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Abstract. Optimal control theory is applied to obtain infrared laser pulses for selective vibrational exci-
tation in a heteronuclear diatomic molecule. The problem of finding the optimized field is phrased as a 
maximization of a cost functional which depends on the laser field. A time dependent Gaussian factor is 
introduced in the field prior to evaluation of the cost functional for better field shape. Conjugate gradient 
method21,24 is used for optimization of constructed cost functional. At each instant of time, the optimal 
electric field is calculated and used for the subsequent quantum dynamics, within the dipole approxima-
tion. The results are obtained using both Morse potential as well as potential energy obtained using ab initio 
calculations. 
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1. Introduction 

Optical time-resolved techniques and frequency-
resolved spectroscopic techniques have helped us to 
gain good knowledge of the electronic, vibrational 
and rotational dynamics in many molecules.1,2 The 
growing understanding of these quantum processes 
has opened up the way to control dynamical beha-
viour of molecular systems. With these develop-
ments, the long held dream of a chemist to manipulate 
chemical reactions, for example to generate desired 
chemical products with high efficiency, while at the 
same time reducing unwanted side products, is pro-
gressively becoming true. In the last two decades, 
the control of molecular dynamics via shaped laser 
pulses has experienced considerable progress from a 
theoretical concept3–6 to increasing number of suc-
cessful experiments.7–10 With the hope of quantum 
computing becoming a reality in years to come; co-
herent preparation of molecular states has gained a 
lot of importance.11 
 Ever since their invention, lasers have been viewed 
as an ideal tool for controlling chemical processes 
because of their monochromatic nature. Growth in 
laser technology has helped us to understand that the 
dynamics of a strongly coupled light-matter system 
can be influenced by alteration of temporal, spectral 

and phase distributions of the radiation coupled to 
the system. Several methods of controlling molecular 
dynamics, like the coherent control12–15 and optimal 
control16–18 using laser fields have recently gained 
popularity. While the former uses quantum mechanical 
properties of interference of dynamical paths to 
regulate the production of a state, the latter provides 
a more general prescription using calculus of varia-
tions. 
 Recently, a large number of researchers have  
focused greater attention on optimal control of quan-
tum states, leading to an extensive theoretical and 
numerical work in this area. Zhu et al19 have pre-
sented a family of new iteration methods to solve 
quantum optimal control problems. They have dem-
onstrated the efficiency of their algorithm on a typical 
one-dimensional system consisting of the excitation 
from the ground state to the first excited state in a 
Morse potential of the O–H bond. Balint-Kurti et 
al20,21 have illustrated the utilization of polarization 
forces for optimal control of the vibrational excita-
tion of the homonuclear diatomic molecule (H2), using 
the conjugate gradient method for optimization. 
 In this work we apply the conjugate gradient 
method for the optimal control of molecular vibra-
tional excitations in the heteronuclear diatomic mole-
cule, HF. We obtain optimal fields of different pulse 
durations for population transfer from an initial 
vibrational state to the desired target vibrational state 
of the hydrogen fluoride molecule. We have treated 
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the hydrogen fluoride molecule. We have treated the 
interaction of the molecule with the laser light within 
dipole approximation, i.e. it consists only of the in-
teraction of the electric field vector of the radiation 
with the geometry-dependent electric dipole moment 
of the molecule.22,23 We have carried out calculations 
using Morse potential as well as a potential energy 
function obtained using ab initio quantum mechani-
cal electronic structure calculations; and compared 
the results. Two pulse durations have been consid-
ered: (a) 30,000 a.u. and (b) 60,000 a.u. respectively, 
for the following two vibrational excitation processes, 
where the first one is a fundamental excitation from 
the lowest to the next vibrational energy level and the 
second is an excitation process starting from a 
higher vibrational level. 
 
 HF(v = 0) → HF (v = 1), 

 HF(v = 3) → HF (v = 4). (1) 
 
The conjugate gradient method for optimization 
used in this work is described in §2. The results are 
discussed in §3. Finally, we summarise the conclu-
sions in §4. 

2. Theoretical and computational methods 

2.1 Theory 

Our aim is to design a laser pulse for population 
transfer from an initial state to a desired dynamical 
goal at a fixed time while minimizing the pulse en-
ergy. The time evolution of the quantum mechanical 
state ψ(t) under the influence of an external field 
ε(t), within the dipole approximation, is governed by 
the time-dependent Schrödinger wave equation 
 

 0( ) [ ( )] ( )ˆ ˆi t H t t
t
ψ με ψ∂

= −
∂

, (2) 

 
where 0Ĥ  and μ̂  are the system Hamiltonian and 
the dipole moment operator, respectively. 
 For this purpose we construct a cost functional, 
J[ε], which depends on the optimal driving field. 
The cost functional contains mainly three terms, 
 
 J[ε] = Jo + Jp + Jc, (3) 
 
where, Jo contains the physical objective i.e. Jo = 
|〈ψi (T)|ψf (T)〉|2, Jp contains the penalties, i.e. 
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and Jc the dynamical constraint, that is the Schrö-
dinger equation is obeyed at every point of time, 
 

 
( )

( )i
i

t ˆi H | t
t

η ψ
∂ Ψ

= 〉
∂

. 

 
The Grand functional to be optimized takes the fol-
lowing shapes: 
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The function ψi(t) is the initial wave function propa-
gated to time T by the optimal laser field ε(t) and 
φf(T) is the target vibrational state specified at the 
final time T. The function χf(t) can be regarded as a 
Lagrange multiplier introduced to assure satisfaction 
of the Schrödinger equation. The factor α0 is a posi-
tive weighting parameter that specifies the weight of 
the laser radiation energy to the functional. Varying 
the grand functional with respect to the initial wave 
function ψi(t), the Lagrange multiplier χf(t) and the 
electric field ε(t) leads to the following set of equa-
tions: 
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 0 ( ) ( ( ) ( ) ( ) ( ) ),f i i ft m t | | t T | Tα ε χ μ ψ ψ φ= −ℑ 〈 〉〈 〉  (7) 
 
These coupled differential equations can be solved 
iteratively. In order to maximize our grand func-
tional (4), subject to the constraints in (5) and (6) we 
have used the conjugate-gradient method discussed 
below. 
 
2.1b Conjugate gradient method: In order to 
theoretically design a laser field that can selectively 
excite HF from its initial vibrational state to specific 
vibrational excited state, calculation is carried out 
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using the conjugate gradient method21,24 by maxi-
mizing the value of the grand functional J[ε(t)] men-
tioned in (4). The gradient of J[ε(t)] including the 
penalty term 
 

 2

0

[ ( )] d
T

pJ t tε= −∫ , 

 
and the dynamical constraint of Schrödinger equa-
tion with respect to the variation of ε at time t is 
given by 
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    ( ) ( ) ( ) ( ) ]f i i fm t | | t T | Tχ μ ψ ψ φℑ 〈 〉〈 〉 , (8) 
 
where the superscript k indicates the iteration num-
ber in the optimization cycle. The factor s(t), is a 
Gaussian envelope function is given by  
 
 2 2( 2) 6( ) ,t T / /( T / )s t e− −=  (9) 
 
Several groups have used 2( ) sin ( / )s t t Tπ=  as enve-
lope function. Results using such a sinusoidal factor 
are communicated by our own group elsewhere.25 
 The initial wave function, ψi(t), and the Lagrange 
multiplier, χf(t), are propagated in time using the 
second order split-operator method.26,27 The Polak–
Ribiere–Polyak28 search direction can be calculated 
using the (8) as 
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k = 2, 3, … and )()( 11

ii tgtd = . The function λk is 
the conjugate gradient parameter and the summation 
is over all time intervals. A line search is then per-
formed along this direction to determine the maxi-
mum value of the objective functional. To prevent 
the algorithm from sampling ε(t) values outside of a 
defined field amplitude range [εmin, εmax] during the 
line search, the direction is manipulated appro-
priately.29 

 The projected search direction is Fourier trans-
formed to obtain a function of frequency, and in order 
to restrict the frequency components of the electric 
field within a specified range 20th-order Butter-
worth band pass filter30,31 is used. The field is up-
dated using the following expression as 
 
 1( ) ( ) ( ) ( ),k k k

Pt t d t s tε ε λ+ = +  (11) 

 
where λ is determined by the line search and ( )k

Pd t  
is a projected direction. 

2.2 Ab initio molecular electronic structure method 

We modelled the atomic interactions using the 
Morse potential as well as calculated it using quan-
tum mechanical calculations (figure 1). The ab initio 
calculations were performed using MP2/6-31G (d, 
p) basis set. Gaussian0332 suite of programs was 
used for all ab initio molecular electronic structure 
calculations carried out in this work. It can be seen 
from figure 1 that neither of the potential energy 
curves is accurate at internuclear distances much 
smaller than the equilibrium value. The ab initio 
curve is shallower and also less harmonic. 

3. Results 

We have chosen a heteronuclear diatomic system for 
studying the vibrational excitations from an initial  
 
 
 

 
 

Figure 1. Potential Energy curves for HF: Morse poten-
tial model (eq. (12); ─) and calculated ab initio [using 
MP2/6-31G (d, p) basis set] (···). 
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Table 1. Comparison of transition probabilities and grand functionals for different pulse 
durations for transitions in HF using a Morse potential model. 

 P J 
 

Transition T = 30,000 a.u. T = 60,000 a.u. T = 30,000 a.u. T = 60,000 a.u. 
 

0 → 1 0⋅98605 0⋅99715 0⋅82966 0⋅92018 
3 → 4 0⋅99821 0⋅99965 0⋅94018 0⋅97239 

 
 

 
 

Figure 2. Optimized field as a function of time (A1, B1), frequency spectrum of the op-
timized field (A2, B2), population analysis of relevant states (A3, B3), convergence of tran-
sition probability and grand functional (A4, B4) for v = 0 → v = 1 transition in HF using a 
Morse potential model for different pulse durations, 30,000 a.u. (A1–A4) and 60,000 a.u. 
(B1–B4). 

 
 
vibrational state to a target vibrational state in a Morse 
potential of the HF molecule in the prescribed time 
interval T. Our objective is to control the population 
transfer from an initial state to a target state while 
minimizing the fluence. The Fourier grid Hamilto-
nian method33 is used to compute the vibrational en-
ergies and eigenfunctions of the initial and target 

vibrational states. The atomic interaction is mod-
elled using Morse potential  
 

 ( ) 2.( ) [1 0 ] ,ex x
eV x D e β− −= −  (12) 

 

where the parameters De = 0⋅2250073497, xe = 
1⋅7329, and β = 1⋅1741 in a.u., and the dipole moment 
used is given by34 
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Figure 3. Optimized field as a function of time (A1, B1), frequency spectrum of the opti-
mized field (A2, B2), population analysis of relevant states (A3, B3), convergence of transition 
probability and grand functional (A4, B4) for v = 3 → v = 4 transition in HF using a Morse  
potential model for different pulse durations, 30,000 a.u. (A1–A4) and 60,000 a.u. (B1–B4).  

 
 4

0( ) ,xx xe σμ μ −=  (13) 
 
where μ0 = 0⋅4535 and σ = 0⋅0064 in a.u. 
 We have carried out calculations for the transi-
tions v = 0 → v = 1 and v = 3 → v = 4 using conjugate 
gradient method for pulse durations of 30,000 a.u. 
and 60,000 a.u. and compared the results with those 
obtained from the ab initio electronic structure cal-
culations. The pulse length is discretized into 8191 
points. The maximum electric field strength for all 
computed optimized laser pulses is limited to 
0⋅005 a.u. with a fluence weight of α0 = 1. 

3.1 Results obtained using Morse potential as a 
model for atomic interaction 

(a) Excitation: v = 0 → v = 1: Results of the optimi-
zation process and the action of the theoretically de-

signed laser pulses using optimal control theory, for 
the two transitions described in (1) are summarized 
in table 1. For all the transitions the initial trial field 
was chosen to have the following form: 
 
 .( ) 0 005sin( ) ( ),i ift t s tε ω=  (14) 
 
where ( )if f iω ω ω= −  corresponds to the transition 
frequency from initial to the final vibrational state of 
HF molecule. For the first transition, the converged 
optimized electric fields for the duration 30,000 a.u. 
and 60,000 a.u. are shown in plots A1, B1 of figure 
2. Plots A2 and B2 present the frequency analysis of 
the optimized fields displaying a sharp peak at 
3958 cm–1 which corresponds to the resonance fre-
quency for the transition from ground vibrational 
state to the first excited vibrational state of HF 
molecule. The plots A3, B3 in figure 2 show the 
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population of the ground and excited vibrational 
states as a function of time over the chosen duration 
of the laser pulses. As expected, as the time in-
creases, population of the ground vibrational state 
decreases while that of target vibrational state in-
creases. The plots A4, B4 in figure 2 show the con-
vergence behaviour of the optimized probability as 
well as objective functional with the number of it-
erative steps involved. After few iterative steps, ob-
jective functional converges to 0⋅82966 for the 
shorter pulse (T = 30,000 a.u.) and to 0⋅92018 for 
the longer pulse (T = 30,000 a.u) corresponding to a 
population transfer in each case of nearly 100%. 
 
(b) Excitation: v = 3 → v = 4: While for the simplest 
case of excitation discussed above, a state to state 

transition using the fundamental resonance fre-
quency seems to be the obvious and dominant dyna-
mics, greater complexity is expected as we go to 
higher states. We thus examine the possibility of de-
signing a laser field for exciting the system from a 
higher vibrational state (v = 3) to the next vibrational 
state (v = 4). The converged optimized electric fields 
and their frequency distribution are shown in plots 
(A1, A2) and (B1, B2) of figure 3 respectively. Plots 
A2 and B2 in the same figure show a dominant peak 
corresponding to the vibrational transition from 
v = 3 → v = 4 at 3416 cm–1 and a small contribution 
from the 2nd harmonic. The width in the peaks indi-
cates marginal involvement of other states with nearly 
the same transition energy. Plots A3 and B3 show a 
complete transfer of population from initial state to

 
 

 
 

Figure 4. Optimized field as a function of time (A1, B1), frequency spectrum of the op-
timized field (A2, B2), population analysis of relevant states (A3, B3), convergence of tran-
sition probability and grand functional (A4, B4) for v = 0 → v = 1 and v = 3 → v = 4 
transitions for pulse durations 30,000 a.u for HF potential energy curve calculated using ab 
initio quantum mechanical method using MP2/6-31G (d, p) basis set. 
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Table 2. Comparison of transition probabilities (P) and cost functional (J) for 
v = 0 → v = 1 and v = 3 → v = 4 transitions for pulses of duration 30,000 a.u. 

 Energy (cm–1) Morse potential ab initio electronic calculation 
 

Transition Morse ab initio P J P J 
 

0 → 1 3958  4029  0.98605 0.82966 0.98709 0.82424 
3 → 4 3445 3512 0.99821 0.94018 0.99786 0.93558 

 
 
 
final state over the duration of pulse. The convergence 
behaviour of objective functional and optimized pro-
bability versus number of iterative steps is shown in 
plots A4, B4 of figure 3. 
 On comparing the results in table 1, it is seen that 
with the increase in pulse duration from 30,000 a.u. 
to 60,000 a.u., final transition probabilities and value 
of final cost functional increases. This increase oc-
curs simultaneous with a decrease in peak amplitude 
of the field, thus reducing the total fluence in the 
expression for the cost functional, (4). The increase 
in the value of cost functional as we go from the 
transition between the lower states v = 0 → v = 1, to 
that between the higher states, v = 3 → v = 4, occurs 
primarily because of decrease in energy gap, thus 
reducing the fluence of the field required. Interest-
ingly, this increase may also be due to constructive 
interference between alternate dynamical paths in-
volving similar energies available for the v = 3 → 
v = 4 transition. 

3.2 Results obtained using ab initio calculations 

We modelled the atomic interactions by the potential 
obtained using ab initio calculations also. Table 2 
summarizes the comparison of the results obtained 
using Morse potential and electronic potential energy 
obtained using ab initio for the transitions v = 0 → 
v = 1 and v = 3 → v = 4 for a single pulse duration 
of 30,000 a.u. Plots A1, B1 of figure 4 show the 
converged optimized fields for both the vibrational 
transitions for pulse durations 30,000 a.u. using ab 
initio electronic structure calculation. The corre-
sponding power spectra and frequency distribution 
are shown in plots A2, B2 of figure 4. From plots 
A3, B3 in the same figure, we can see how the popu-
lations of the initial state and target state vary with 
time over the duration of pulse. The convergence 
behaviours of objective functional and optimized 
probability versus number of iterative steps are shown 
in plots A4, B4 of figure 4. 

 On comparing these results we find that the values 
of transition probabilities are nearly the same, about 
99% for both the potentials. The values of cost func-
tional are also nearly the same for fixed pulse dura-
tion and it increases with pulse duration for reasons 
explained earlier. The insignificant difference in re-
sults using the two potential energy curves reflects 
the fact that for dynamics near the equilibrium inter-
nuclear distance the difference between the two po-
tentials is negligible. For even higher excitations, as 
the two potential energy curves begin differing from 
each other, we are likely to see greater differences in 
results of OCT calculations. 

4. Conclusions 

The optimization procedure described above gives 
reliable fields for the desired dynamical goals. We 
have applied the method to different vibrational ex-
citations for heteronuclear molecule (HF) and ob-
tained the optimal fields which will achieve the 
desired dynamical goal. Since the dynamics for the 
chosen potentials are confined to distances not very 
far from the equilibrium value o the internuclear dis-
tance, the converged values of the cost functional 
are close to each other for fixed duration of the laser 
pulse. The values of transition probability are almost 
the same for both the potentials. Application of the 
method to more complex problems is in progress.  
Issues including robustness of the optimal result to 
environmental noise are also being investigated. 
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