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Abstract. We use the finite-size, density-matrix-renormalization-group (DMRG) 
method to obtain the zero-temperature phase diagram of the one-dimensional, 
extended Bose–Hubbard model, for mean boson density ρ = 1, in the U–V plane (U 
and V are respectively, onsite and nearest-neighbour repulsive interactions between 
bosons). The phase diagram includes superfluid (SF), bosonic-Mott-insulator (MI), 
and mass-density-wave (MDW) phases. We determine the natures of the quantum 
phase transitions between these phases. 
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1. Introduction 

The study of systems of interacting bosons has been attracting a lot of attention over  
the past decade or so. Progress in this field has been driven by an interplay between 
theory,1–10 numerical simulations,11–14 and experiments. The latter include studies of 
liquid 4He in porous media like vycor or aerogel,15 Bose–Einstein condensates trapped in 
optical lattices,16,17 micro-fabricated Josephson-junction arrays,18–20 the disorder-driven 
superconductor-insulator transition in thin films of superconducting materials like bis-
muth,21 and flux lines in type-II superconductors pinned by columnar defects aligned 
with the external magnetic field.22 Theoretical and numerical studies2–4,7,11,12 have 
concentrated on the Bose–Hubbard model which exhibits superfluid (SF) and bosonic-
Mott-insulator (MI) phases and, if onsite disorder is included, a Bose-glass (BG) phase 
too. As we will show below, a mass-density-wave (MDW) phase can also be obtained in 
an extended-Bose–Hubbard model. Mean-field theories2–4,6 of such models yield the 
phases mentioned above and physically appealing pictures of the natures of these phases. 
However, especially in low dimensions, such mean-field theories cannot always uncover 
the types of correlations present in these phases or the natures of the transitions between 
these phases. We have shown earlier7 that, for one-dimensional Bose–Hubbard models, 
the density-matrix-renormalization-group (DMRG) is a reliable method for the eluci-
dation of such correlations and the universality classes of quantum phase transitions. 
Here we give a brief overview of our recent calculation of the zero-temperature phase 
diagram of the extended-Bose–Hubbard model in one dimension by the DMRG method. 
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2. Results and discussion 

The Hamiltonian for the extended-Bose–Hubbard model is 
 

� ∑ ∑ ∑∑
〉〈〉〈

−+−++−=
i ji i

iijiii

ji

ji nnnVnn
U

hcaat
,,

† ,ˆˆˆ)1ˆ(ˆ
2

)( µ  (1) 

 
where t is the amplitude for the hopping of bosons between nearest-neighbour pairs of 
sites 〈i, j〉, †

ia  (ai) is the boson creation (annihilation) operator at site i, and iii aan †ˆ =  the 
associated number operator with eigenvalues 0, 1, 2,L . The onsite interaction U and the 
nearest-neighbour interaction V are positive (i.e. repulsive). We restrict ourselves to the 
physically relevant region V ≤ U and set the energy scale by choosing t = 1. The random 
chemical potential µi can be used to model onsite disorder. 
 This model has been studied by a number of groups and several interesting results have 
been obtained especially in the case V = 0.2,5,7–11 In particular, if V = 0 and there is no 
disorder, only an SF phase is obtained at noninteger densities. For integer densities an MI 
phase is obtained at large U; as U is lowered the system shows an MI-SF transition, 
which is of the Kosterlitz–Thouless type23 in one dimension. The most detailed study of 
this transition in the Bose–Hubbard model was carried out by us in Ref. [7] by using the 
DMRG method. 
 We will not review our DMRG scheme since it has been described in detail 
elsewhere.7,24 For our purposes here it suffices to note that, especially in one dimension 
and with open boundary conditions, the DMRG method allows us to calculate the 
ground-state energy ),(0 NEL  the first-excited-state energy ),(1 NEL  and the associated 
eigenstates |ψ0L〉 and |ψ1L〉 of models such as (1) as a function of the size L for a system 
with N bosons. Given these we can calculate the energy gap −−++≡ )1()1([ 00 NENEG LLL   
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a system of size L. In a phase with a gap, limL → ∞GL = G∞ > 0. By contrast, in a critical 
phase, such as the SF, which has long-range correlations, ξL diverges as L → ∞ and the 
gap vanishes as .~ 1−

LLG ξ  
 The correlation length is extrapolated to the L → ∞ limit by using finite-size scaling.25 
In the critical region, 
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where f(L/ξ) is a scaling function. Thus plots of L/ξL or, equivalently, LGL, vs U, for 
different system sizes L, consist of curves that intersect at the critical point, at which the 
correlation length ξL diverges if L = ∞. We show such a plot in figure 1 for V = 0. The 
infinite-system gap G∞ > 0 at large U in the MI phase. However, it vanishes for 
U ≤ Uc ≈ 3⋅4, where the SF phase is obtained. The curves for different values of L 
coalesce for U ≤ Uc ≈ 3⋅4. This indicates that the MI-SF transition is of the Kosterlitz–
Thouless (KT) type and that the SF phase is critical. In particular, the SF phase, in this 
one-dimensional model, has a diverging correlation length, and a vanishing gap. For a 
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full elucidation of the KT nature of the MI-SF transition, we refer the reader to the 
analysis, via β functions, of Ref. [7]. Note that a d-dimensional, zero-temperature, 
quantum phase transition lies in the universality class of a finite-temperature phase 
transition in an associated, classical system in (d + 1) dimensions; here d = 1 and the MI-
SF transition lies in the universality class of the KT transition in the two-dimensional, 
classical XY model. 
 Recently Kühner et al9 have studied model (1) by using the finite-size DMRG26 (FS-
DMRG) method. They have shown that, for V = 0⋅4, an SF-MDW transition is obtained 
for ρ = 1/2; an MI-SF transition is obtained for ρ = 1. We have extended their FS-DMRG 
calculation to obtain the zero-temperature phase diagram of model (1) in the U–V plane 
for U > V and for ρ = 1 (figure 2). The number of states in the density matrix is chosen 
such that the truncation error is always less than 5 × 10–6. We also restrict the number of 
bosons per site to 4, which suffices for the values of U we consider (large values of U 
disfavour large boson numbers at any given site). Further details of our calculation are 
given in Refs [7, 24]. 
 The phase diagram of figure 2 shows an SF phase at small values of U and V as is to be 
expected since the bosons interact relatively weakly here. However, as the interaction 
strengths increase, the MI and MDW phases get stabilised. The former dominates when 
U is much larger than V whereas the latter dominates if U and V are both large and 
comparable. This is to be expected since a large, repulsive V disfavours a phase with a 
uniform density of bosons on nearest-neighbour sites; instead, an MDW phase, with a 
 
 

 
 
Figure 1. A plot of LGL as a function of U for different system sizes L for V = 0. 
The coalescence of different curves for U < 3⋅4 shows a Kosterlitz–Thouless-type SF-
MI transition. The inset shows the infinite-system gap G∞, obtained by extrapolation, 
versus U. 
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Figure 2. The zero-temperature phase diagram of the extended Bose–Hubbard 
model (1) obtained, for mean boson density ρ = 1, from our FS-DMRG calculation. 
Superfluid (SF), bosonic-Mott-insulator (MI), and mass-density-wave (MDW) phases 
are obtained in the physically relevant region U > V to which we restrict ourselves. 
The MI-SF phase boundary lies in the Kosterlitz–Thouless (KT) universality class. 
The MDW-SF phase boundary has both KT and two-dimensional-Ising characters. 
The MI-MDW phase boundary is first-order (dashed line) at large values of U and V. 
 

 

periodic variation of the boson density, is stabilised by V. The lattice we consider is 
bipartite and has two sublattices A and B (say odd-numbered and even-numbered sites); 
the ground state in the MDW phase is, therefore, doubly degenerate since the peaks in the 
mass-density wave can lie either on the A or the B sublattice. If the bosons are charged 
this MDW phase is a charge-density-wave (CDW) phase. 
 The MI-SF phase boundary in figure 2 lies in the Kosterlitz–Thouless (KT) uni-
versality class. We have confirmed this explicitly from plots of LGL vs U, which coalesce 
for different values of L as shown in the illustrative plot of figure 3 (compare this with 
figure 1). This is to be expected for the SF phase of model (1) in one dimension. The 
MDW-SF phase boundary has both KT and two-dimensional-Ising characters as we have 
checked explicitly by plots similar to figures 1 and 3. The KT character follows from the 
XY-symmetry of the SF order parameter; the two-dimensional-Ising character follows 
from the double degeneracy of the MDW ground state mentioned above. The MI-MDW 
phase boundary is first-order (dashed line in figure 2) at large values of U and V. This 
follows from the sharp change in MMDW with V as shown in figure 4 for U = 12; we have 
also checked for this transition that plots of LGL versus V do not intersect or coalesce for 
different values of L indicating that this is not a continuous transition. The precise nature 
of the multicritical point at which the phase boundaries of figure 2 intersect will be 
explored elsewhere.24 
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Figure 3. A plot of LGL as a function of U for different system sizes L for V = 0⋅5. 
The coalescence of different curves for U < 2⋅9 shows a Kosterlitz–Thouless-type SF-
MI transition (compare figure 1 for the case V = 0). 
 

 

Figure 4. The order parameter of the MDW phase MMDW vs  V, for U = 12 and 
L = 90 and L = 100, showing a sharp jump which indicates that the MI-MDW 
transition is first order. 
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3. Conclusions 

In conclusion, then, we have studied the complete phase diagram of the one-dimensional, 
extended Bose–Hubbard model for mean boson density ρ = 1 by using the FS-DMRG 
method. In addition to the well-known SF and MI phases, we find an MDW phase; we 
also determine the phase boundaries between these phases. We have looked for, but not 
found, a supersolid phase which has both SF and MDW order. We hope our study will 
stimulate experimentalists to look for such MDW phases in systems of interacting bosons. 
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