-angle sets.*
By labelling the chosen angles as &;; and &, and assign-
ing a 3 x 3 unitary planar rotation matrix** to each, the
full rotation matrix assumes the form

Tij = t;; (&)t (i), (19)
Where [tnm]nn = [tnm]mm = COS(";:nm) a’nd [tnm]nm =
—[tunlmn = sin(€,,) with all other entries satisfying

[t,n]ij = 8i;. As in the E ® e problem, the electronic
adiabatic wave vectors will now be given by the rows
of the T;;, matrix. The angle & is the first mixing angle
(describes the mixing of state vy; and v; to form an
intermediate adiabatic state ¥;;, and &;; is the second
mixing angle (describes the mixing of state Ui 7 and ¥ry).
We may proceed by calculating the first derivative coup-
ling terms as a function of mixing angles. After some
algebra, one obtains

(VilVy;) = —=V§&;,
(Uil Vi) = —sin§;; V&,
(Y;IVi) = —cos&;; VEj,. (20)

Including these values in equations 16—18 one can get
the dynamical equations in terms of mixing angles,
which provides an explicit relation between the GP
angle and the mixing angles.

3. Numerical calculations

To study the reactive scattering in a three state JT sys-
tem, we have modified the two-arrangement ‘quasi-
JT> scattering model of Baer et al.** with the adia-
batic PES’s chosen in such a way that they become
degenerate at a single point,

1

Vi(x, y)ziuwSyZJrAf(x, y) (21)
1

Va(x, y)ZEMwSszrA (22)
1

Va(x,y)=§Mw§y2—(D—A)f(x,y)+D, (23)

where x and y are Cartesian coordinates: —oo0 < x <
o0 1s the reaction coordinate (translational), and —oo <
y < oo the internal (vibrational) coordinate, while

2 2
fry) = exp(— 2
values of i = 0.58 amu, wy = 5.0 x 10® s, A =
3.0eV, D = 6.0¢eV, 0 = 0.20 A(respectively), and
hence differs slightly from the one used elsewhere.*
The degeneracy lies nearly 3.0 eV above the asymptote,
and hence the calculations will be for energies below
the seam. One should note that the model obeys selec-
tion rules, namely: if reduced to a two-state conical
intersection, only even<>odd transitions are allowed;
for the three-state coupled case, only even—even and
odd—odd are permitted. Thus, any deviation from
such selection rules may be interpreted as a symmetry
change.* Figure 1 shows the three adiabatic potential
energy surfaces for the model system. In solving equa-
tion 17, we have considered the initial wave function
b jk as the product between the ground vibrational state
for the harmonic mode (y coordinate)and the transla-
tional Gaussian wave packet (x coordinate) with various

). The parameters assume the

Figure 1. The three adiabatic potential energy surfaces.
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Table 1. Reactive state-to-state transition probabilities.

E/eV 0—0 0—1 0—>2 0—3 0—14 0—>5
1.00@ 0.331 0.021 0.309 0.003

1.00® 0.020 0.547 0.035 0.050

1.00© 0.344 0.000 0.319 0.000

1.00@ 0.324 0.093 0.239 0.021

1.00© 0.349 0.000 0.384 0.000

1.25 0.331 0.019 0.246 0.003 0.099

1.25 0.064 0.495 0.067 0.042 0.023

1.25 0.343 0.000 0.252 0.000 0.102

1.25 0.379 0.070 0.182 0.012 0.087

1.25 0.315 0.000 0.289 0.000 0.111

1.50 0.443 0.022 0.194 0.003 0.084 0.001
1.50 0.012 0.645 0.019 0.043 0.004 0.021
1.50 0.455 0.000 0.201 0.000 0.089 0.000
1.50 0.405 0.057 0.198 0.014 0.107 0.013
1.50 0.434 0.000 0.272 0.000 0.113 0.000

@GBO (13), ®GBO (12) or GBO (23), ©®BO, WEBO, and ©coupled three-state

results.

kinetic energies for the scattering mode. This adiabatic
wave function is then propagated as a function of time
by using the newly derived single surface GBO equa-
tion,*’ and the BO and Extended BO (EBO)**% ones, in
addition to the solution of the three-state coupled equa-
tions.** For this, the discrete variable representation
(DVR) method* has been utilized, with the final wave
functions at t — oo being projected on the asymptotic
eigenfunctions of the Hamiltonian such as to obtain
the state-to-state vibrational transition probabilities at
different energies. We have used the the functional form
of GP angle/mixing angles (§;; and &;;) as 3 tan™' (y/x).
All these dynamical calculations have been done at total
energies of 1.00, 1.25, and 1.50 eV. The calculated reac-
tive state-to-state transition probabilities are given in
table 1.

The first row of table 1 shows the GBO results hav-
ing the phases (1) in states 1 and 3, case (13), which
is predicted to yield the proper combination from the
theory.*® Cases (12) and (23) are expected to give dis-
tinct results, as shown in the second entries, while the
third and fourth rows give the BO and EBO reactive
transition probabilities, respectively. The results from
the three coupled-state calculations are given in the fifth
entries. It is clear from the table that the GBO val-
ues for case (13) are in excellent agreement with the
results from other approaches. In contrast, cases (12)
and (23) predict the largest reaction probabilities for
even— odd vibrational transitions such as 0 — 1 while
even—even ones are very small. This is typical of a
two-state conical intersection (which predicts the latter
to vanish), which contrasts with the results expected for

a three-state conical intersection. In summary, GP will
appear on electronic states ¥, and v3, with the PES’s
of these two electronic states having a nonzero slope
at the degeneracy locus.* Clearly, the GBO forma-
lism reported here is strictly valid in the vicinity of the
degeneracy seam, although generality can be warranted
by invoking the fact that such regions influence in a
dominant way the dynamics even when the energetics
allows sampling wider areas of configuration space*
surrounding the degeneracy point. Extension to larger
manifolds is warranted by the ELH theorem.*

4. Conclusion

We have discussed a new approach to deal with the GP
in the dynamics of scattering processes. It finds support
on a reductio ad absurdum extension of the LH theo-
rem,” and is readily extendable to manifolds of arbi-
trary dimension. For example, in the case of a N-fold
JT electronic degeneracy, propagation of the adiabatic
electronic wave vectors around the point of degene-
racy can be represented as a rotation in N — 1 parame-
ters in the N-dimensional electronic wave-vector space.
Specifically, for the N = 3 case, such a rotation occurs
on the 3D electronic wave-vector space, showing that
only two adiabatic electronic wave vectors (namely 1
and 3) are subject to GP effect.
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