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Abstract. The traditional numerical computation of the first derivative f ′(x) of a given function f (x) of 
a single argument x by central differencing is known to involve aspects of both accuracy and precision. 
By analysing both we arrive at an algorithm that closely approximates the most accurate answer obtain-
able by this method, typically with at least 9 accurate decimals, while preserving a minimal footprint. The re-
sults apply to software based on the IEEE-754 specification, and are illustrated with Excel. 
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1. Introduction 

Since Newton and Leibnitz introduced calculus, dif-

ferentiation and differential equations have been at 

the core of physics, and of virtually all physical sci-

ences. In formal mathematics, differentiation is usu-

ally the more straightforward process; consequently, 

most attention and ingenuity is typically lavished on 

integration. In numerical analysis, the reverse is 

true: numerical integration is relatively straightfor-

ward, while numerical differentiation is not. Yet the 

latter field has generally been underserved, and an 

important component of it, central differencing, will 

therefore be discussed here in more detail than 

would otherwise be justified. And we will see how 

numerical differentiation, even of closed-form alge-

braic expressions, introduces statistical effects, and 

forces us to consider the interplay of systematic and 

indeterminate errors. Moreover, we will illustrate 

how even the lowly spreadsheet can be used to find 

interesting new solutions to old problems. Inciden-

tally, the approach described below is equally appli-

cable to its less accurate but sometimes unavoidable 

companions, forward and backward differencing, 

but the latter will not be discussed here in order to 

keep the present communication within manageable 

size. 

 We will here consider taking the numerical deriva-

tive dF/dx of a mathematically specified function 

F(x); in the case of a function of multiple arguments, 

i.e. for the function F(x) where x is a vector of various 

arguments xi, numerical differentiation yields the 

partial derivatives that define its Jacobian matrix. 

The first derivative, as the best linear approximation 

to a function, is used in many root-finding methods, 

such as the Newton–Raphson algorithm, as well as 

in all optimization schemes, such as in the Leven-

berg1-Marquardt2 or generalized reduced gradient3,4 

routines. While it is in principle possible to use ana-

lytical expressions for such derivatives, this is often 

impractical, and therefore bypassed, e.g. the original 

Fortran version of the Lasdon–Waren routine4  

includes the option of user-provided analytic deriva-

tives, but its popular spreadsheet implementation 

Solver only uses numerical derivatives. (One would 

need to buy the special Premium Solver from Front-

line Systems to allow analytic derivatives.) 

 Numerical differentiation is usually inspired by 

the mathematical definition of the derivative as a 

limit, 
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which has led to three main types of closely related 

approaches, called forward, central, and backward 

differencing. In their simplest form they use the  

expressions 
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respectively, replacing the mathematical limit δ → 0 

by a sufficiently small numerical difference δ << x. 

One can extend these difference formulas, all lim-

ited to δ << x, by including more input data, typi-

cally at equal intervals δ, such as 
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Central differencing, as in (3) and (6), is the most 

accurate of the above three methods for a given 

number of equidistant data samples; forward and 

backward differencing are usually reserved for spe-

cial cases where the function either has a singularity 

and/or discontinuity at x (as tan(x) has at x = π /2), 

or is undefined at and/or on one side of x (as log(x) 

is at x ≤ 0, and√ x at x < 0). Forward and backward 

differencing are part of a larger group of what might 

be called lateral (as distinct from central) differenc-

ing methods, including extrapolative differencing 

that might be appropriate for a singularity. Here we 

will only consider central differencing, because the  

corresponding treatments for lateral differencing  

involve no new concepts, and follow similar logic. 

 We will assume that the function f (x) exists and 

is differentiable at all sample values x + nδ used 

(where, in order to keep the math simple, n will be 

integer), and that the same applies also to any of its 

higher derivatives that we may need. For a general 

description of such differentiation routines the 

reader is referred to the Numerical Recipes.5 Here 

we will focus on compact central differencing, i.e. 

on those central difference expressions that use a 

minimal number of equidistant samples to achieve a 

given order of magnitude of their associated errors. 

 The computer implementation of such difference 

equations leads to an interesting dilemma. As δ  

approaches zero, the differences in the numerators 

of these equations, such as f (x + δ) – f(x – δ) in (3) 

or the corresponding difference f1 – f–1 in the expres-

sion for j = 3 in table 1, become so small that their 

numerical evaluation becomes subject to cancella-

tion errors. Such errors are pseudo-random, i.e. they 

appear to be random, even though they are fully  

deterministic in the sense of being reproducible for a 

given computer, software, and input, in the same 

way as computer-generated pseudo-random numbers 

are fully deterministic. Cancellation errors lead to 

ostensibly imprecise results, and can indeed be  

reduced by using extended numerical precision. 

 On the other hand, when δ is too large, systematic 

errors resulting from any nonlinearity of f (x) as a 

function of x will dominate, causing inaccurate an-

swers. At the optimum δ-value, the total error 

(pseudo-random noise plus systematic bias) should 

be minimized in order to obtain the highest achievable 

accuracy. This requires modelling of both types of 

error, which will therefore be our main focus. 

2. Systematic errors 

In order to find the systematic errors we use the Tay-

lor expansions 
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which we combine to 
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Table 1. Compact central differencing formulas for the first derivative, f0
I
, with the leading term of its systematic er-

ror, for j = 3(2)17, where the number of data points j listed in the first column includes f0. The term compact indicates 
use of the smallest possible number j of equidistant data. The results shown in tables 1 through 4 were computed with 
the spreadsheet approach illustrated in section 9.2.5 of ref. 6. For j > 9 this required higher-precision matrix inversion 
to get sufficiently accurate answers, for which we used Volpi’s BigMatrix freeware, see ref. 6 section 11.9. 

  Leading term of 
j Formula for f0

I
 systematic error 

 

 3 (–f–1 + f1)/(2δ) –f 
III
 δ

 2
/6 

 5 (f–2 – 8f–1 + 8f1 – f2)/(12δ) +f 
V
δ
 4
/30 

 7 (–f–3 + 9f–2 – 45f–1 + 45f1 – 9f2 + f3)/(60δ) –f 
VII
 δ

 6
/140 

 9 (3f–4 – 32f–3 + 168f–2 – 672f–1 + 672f1 – 168f2 + 32f3 – 3f4)/(840δ) +f 
IX
δ
 8
/630 

11 (–2f–5 + 25f–4 – 150f–3 + 600f–2 – 2100f–1 + 2100f1 – 600f2 + 150f3 – 25f4 + 2f5)/(2520δ) +f 
XI
 δ

 10
/2772 

13 (5f–6 – 72f–5 + 495f–4 + 2200f–3+7425f–2 – 23760f–1 + 23760f1 – 7425f2 + 2200f3 
  – 495f4 + 72f5 – 5f6)/(27720δ) +f 

XIII
 δ

 12
/12012 

15 (–15f–7 + 245f–6 – 1911f–5 + 9555f–4 – 35035f–3 + 105105f–2 – 315315f–1 + 315315f1 
   – 105105f2 + 35035f3 – 9555f4 + 1911f5 – 245f6 + 15f7)/(360360δ) +f 

XV
δ
 14
/51480 

17 (7f–8 – 128f–7 + 1120f–6 – 6272f–5 + 25480f–4 – 81536f–3 + 224224f–2 –  
   640640f–1 + 640640f1 – 224224f2 + 81536f3 – 25480f4 + 6272f5 – 1120f6 
   + 128f7 – 7f8)/(720720δ) +f 

XVII
 δ

 16
/218790 
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Where, for the sake of notational compactness, we 

write derivatives in Newton-like notation (but with 

Roman superscripts rather than dots or apostrophes), 

i.e. we abbreviate the derivatives of f(x) at x = x0 as 

f0
I = df (x)/dx|x=x0, f0

II = d2
f(x)/dx2|x=x0, f0

III = d3
f
 (x)/ 

dx3|x=x0, etc. and use the abbreviation fn for the value 

of the function f (x) at x = x0 + nδ. As it turns out, we 

will usually select small enough values of δ/x to 

make all but the first higher-order derivatives negli-

gible, in which case (10) can be truncated to 
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while the equivalent expression for (6) reads 
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In general, the j-point central difference formula for 

f0
I will have a systematic error of – (bjδ

 j–1 f0
J), where 

j = 2nmax + 1 denotes the number of equidistant data 

needed, of which only the central sample f0 at δ = 0 

will not be used directly in the expressions given in 

table 1. The superscript J on f, acting as an adjunct 

Roman capital, denotes the jth derivative (rather than 

power) of f (x). The quantity bj is the absolute value 

of the coefficient of f0
J
δ
 j–1 of the leading error term: 

b3 = |–1/3!| = 1/6, b5 = | +4/5!| = 1/30, b7 = |–36/7!| = 

1/140, etc. 

 Below we will find it useful to consider the mag-

nitude (i.e. absolute value) of the relative errors (for 

a value a, with an error Δ, the relative error is Δ/a) 

which, by extension of (11) and (12), can be written 

as 
 

 
J

1 0
syst I

0

,

j

j

f
E b

f
δ

−

=  (13) 

 

assuming that f0
I ≠ 0. (When f0

I = 0, the definition of 

E must of course use the absolute error, and then 

read Esyst = bjδ  j–1 ⎪ f0
J ⎢ instead.). Some numerical val-

ues of 1/bj are listed in table 2. 

 Equation (13) shows the (dominant term of the) 

error avoided in the mathematical definition (1) by 

making δ go to zero. In numerical analysis, how-

ever, that limit cannot be reached, because cancella-

tion errors will usually take over before δ can 

become sufficiently small to make Esyst less than,
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Table 2. Approximate numerical values of the coefficients bj, cj, dj and ε
1/j
 for the compact central difference expres-

sions of the first derivative f0
I
 listed in table 1 for ε = 2

–52
 ≈ 2⋅220446 × 10

–16
. Note that cj is fairly constant, at between 

2 and 4 times ε, and that dj approximately tracks ε
1/ j
. 

j 1/bj cj  dj  ε
1/ j
 

 

 3 6 4⋅53246651836840 × 10
–17
 5⋅14223539198791 × 10

–6
 6⋅05545445239335 × 10

–6
 

 5 30 6⋅09031888443656 × 10
–17
 8⋅54949099450734 × 10

–4
 7⋅40095979741405 × 10

–4 

 7 140 6⋅93498646345351 × 10
–17
 7⋅70909150071808 × 10

–3
 5⋅80466519194121 × 10

–3
 

 9 630 7⋅48317772924943 × 10
–17
 2⋅62377319790381 × 10

–2
 1⋅82270162433768 × 10

–2
 

11 2772 7⋅87541807882321 × 10
–17
 5⋅72923961016090 × 10

–2
 3⋅77527951376390 × 10

–2
 

13 12012 8⋅17386474122853 × 10
–17
  9⋅84684360844102 × 10

–2
 6⋅25000000000000 × 10

–2
 

15 51480 8⋅41076437690960 × 10
–17
 1⋅46562567567514 × 10

–1
 9⋅04543273400236 × 10

–1
 

17 218790 8⋅60471943284807 × 10
–17
 1⋅98734464180835 × 10

–1
 1⋅20005835856849 × 10

–1
 

 

 

say, 10–15, or a similar number reflecting the maxi-

mum number of decimals displayed or bits carried, 

such as ε defined in the next section. 

3. The IEEE 754 specifications and Excel 

In order to describe the effect of finite numberlength 

we will first consider the IEEE-754 specification 

that is common to many software packages for per-

sonal computers. In this convention7 a double preci-

sion floating point number is represented in 64 

binary units or bits, of which one is devoted to the 

sign of the number, the next 11 bits to its exponent 

(properly biased by adding 1023 so that it cannot 

become a negative number), and the final 52 bits to 

the magnitude of its mantissa. A decimal equivalent 

would be similar to scientific notation, as in  

–5⋅43 × 1021, where the sign is –, the exponent 21, 

and the mantissa 5⋅43 or, more precisely, as in –

543 × 1019, i.e. with the decimal point shifted to 

make the mantissa 543 a non-negative integer.  

 In the IEEE-754 specification, the non-negative 

mantissa ignores leading zeros in order to maintain a 

constant relative precision. Since a binary number 

only contains zeros and ones, the leading non-zero 

bit in the mantissa of a non-zero number will always 

be 1. Consequently, this first bit can be (and there-

fore is) implied, effectively making 53 bits available 

for the absolute value of the mantissa, so that this 

mantissa can represent 253 non-negative integers. 

Any bits beyond those that can be accommodated in 

the mantissa are often simply ignored, so that the bi-

nary number is effectively truncated to fit the avail-

able space (unless the central processing unit has 

extra registers, in which case it can properly round, 

thereby reducing the uncertainty by 2, i.e. effec-

tively adding one more bit). The relative uncertainty 

ε of these numbers, also called ulp for unit of last 

place or unit of least precision, is therefore (absent 

extra registers and rounding) at most 1 in 253, i.e.,  

2–53 = 1⋅110223 × 10–16. 

 We now focus specifically on Excel, simply be-

cause it is by far the most ubiquitous numerical soft-

ware, and therefore presumably the most often used 

as such. (Many more accurate numerical software 

packages exist, but none with as wide a distribution 

as Excel. When people fly predominantly by jet, it 

matters little for the world that propeller-driven air-

craft consume less fuel per passenger-mile and leave 

fewer sunlight-reflecting contrails.) The following 

simple experiment will establish that Excel uses 

ε = 2–52 = 2⋅22044604925031E-16. 

 In a spreadsheet cell, say C2, deposit the number 

1. In cell B3 place a sufficiently small number, such 

as 1E – 16. In cell C3 deposit the instruction = 

C2 + $B$3, and copy this down to, e.g. cell C200. 

Make columns B, C, and D wide enough to display 

all numbers in them in scientific notation with 14 

decimals. As a result, the number 1⋅0000000000 

0000 will show in all cells of the array C2 : C200. 

 Now gradually increase the value in cell B2, and 

observe what happens in column C. Nothing 

changes with, say, 1⋅11E-16, but when the value in 

B2 is increased to 1⋅111E-16 we find 1⋅000 

00000000001 in cells C25 : C69, 1⋅00000000000002 

in cells C70 : C114, 1⋅00000000000003 in C115 : 

C159, and 1⋅00000000000004 in the remainder of 

our column C2 : C200. 

 In order to understand what happens we deposit 

the instruction = (C2–1) in cell D2, and copy this 

down to D200. In this way we can see beyond the 

15-decimal display limit of the spreadsheet to  

inspect the underlying numbers. We see 2⋅2204 

4604925031E-16 in cell D3, double of that in cell 

D4, and so on down the column. The first transition 
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in the numbers displayed in column C occurs when 

the value 4⋅88498130835069E-15 in D24 goes to 

5⋅10702591327572E-15 in D25, i.e. when the num-

ber shown in column C is properly rounded to 

1⋅00000000000001E-14. Thereafter the display 

changes about every 45 cells: 10–14/2–52 ≈ 45 where 

10–14 is the ulp of the display. Increasing the value 

of ε in B3 has no further effect in columns C and D 

until it goes from 3⋅33E–16 to 3⋅331E-16, at which 

point all values shown in column D double, the 

value 1⋅00000000000001 appears in cells C14 : C35, 

the value 1⋅00000000000002 in C36 : C58, etc. All 

the above observations point to ε = 2–52 = 

2⋅22044604925031E-16. 

 A small detail: when the brackets in the instruc-

tions in column D are deleted, the first few numbers 

in column D show zeroes. This is the consequence 

of a ‘compensation’ cryptically described in Micro-

soft kb 78113 as correcting for round-off errors in 

additions or subtractions that result in near-zero re-

sults when zero would be expected.8 Specifically, 

this compensation in the displayed result of z = x ± y 

kicks in when both x and y are non-zero, the binary 

exponent of z + 50 is smaller than or equal to that of 

x, and the addition or subtraction is the last opera-

tion involved. The brackets bypass this compensa-

tion by counting as an (empty) last calculation step. 

Kahan9 had already noticed this behaviour. 

4. Cancellation errors 

In most numerical software systems, the dominant 

errors in evaluating differences between near-equal 

numbers are those that result from the finite number-

length used. Since our concern here is the effect of 

such relative uncertainty on numerical differentia-

tion, we will use the term cancellation errors in  

order to distinguish them from the systematic errors 

introduced by truncating the Taylor expansions. 

 We now consider the arguments of the functions  

–f–1 and f1 in (11) under conditions where the domi-

nant error is the cancellation error in the relatively 

small difference between f–1 and f1. Because of the 

presence of a separate sign bit, the mantissa always 

represents a non-negative integer. Software that lops 

off all bits beyond the effectively available 53 will 

result in relative errors that are randomly distributed 

between 0 and ε. Such errors are best described by a 

uniform distribution ε × U(0, 1) or, equivalently, by 

a bias term ε/2 plus a noise term ε × U(–1/2, 1/2). 

The uniform distribution U(a, b) has a mean of 

(b + a)/2 and a standard deviation of (b – a)/√12. In 

terms of relative errors we therefore have a bias of 

ε/2 and a standard deviation of ± ε/√12. In Excel, 

rounding also leads to the uniform distribution  

U(–½, ½), without the bias term, and with an  

ε-value that is twice as large. Below we will assume 

that the bias term is present, in order to illustrate 

that it is immaterial for central differencing, where 

it cancels, so that the above two models give identi-

cal predictions as long as the appropriate value of ε 

is used. 

 A detailed analysis of cancellation errors requires 

a specific protocol. Here we will discuss the simple 

procedure followed in our Excel macro Deriv1 as it 

implements the formula for j = 3 in table 1. (The  

algorithms for larger j-values follow a similar logic, 

and merely involve more terms, i.e. more manipula-

tions and different constants, but no new concepts.) 

Before Deriv1 can be used, make sure that the 

spreadsheet contains a cell holding a formula that 

computes the function f (x0), where the value of the 

parameter x0 is stored in a second cell. For such an 

arrangement we will consider the following algo-

rithm: (i) the macro reads the value of x0 in the second 

cell, (ii) changes it to x0 + δ by adding a constant δ 

(iii) reads and stores the resulting value of 

f1 = f (x0 + δ), (iv) then changes the value in the sec-

ond cell to x0 – δ, (v) reads and stores this value as  

f–1 = f(x0 – δ), and finally (vi) computes the first de-

rivative f I(x0) as [ f (x0 + δ) – f (x0 – δ)]/2δ. 

 When the same calculation is made entirely in 

background, without a spreadsheet, we assume that 

similar steps are taken, and the intermediate results 

stored, which should yield equivalent results. In Ex-

cel, invasive sampling (see section 8.14.1 in ref. 6) 

and reconstructing the equation in background (see 

section 8.14.2) indeed yield identical answers. 

 The numerical computation therefore involves 

three distinct stages: we first generate the arguments 

x + δ of f1 and x – δ of f–1, then calculate the corre-

sponding functions f1 and f–1, and finally determine 

their difference, f1 – f–1. To see how cancellation 

noise enters these computations in the first step, we 

replace the argument x0 of these functions by 

(x0 + δ) (1 + ε/2 ± ε/√12) ≈ x0 + δ + εx0/2 ± εx0/√12 

on the assumption that x0 >> δ. In the second stage 

we then compute, store, and subsequently read the 

functions f1 = f (x + δ) and f–1 = f (x – δ) as 

 

 f1 = f (x0 + δ + εx0/2 ± εx0/√12) 

       ≈ f0  + (δ + εx0/2 ± εx0/√12) f0
I (14) 
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and 

 f–1 = f (x0 – δ + εx0/2 ± εx0/√12) 

       ≈ f0 + (–δ + εx0/2 ± εx0/√12) f0
I, (15) 

where we approximate the function by the first two 

terms of its Taylor series, see (8) and (9), with f0 and 

f0
I denoting the mathematically correct (i.e. bias- 

and noise-free) values of the function and its first 

derivative at x = x0, and where we use ± to indicate 

the unknown, pseudo-random sign of cancellation 

noise rather than as a choice between a known top or 

bottom sign. (This is also why, to avoid confusion, 

we wrote out (8) and (9) separately.) Finally, before 

they can be subtracted, these functions must be held 

or stored, at which point they will again be trun-

cated. Inclusion of the corresponding errors will then 

lead to 
 

 f1 ≈ (1 + ε/2 ± ε/√12) f0 + (εx0/2 ± εx0/√12+ δ) 

 (1 + ε/2 ± ε/√12) f0
I ≈ (1 + ε/2 ± ε/√12) f0 

 + (εx0/2 ± εx0/√12 + δ) f0
I, (16) 

 

and a corresponding expression for f–1. Taking their 

difference and dividing by 2δ yields 
 

 f0
I
calc = (f1 – f–1)/2δ ≈ f0

I ± (ε√12)⎪ f0 ⎢√2/(2δ)  

    ± (ε√12)⎪ x0f0
I ⎢√2/(2δ)      = f0

I  

    ± ε (⎪ f0 ⎢ + ⎪x0 f0
I ⎢)/(δ√24) 

    = 0⋅2041241ε (⎪ f0 ⎢+⎪ x0f0
I ⎢)/δ, (17) 

 

where the bias terms cancel, while the noise terms 

are added as standard deviations should, i.e. as the 

square root of the sum of their squares, so that their 

variances are added directly. We therefore end up 

with two distinct terms to describe cancellation 

noise, which originate from computing x and f (x) re-

spectively. Dependent on the nature of the function 

f0 and on the value of x0, one of the two error terms 

in (⎪ f0 ⎢+⎪ x0f0
I ⎢) will often be dominant. 

 For j = 5, see (6), we likewise find 
 

 

I

0 0 0

2 2 2 2

I I

0,calc 0

( / 12)(| | | |)

1 8 8 1

12

f x f

f f

ε

δ

⎡ ⎤+
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦= ±  

 

   
I

I 0 0 0

0

| | | |.0 2742836
f x f

f ε
δ

+
= ± , (18) 

and, in general, I I I

0,calc 0 0 0 0
(| | | |)/jf f c f x f δ= ± + , so 

that 
 

 

I

0 0 0

canc I

0

(| | | |)
,

| |

jc f x f
E

fδ

+

=  (19) 

 

where E again denotes an absolute value, and ε has 

been included in cj. Some values of the coefficient cj 

are listed in table 2, as calculated with ε = 2–52 and 

the coefficients fi in the equations of table 1, cf. (17) 

and (18). 

 At relatively large δ-values, the systematic error 

will dominate, in which case (13) describes a linear 

asymptote in a plot of pEsyst as a function of pδ, with 

slope j – 1 and intercept –log(bj⎪ f0
J/f0

I ⎢). Likewise,  

at much smaller δ-values, such a graph should show 

a linear asymptote with slope –1 and intercept  

–log[cj (⎪ f0 ⎢+⎪ x0 f0
I ⎢)/⎪ f0

I ⎢] according to (19). 

5. Optimizing the step size δ 

In general, we must consider both the systematic  

error caused by truncating the Taylor series, and the 

cancellation noise introduced by subtracting num-

bers of near-equal magnitude. Since the systematic 

error is unidirectional, while the cancellation error 

yields pseudo-random noise, we add these two inde-

pendent types of error as the algebraic sum of their 

absolute errors, Etotal|
 
f0

I | ≤ Esyst| f0
I | + Ecanc|

 
f0

I |, and 

then return to their relative errors, 
 

 

total syst canc

J I

1 0 0 0 0

I I

0 0

| | | | | |
,

| | | |

jj

j

E E E

cf f x f
b

f f
δ

δ

−

≤ +

+
= +

 (20) 

 

where we again use the absolute values to ensure 

that their logarithms and/or roots can always be 

computed, regardless of the signs of f0, x0, f0
I, and 

f0
J. After all, we are interested in reducing the abso-

lute magnitude of the total error, which at δ = δopt 

follows from (20) as 
 

 
J

2total 0
opt I

0

d | |
( 1) 

d | |

j

j

E f
j b

f
δ

δ

−

= −  

     
I

0 0 0

2 I

opt 0

| | | |
0,

| |

jc f x f

fδ

⎛ ⎞+
− =⎜ ⎟

⎝ ⎠
 (21) 

 

so that 
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1/ 1/
I

0 0 0
opt J

0

| | | |

( 1) | |

j j

j

j

c f x f

j b f
δ

⎛ ⎞ ⎛ ⎞+
= ⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 

 

   

1/
I

0 0 0

J

0

| | | |
,

| |

j

j

f x f
d

f

⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
 (22) 

 

with 
 

 

1/

,
( 1)

j

j

j

j

c
d

j b

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 (23) 

 

for which table 2 displays some values. 

 Finally, substituting (22) and (23) back into (20) 

yields 
 

1/
I J

0 0 0 0
opt I I

0 0 0 0

| | | | | |
,

( 1) | | | | | |

j

j

j

jc f x f f
E

j d f f x f

⎛ ⎞⎛ ⎞ ⎛ ⎞+
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− +⎝ ⎠ ⎝ ⎠⎝ ⎠  

 (24) 
 

which shows that it is in principle possible to predict 

the accuracy of the resulting answer. 

 Incidentally, the two extrapolated asymptotes  

intersect at δ = (cj/bj)
1/j, which differs slightly from 

dj because the absolute magnitudes of the slopes of 

the two asymptotes are different. 

6. A first test of the model 

We can readily examine the applicability of the 

above relations with functions f (x) that have known 

derivatives. Here we first take the simple power law 

f
 (x) = x20, so that the required higher derivative f0

J 

does not vanish, and is readily computed even for 

J = 17, as will occur when we test with j = 15. This 

is a non-trivial test, because a 20th order power law 

is a highly nonlinear function of x. Our preliminary 

tests will use expressions on the left-hand side of  

table 1 to compute values for f0
I for a wide range of 

δ-values around their optimal value δopt where Etotal 

is maximal. We will look specifically at the asymp-

totic behaviours, to test the validity of (13) and (19) 

semi-quantitatively. 

 Let the known, correct values of f0
I be denoted by 

f0,
I
ref so that we can calculate the logarithm of the 

absolute values of the resulting relative numerical 

errors, which we will display as a function of pδ, 

where p is the operator –log( ), as in pH = –log[H+]. 

The quantity pE indicates the number of significant 

decimals in the answer, e.g. pE = 6 indicates that the 

answer is good to ± 1 in 106 or has 6 significant 

decimals, with the sixth good to ± 1, while pE > 6⋅3 

will assure that all six decimals are correct. The 

double-logarithmic representation of pE vs pδ is 

convenient in this case because both (13) and (19) 

are power laws in δ. A plot of pE vs. pδ will empha-

size that we want to maximize the accuracy of the 

sought derivative. Alternatively we could plot 

log(E) vs. log(δ), as done in, e.g. figure 3.3 of ref. 

(10), which instead emphasizes the effort to mini-

mize the errors. Both representations contain the 

very same information, and are fully equivalent. 

 Figures 1 through 5 were generated on an Excel 

spreadsheet with the auxiliary custom macro  

DerivScan, which is part of my freely downloadable, 

open-access MacroBundle.11 It takes j, F(x) and x0 as 

its input, and generates a column of values of the  

derivative as a function of pδ in the region around 

δ = | x0| ε
1/j, which we will use as our first estimate 

of δopt. The spreadsheet can then be used to combine 

 

 

 
 

Figure 1. Plot of pE vs. pδ for f (x) = x20, and its  
numerical analysis for j = 3 with x0 = 1⋅234 (open black 
circles). The gray straight line with slope +2 through the 
data is computed with (13), and the gray line with slope  
–1 with (19). Here and in figures 2 through 5, the location 
of the heavy vertical arrow identifies pδopt as calculated 
with (22) (here with the value pδopt = 6⋅04), while the 
light vertical arrow shows pδ = –log⎪x0⎪ – (1/j) logε 
(here at pδ = 5⋅13). 
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Figure 2. Plot of pE vs pδ for f (x) = x20, and its numerical analysis for j = 3 with x0 = 
–12⋅34 (left panel) and 0⋅001234 (right panel). The gray straight lines with slope +2 are based 
on (13), those with slope –1 on (19). The heavy vertical arrows show (22) at pδopt = 5⋅04 for 
x0 = –12⋅34, and at pδopt = 9⋅04 for x0 = 0⋅001234; the light arrows display the corresponding 
values for pδ at pδ = 4⋅13 and pδ = 8⋅13 respectively. In figures 1 and 2, δopt is directly pro-
portional to ⎪x0ε

1/j⎪, as expected from (22) for f (x) = x20. 

 
 

 
 

Figure 3. Plot of pE vs pδ for f (x) = x20 with x0 = 1⋅234, for j = 9 (left panel) and 15 (right 
panel). The gray straight lines with slope +2 are based on (13), those with slope –1 on (19), 
and the vertical arrows are drawn at pδopt = 2⋅54 and pδ = 1⋅65 for j = 9, and at pδopt = 1⋅74 
and pδ = 0⋅95 at j = 15. Note that the pE and pδ scales are both shifted by 3 units with respect 
to those in figures 1 and 2, and that δopt is again proportional to ⎪x0ε

1/ j⎪. 

 

 

the derivative with its reference value to yield the 

pE-values; instead, we could hard-code this into the 

macro which then, however, would become func-

tion-specific. 

 Figure 1 illustrates the result so obtained for the 

function f (x) = x20 for x0 = 1⋅234, by varying the 

magnitude of δ over eight decades, from δ = 10–3 to 

δ = 10–11, so that pδ runs from 3 to 11. In figure 2 

we show equivalent results for two different values 

of x0, of different sign and magnitude, and in figure 

3 for two larger values of j. These graphs are in 

quantitative agreement with the model: the asymp-

totes fit the data, and the model values of δopt and Eopt 

are indeed located near the maximum value of E. 
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Figure 4. Plot of pE vs pδ for f (x) = ex, and its numerical analysis for j = 3 with x0 = 500 
(left panel) and 5 (right panel). The gray straight lines are the model asymptotes, and the heavy 
vertical arrows are positioned at pδopt = 4⋅39 and 5⋅03 respectively, while the light arrows  
calculated at pδ = ⎪x0⎪ε

1/j at 2⋅52 and 4⋅52 differ by log(100) = 2. 
 
 

 
 

Figure 5. Plot of pE vs pδ for f (x) = ex, and its numerical analysis for j = 3 with x0 = 0⋅05 
(left panel) and 0⋅0005 (right panel). The heavy vertical arrows at pδopt = 5⋅28 and 5⋅29 are 
nearly identical, and roughly coincide with the observed maxima in pE, while the light arrows 
at pδ = 6⋅52 and 8⋅52 are clearly far off the mark. 

 

 

 In order to see the effect of the term (⎪ f0 ⎢+⎪ x0f0
I ⎢) 

in (19) and (22) we use the exponential function 

f
 (x) = ex, where f0

I = f0, so that merely changing x0 

from x0 >> 1 to x0 << 1 can serve as our test. In fig-

ures 4 and 5 we illustrate that our model prediction 

indeed applies. 

 For x0 >> 1, both the location of the right-hand 

asymptote and the value of pδopt change with x0 by 

the predicted amount, (1/j)log(x0), whereas for 

x0 << 1 we find that both are essentially constant. 

This supports the presence of two different stages at 

which cancellation errors can occur in central differ-

encing, each with its own characteristic response. 

 The above examples illustrate the following: (i) 

The curves indeed exhibit two linear asymptotes, 

with a rather narrow transition region where pE is 

maximal. (ii) The asymptotes at large δ-values (and 

correspondingly small values of pδ) show very little 

noise, consistent with systematic errors, and are 

quantitatively described by (13). (iii) The asymp-
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totes at small δ (i.e. at large pδ) are noisy, as  

compatible with cancellation noise, and are ap-

proximately described by (19). (iv) The cancellation 

noise in these graphs appears to be asymmetrical, 

but this is mostly an artifact of plotting pE, the loga-

rithm of the absolute value of relative errors, as il-

lustrated in the insert of figure 1. This is a well-

known feature of noise after a logarithmic data 

transformation, further accentuated here by taking 

absolute values. (v) The value of δopt corresponding 

to the curve maximum is well-described by (22), and 

its shift with x0 follows the predicted behaviour 

quantitatively, including a linear shift of pδopt with 

(1/j) px0 = –(1/j)log |x0| when | f0 | << |x0 f0
I|, and in-

dependence of x0 when ⎪ 
f0 | >> |x0 f0

I| for f (x) = ex, 

see figures 4 and 5. 

7. A first approximation 

So far we have illustrated some preliminary tests of 

our model, by using known values of f0
I and f0

J. 

While this is useful to verify the applicability of the 

model used, it is the inverse of the practical problem 

at hand, which is to determine the first derivative f0
I 

when it and the higher derivative f0
J are not already 

known. As stated so far, the problem would appear 

to be circular: for an accurate determination of the 

first derivative we need to find δopt, which in turn 

requires estimates of both derivatives f0
I and f0

J, see 

(22). We therefore look for an approximation to 

break this circle. 

 The constants bi, ci, di, and ε in (22) are all di-

mensionless, while both δ and [(| f0 | + | x0f0
I ||)/⎪ f0

J||1/j 

have the dimension of x. Moreover, di is approxi-

mately equal in magnitude to ε1/j, see table 1. A 

crude, first-order approximation for δ is therefore 

δ ≈ |x0|ε
1/j, see ref. 5. Anything beyond that will  

depend on the particular function f0 involved. Unfor-

tunately, as can readily be seen from the positions of 

the light vertical arrows in figures 1 through 5, the 

approximation δ ≈ ⎪x0⎪ε
1/j is often way off the mark, 

whereas the heavy arrows defined by (22) for δopt 

trace the position of the maximum in pE quite well. 

On the other hand, as we will see below, even such a 

crude approximation usually suffices to get us 

started. 

 Consider figure 1, where (22) gives the apparently 

correct value for pδ of about 6, while δ ≈ ⎪x0⎪ε
1/j 

yields a value of about 5. Because the slope of the 

left-most asymptote in figure 1 (i.e. for the system-

atic error) is 2, the resulting decrease in pE is also 

about 2, from approximately 10 to around 8. But 

keep that in perspective: it means that even 

δ ≈ |x0|ε
1/j gets the first derivative right to about 8 

decimal places! That is certainly good enough for a 

first approximation. 

 At higher j-values, as the slope of the asymptote 

increases, the corresponding errors in pδ can like-

wise grow, see figure 3. But in that case the maxi-

mum in pE is quite high, near 13 or 14, so that we 

can tolerate a substantial error in pδ and still find a 

workable approximation for f0
I. In figure 3b, e.g. the 

estimate based on δ ≈ |x0|ε
1/j yields a pδ-value that is 

about 0⋅69 too small, and its effect is amplified four-

teen times to about 10 by the slope 14 of the term 

pEsyst. This brings the value of pE down from its 

lofty maximum of about 14 to a mere 4, but that still 

means that we can estimate f0
J to about four signifi-

cant decimals, certainly accurate enough for use in 

computing δopt, which only depends on the 1/14th 

power of f0
J. 

8. Higher-order derivatives 

In an algorithm designed to determine f0
I, its value is 

of course unknown, as is that of f0
J. For an accurate 

determination of the first derivative we need to find 

δopt, which in turn requires estimates of both deriva-

tives f0
I and f0

J, see (22). We therefore briefly extend 

the above treatment to such derivatives, confining 

our discussion to their smallest-footprint central  

difference formulas, where footprint defines the  

x-range over which the function must be sampled, 

such as from x = x0 – 2δ to x0 + 2δ when we use (6). 

Keeping the footprint small extends the range of  

applicability of central differencing when the func-

tion and/or its derivatives have discontinuities and 

singularities. 

 Proceeding as before, we find the equations 

shown in table 3, which include explicit expressions 

for their dominant systematic error terms. Note that 

the shortest central differencing formula for f0
III in-

volves j = 5 equidistant samples, while that for f0
V 

requires j = 7, etc. where, as before, f0 is included in 

counting j but is not used in the equations shown. 

 The leading relative errors in table 3 are 
 

 
J II

2 0
syst J J

0

| |
,

| |

f
E bb

f
δ

+

= −  (25) 

 

where bbJ is the absolute value of the coefficient of 

f0
J+II 

δ
 2 in the leading systematic error term of f0

J in
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Table 3. The lowest-order compact central difference formulas for the first through seventeenth odd derivatives of 
the function f (x) at x = x0, together with their leading systematic error terms. 

  Leading term of 
f 
J Formula systematic error 

 

f 
I = (–f–1 + f1)/(2δ) –2 f IIIδ 2/12 

f 
III = (–f–2 + 2f–1 – 2f1 + f2)/(2δ

 3) –3 f Vδ 2/12 
f 
V = (–f–3 + 4f–2 – 5f–1 + 5f1 – 4f2 + f3)/(2δ

 5) –4 f VII δ 2/12 
f 
VII = (–f–4 + 6f–3–14f–2 + 14f–1 – 14f1 + 14f2–6f3 + f4)/(2δ

 7) –5f IXδ 2/12 
f 
IX = (–f–5 + 8f–4 – 27f–3 + 48f–2 – 42f–1 + 42f1 – 48f2 + 27f3 – 8f4 + f5)/(2δ

 9) –6 f XIδ 2/12 
f 
XI = (–f–6 + 10f–5 – 44f–4 + 110f–3 – 165f–2 + 132f–1 – 132f1 + 165f2 – 110f3 + 44f4 – 10f5 + f6)/(2δ

 11) –7 f XIIIδ 2/12 
f 
XIII = (–f–7 + 12f–6 – 65f–5 + 208f–4 – 429f–3 + 572f–2 – 429f–1 + 429f1 – 572f2 + 429f3 – 208f4 –8 f XVδ 2/12 

 + 65f5 – 12f6 + f7)/(2δ
 13) 

f 
XV = (–f–8 + 14f–7 – 90f–6 + 350f–5 – 910f–4 + 1638f–3 – 2002f–2 + 1430f–1 – 1430f1 + 2002f2 –9 f XVIIδ 2/12 

 – 1638f3 + 910f4 – 350f5 + 90f6 – 14f7 + f8)/(2δ
 15) 

f 
XVII = (–f–9 + 16f–8 – 119f–7 + 544f–6 – 1700f–5 + 3808f–4 – 6188f–3 + 7072f–2 – 4862f–1 –10 f XIXδ 2/12 

 + 4862f1 – 7072f2 + 6188f3 – 3808f4 + 1700f5 – 544f6 + 119f7 – 16f8 + f9)/(2δ
 17) 

 

 

table 3, i.e. bbI = 1/6, bbIII = 1/4, bbV = 1/3, and so 

on. For this set of formulas, j = J + 2 and bbJ = 

 (j + 1)/24 = (J + 3)/24. Some numerical values of 

1/bbJ are listed in table 4. They are fairly constant 

since bbJ increases by a mere 1/24 for every unit in-

crease in J. On the other hand, the slope of pEsyst vs 

pδ is 2, increasing significantly the higher the order 

of the derivative. 

 The cancellation noise of these higher-order deri-

vatives will now be illustrated for f0
III and f0

V. Be-

cause the leading error term in the expression for f0
III 

is in fV, we need to include more terms of the Taylor 

series (8) and (9) in the equivalents of (14) and (15). 

Excluding the bias terms (which always cancel in 

central differencing regardless of whether we con-

sider truncation or rounding) we therefore have 
 

 f1 = (1 ± ε/√12) {f0 + (δ ± εx0/√12)f0
I 

   + (δ ± εx0/√12)2 f0
II/2! 

   + (δ ± εx0/√12)3f0
III/3! + …}, (26) 

 

or, deleting all terms that contain products of δ and ε 

or higher-order terms in ε, 
 

 f1 ≈ f0 ± ε f0/√12 ± ε x0 f0
I/√12  

     + δ f0
I + δ 2f0

II/2! + δ 3 f0
III/3! + … (27) 

 

and likewise 

 

 f–1 ≈ f0 ± ε f0/√12 ± εx0
 
f0
I/√12 

   – δ f0
I + δ 2f0

II/2! – δ 3f0
III/3! + … (28) 

 

so that 

 f1 – f–1 ≈ ± ε⎪ f0 ⎢/√6 ± ε⎪ x0f0
I ⎢/√6 + 2δ f0

I 

      + 2δ 3f0
III/3! + 2δ 5f0

V/5! + … (29) 

 

where we again add the variances of the cancellation 

noise terms. By including only the leading terms in 

systematic and cancellation errors we therefore find 
 

 
2 III I

I 0 0 0 01 1

0

| | | |
.

2 3! 2 6

f f x ff f
f

δ
ε

δ δ

−

+−
≈ − ±  (30) 

 

In a similar way we obtain 

 

 f2 – f–2 ≈ ε⎪ f0 ⎢/√6 ± ε⎪ x0
 f0

I ⎢/√6 + 4δ f0
I 

    + 16δ 3f0
III/3! + 64δ 5f0

V/5! + … (31) 
 

 ( f2 – f–2) – 2( f1 – f–1) 

 

      ≈ 
2 2 I

0 0 0
1 2 (| | | |)

6

f x f
ε

+ +
±  

 

      + 2δ 3f0
III + δ 5f0

V/2 + … (32) 

 

so that 

 

 III 2 2 1 1

3

( ) 2( )

2

f f f f
f

δ

− −

− − −

≈  

 

   
2 V I

0 0 0 0

3

| | | |
.

4 2 6/5

f f x fδ
ε

δ

+
− ±  (33) 

 

For f0
V we need (29) and (31) as well as 
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Table 4. Approximate numerical values of the coefficients bbj, ccj, and ddj for the compact cen-
tral difference expressions of the odd higher derivatives f0

J listed in table 3 for ε = 2–52 ≈ 
2⋅220446 × 10–16. 

J bbj ccj  ddj 
 

 3 3/12 1⋅68915054013559 × 10–17 5⋅07854927301573 × 10–4 
 5 4/12 2⋅44781168581343 × 10–18 3⋅23047985786717 × 10–3 

 7 5/12 1⋅86265625116248 × 10–19 8⋅46645396177353 × 10–3 
 9 6/12 8⋅70921574402188 × 10–21 1⋅50093447046816 × 10–2 
11 7/12 2⋅75306104760735 × 10–22 2⋅16957437368253 × 10–2 
13 8/12 6⋅27363817156281 × 10–24  2⋅78508667460298 × 10–2 
15 9/12 1⋅07920867708565 × 10–25 3⋅31895094524350 × 10–2 

 

 

 f3 – f–3 ≈ ε⎪ f0 ⎢/√6 ± εx0 f0
I/√6 + 6δ f0

I 
 

  + 54 δ 3f0
III/3! + 486δ 5f0

V/5! + … (34) 
 

which we combine with the expression for f0
V in  

table 3 to 

 
 ( f3 – f–3) – 4( f2 – f–2) + 5( f1 – f–1)  
 

    
2 2 2 I

0 0 0
1 4 5 (| | | |)

6

f x f
ε

+ + +
≈ ±  

    + 240δ 5f0
V/5! + 3360δ 7f0

V/7! + … (35) 
 

hence 
 

 f0
V ≈ [( f3 – f–3) – 4(f2 – f–2) + 5(f1 – f–1)]/(2δ

 5) 

    –δ 2f0
VII/3 ± (ε√7)(| f0| + ⎪ x0 f0

I ⎢)/(2δ 5), (36) 

 

and so on. 

 Note that the systematic and cancellation errors 

again behave quite differently. While the lower-

order systematic error terms cancel, because they 

add and subtract algebraically, the terms of the can-

cellation noise add as their (always positive) vari-

ances, so that they do not cancel each other but, 

instead, always grow in magnitude. Consequently, 

the leading term of the cancellation noise remains 

that of the first order. As a result, in this group of 

lowest-footprint central difference higher-order de-

rivatives the result becomes more accurate the 

higher the order or the derivative, compare figures 1 

and 3. On the other hand, the footprint expands as 

we use higher-order derivatives, for two reasons: the 

number of samples j increases and, more impor-

tantly, their sample spacing δopt increases. Moreover, 

the pδ-region near the maximum in pE becomes nar-

rower at higher j-values, so that it becomes more 

critical to get pδ right. 

 Table 4 lists some coefficients of the mathematical 

description of this group, where 
 

 Ecanc = 
I

J 0 0 0

J J

0

| | | |

| |

cc f x f

fδ

+

, (37) 

 

 δopt = 

1/(J II)
I

0 0 0

J J II

0

| | | |
,

| |

f x f
dd

f

+

+

⎛ ⎞+
⎜ ⎟
⎝ ⎠

 (38) 

 

 ddJ = 

1/(J II)

J

J

.
2

cc

bb

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (39) 

9. Implementation 

With all component pieces in place we can now  

design the following algorithm, which is imple-

mented in the Excel custom macro Deriv1 of the 

MacroBundle:11 (i) read the number j of equidistant 

samples to be used, the function f (x), and the value 

x0 of x at which the derivative must be taken; (ii)  

estimate the equidistant x-spacing δ as x0 ε
1/j where 

ε = 2–52; (iii) sample the function f (x) from x = 

x0 – ( j + 1)δ/2 to x = x0 + ( j + 1)δ/2 and use these 

samples to estimate both f0
I and f0

J; (iv) estimate δopt 

with (22), and finally (v) use δopt to compute an  

improved estimate of f0
I. 

 This algorithm indeed yields quite impressive re-

sults for a number of relatively simple functions for 

which the correct answer is known, see table 5. In 

these examples, the pE-values are all larger than 9⋅5 

for j = 3, >11 for j = 5, >12 for j = 7, and about 13 

for j = 9; there is of course no guarantee that simi-

larly good results are always obtained. 

 Especially at the higher pE-values, cancellation 

noise can contribute a considerable uncertainty in 

pE, which is why there appears to be no good reason
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Table 5. The accuracy of the results for the first derivative d 
f
 (x)/dx of a function f (x) ob-

tained with the Excel custom macro Deriv1 for a number of simple test functions for which the 
exact results are known. Shown here are the function f (x), the value x0 at which its first deriva-
tive f I (x) is taken, the ‘exact’ value of the derivative as computed algebraically in Excel, and 
the pE-value of the result of the numerical calculation. (pE shows the number of significant 
decimals in the result,6 using the analytical computation as its reference. It is both more com-
pact and more informative than showing the actual results, which all agree in their first nine 
digits.) For the error function we have used our more accurate function6,11 cErf, and for all 
Bessel functions Volpi’s more accurate (but again double-precision) functions,11 because the 
corresponding Excel functions are too inaccurate. 

x0 f (x) f 
I (x) pE at j =  

 

 

 

 

 

to use j-values larger than 9. In the interest of execu-

tion speed, the multiple-j output of Deriv1 (called by 

specifying j as 1) is therefore restricted to 3 (2) 9,  

although it only takes one line of the open-access 

code to change that to the full range j = 3 (2) 15. 

Comparison of these results with those in figures 

9.2.8 in ref. 6 show that the present algorithm is su-

perior to the use of δ = |x0| ε
1/j; only in a few cases 

did the latter occasionally produce higher pE-values, 

and never by more than can be accounted for by the 

vagaries of cancellation noise. 

 For most of the above evaluations we used the 

Excel-computed formulas for the first derivative as 

our reference. This does not always work: when we 

tried this with, e.g. the error function or the Bessel 

functions (which before 2007 were part of the Data 

Analysis Toolkit, and were fully incorporated in  

Excel 2007), it clearly showed that these are based 

on single-precision algorithms. In this case we have 

therefore used the more accurate double-precision 

cErf from my website, and the corresponding 

higher-accuracy (but still double-precision) Bessel 

functions in Volpi’s free add-in Xnumbers.xla.12 

 In principle, (24) provides an estimate of the pE 

value of the result as –logEopt after correction for its 

imprecision due to cancellation noise. Still, it should 

be considered an estimate, and it will occasionally 

be overoptimistic, as is the case for the data in table 
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5 for tan(1⋅234) at higher j-values, because of the 

mere proximity of the singularity of tan(x) at x = 

π/2 ≈ 1⋅57; in this case, the footprint (also listed in 

the cell comment) may even reach across the singu-

larity, thereby completely distorting the answer. In 

all but the most routine cases, the information pro-

vided in the cell comments should therefore be con-

sidered, because numerical differentiation cannot be 

put on automatic control. 

10. Efforts to extend this approach 

It is tempting to iterate, by using the value of δopt to 

recompute both f0
I and f0

J, and to use these for an 

improved value of δopt etc., but this does not appear 

to improve matters much, because we are now 

largely operating in the region of pseudo-random 

cancellation noise. In principle, the influence of this 

noise could be reduced by averaging, after repeating 

the calculation while varying δ over a narrow range 

of values around δopt. While averaging based on  

invasive sampling would be too slow, reconstructing 

the formula for F(x) in VBA can speed up sampling 

by about two orders of magnitude, and can therefore 

allow substantial averaging. The hope was that, after 

such averaging, the pseudo-random cancellation 

noise would be small enough to allow Richardson 

extrapolation.13,14 Such extrapolation was shown by 

Ridders15 to work with δ-values much larger than 

δopt, in which case cancellation noise is negligible, 

see figures 1 through 5, but in that case the footprint 

is much increased. 

 Unfortunately, averaging does not appear to im-

prove the accuracy much; this may well be because 

we are operating near the limit of Excel, and its lack 

of using subnormals sometimes shows. However, 

with Volpi’s extended precision add-in Xnum-

bers.dll11,12 we can bypass the above problem, and 

get full 15-decimal accuracy in Excel, and we have 

implemented this in the macro xDeriv1. In order to 

avoid Excel’s accumulation noise, we had to forego 

the invasive sampling method used in Deriv1, and 

instead have used Excel’s character string functions 

to reconstruct the spreadsheet formula for F(x) in the 

macro; beyond that, there are no further complica-

tions. In fact, in xDeriv1 we would not really need 

the sophistication of the present algorithm, because 

even with δ = |x0|ε
1/j and j = 3 we obtain pE-values 

in excess of 14 when using quadruple precision,  

except in those cases where Excel’s functions are 

below par, see, e.g. sections 11⋅6 and 11⋅7 of ref 6. 

 The macro xDeriv1 uses the same approach as 

Deriv1, with j-values up to 15 and values for Dig-

itsMax up to 200, yet even at j = 15 and Digits-

Max = 200, xDeriv1 takes only a fraction of a 

second to execute on my computer with a 3⋅4 GHz 

Pentium-D processor. As can be seen in table 6, a 

comparison of the use of δ = |x0|ε
1/j with δopt as given 

by (22) illustrates the superiority of the latter, espe-

cially at higher j-values. 

 A crude model for the maximum value pEmax of 

pE can be obtained by approximating the systematic 

error as pEsyst ≈ ( j – 1) pδ and the cancellation error 

as pEcanc ≈ DgtMax –1 pδ, see figure 9.2.5 in ref 6, 

so that their intersection yields pδopt ≈ DgtMax/j and 

pEmax ≈ DgtMax × ( j – 1)/j. The results in the right-

most column of table 3 all come to within 1⋅5 of this 

prediction, which disregards the presence of cancel-

lation noise. This exercise is useful because the ap-

proximate expression for pδopt as DgtMax/j illustrates 

how the footprint of central differencing, ±( j – 1) 

δopt/2 ≈ ±1/2( j – 1) × 10–DgtMax/j, increases sharply 

with j, from about ± 10–5 at j = 3 to about ±0⋅7 at 

j = 15 for DgtMax = 15. 

11. Discussion 

As illustrated in figures 9.2.4 and 9.2.5 of ref 6, the 

presence of systematic errors and cancellation noise 

sets limits to the accuracy that can be achieved with 

central differencing in double-precision. Discount-

ing the noise, those limits would be of the order of  

 

 
Table 6. Results obtained for f (x) = x20 at x0 = 1⋅234 
with xDeriv1 for DigitsMax = 30, the Xnumbers default 
value, roughly corresponding with quadruple precision. 
Shown are two sets of results: one obtained by using 
δ = ⎪x0⎪ε

1/ j, the other with δopt as given by (22). The pE-
values were also computed in Xnumbers, and displayed 
in the Immediate Window. When the results are instead 
written back onto the spreadsheet, they are all rounded to 
15 decimals, and become indistinguishable. 

  DgtMax = 30 
 

  With δ With δopt 
j pE pE 
 

 3 18⋅24 19⋅00 
 5 20⋅51 23⋅04 
 7 20⋅57 24⋅43 
 9 19⋅98 25⋅40 
11 19⋅19 25⋅90 
13 18⋅39 26⋅40 
15 17⋅71 26⋅66 
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11 significant decimals with j = 3, about 13 signifi-

cant digits with j = 5, approximately 14 with j = 7, 

and 14⋅5 with j = 9, while the presence of noise 

tends to lower that estimate by about 1⋅5. The algo-

rithm outlined above indeed succeeds in this respect, 

see table 5, by finding the relatively narrow range of 

δ-values over which the result can have such near-

maximal accuracy. Quadruple precision would alle-

viate this problem, and could even confer about 15 

significant digits to answers obtained with the  

simplest forms of forward and backward differenc-

ing, but at present such extended numberlength  

is only available in Excel with add-on software  

such as Leonardo Volpi’s Xnumbers or John Bey-

ers’XN. 

 There are few if any input or output data that  

require more than 15-decimal precision, but plenty 

of data processing procedures that do, not just dif-

ferentiation but, much more importantly, linear  

algebra operations such as matrix inversion. With 

Xnumbers.dll, the user still can enter and extract 

(through message boxes, cell comments, and/or the 

Immediate Window) its higher-precision informa-

tion, but its default input and output uses the stan-

dard double-precision spreadsheet format. In my 

opinion, this is a near-ideal solution. Excel could 

easily offer the same, at least up to quadruple preci-

sion, if VBA could access the extended-precision 

capabilities already available in many modern cen-

tral processing units for personal computers, but  

Microsoft has not yet implemented this. 

 Because Xnumbers.dll runs as an Excel add-in, it 

can only operate in open-access software. Moreover, 

it cannot use any (often already available) dedicated 

hardware for quadruple precision, and therefore 

must take the more time-consuming route of soft-

ware implementation. To make matters worse, it is 

often difficult to install Xnumbers.dll in Vista/Excel 

2007, which appears to be much less welcoming of 

add-in software than previous versions of Excel; it 

should work if and when Microsoft has sorted out its 

registry problems. Until then, my advice is therefore 

to stay with Windows XP and Excel 2003 when 

spreadsheet accuracy is important enough to warrant 

use of Xnumbers.dll. The recent, quite substantial 

extension of Volpi’s Xnumbers.xla by John Beyers 

to XN.xla and, for Vista/Excel 2007, XN.xlam can 

be used to overcome this handicap, see ref 12. 

 But forget what could have been, and undoubtedly 

will be in the near future, and back to the present. 

The macro Deriv1 has been tested preliminarily and 

found to work in Excel 2000, 2003, XP, and 2007, 

xDeriv1 likewise appears to work in Excel 2000, 

2003, and XP, and corresponding macros Deriv2 

and xDeriv2 for the second derivative are coming. 

Of course, there is no way to test general differentia-

tion algorithms comprehensively, and there may 

well be cases where they do not work, e.g. when the 

initial estimate δ ≈ |x0|ε
1/j is too far off for conver-

gence to δopt. Users are therefore advised to first try 

these macros with their particular functions f (x) and 

their specific ranges of arguments x. As always, for 

any particular type of application, testing must be a 

precondition for trusting. 

 The algorithm described here is not Excel-

specific, as illustrated by the similar results shown 

in table 6, which were obtained with Xnumbers, per-

forming the entire computation in non-Excel soft-

ware. The spreadsheet is used here merely as a 

convenient (and, to this author, familiar) vehicle for 

data input, output, and plotting. The open-access 

VBA code of Deriv1 can be translated readily into 

other computer languages, and readers are encour-

aged to do so. My Excel macros can be freely 

downloaded, used, modified, and shared, and are 

only copyrighted and provided under the GNU Gen-

eral Public License to protect them from unauthor-

ized commercial exploitation. 

 The derivation has emphasized keeping the foot-

print of central differencing as small as possible, be-

cause this footprint defines how closely we can 

approach a discontinuity or singularity without hav-

ing to switch to (for the same j-values generally less 

accurate) lateral differencing. For the determination 

of f I the footprint is ±( j – 1)δ /2, while that for f J is 

± ( j + 1)δ /2; for the final value the footprint is  

±(j – 1)δopt/2. The larger of the latter two quantities, 

( j + 1)δ /2 or ( j − 1)δopt/2, is displayed by Deriv1 in 

the cell comment as the magnitude of the footprint. 

It specifies the minimum distance between x0 and 

the x-value of the nearest discontinuity; for a singu-

larity, a larger distance is advisable. 

 It is often stated that good results in, e.g. optimi-

zation routines, require the use of analytical deriva-

tives. With the present approach, that argument may 

no longer be so compelling. 
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