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Abstract. Quantitative versions of the central results of the metric theory of contin-
ued fractions were given primarily by C. De Vroedt. In this paper we give improvements
of the bounds involved . For a real number x, let

x = c0 +
1

c1 +
1

c2 +
1

c3 +
1

c4+
. . .

.

A sample result we prove is that given ǫ > 0,

(c1(x) · · · cn(x))
1
n =

∏∞

k=1

(

1 +
1

k(k + 2)

)

log k
log 2

+o
(

n− 1
2 (log n)

3
2 (log log n)

1
2 +ǫ

)

almost everywhere with respect to the Lebesgue measure.
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1. Introduction

In this paper, we use a quantitative L2-ergodic theorem to study the metrical theory of the

regular continued fraction expansion of real number. Here and throughout the rest of the

paper, by a dynamical system (X, β, μ, T ) we mean a set X, together with a σ -algebra β

of subsets of X, a probability measure μ on the measurable space (X, β) and a measurable

self-map T of X that is also measure-preserving. By this we mean that if given an element

A of β and if we set T −1A = {x ∈ X : T x ∈ A}, then μ(A) = μ(T −1A). We say a

dynamical system is ergodic if T −1A = A for some A in β means that μ(A) is either zero
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or one in value. For β-measurable f , let ‖f ‖ denote the L2 norm ((
∫

X
|f |2dμ)

1
2 ). As a

standard, for two functions f and g, we say f (x) = O(g(x)) if there exists C > 0 such

that |f (x)| ≤ C|g(x)|. We say f (x) = o(g(x)), as x → ∞, if limx→∞
f (x)
g(x)

= 0. The

central tool in this note is the following theorem.

Theorem 1. Let (X, β, μ, T ) denote an ergodic dynamical system. Suppose that

∥

∥

∥

∥

∥

1

N

N−1
∑

n=0

f (T nx) −

∫

X

f dμ

∥

∥

∥

∥

∥

≤
B

N
1
2

,

for B > 0 and N = 1, 2, . . .. Then given ǫ > 0, we have

1

N

N−1
∑

n=0

f (T nx) =

∫

X

f dμ + o

(

(log N)
3
2 (log log N)

1
2 +ǫ

N
1
2

)

,

for μ almost all x.

For a real number x, let

x = c0 +
1

c1 +
1

c2 +
1

c3 +
1

c4+. . .

denote its regular continued fraction expansion, which is also written more compactly

as [c0; c1, c2, . . .]. The terms c0, c1, . . . are called the partial quotients of the continued

fraction expansion and the sequence of rational truncates

[c0; c1, . . . , cn] =
pn

qn

, (n = 1, 2, . . .)

are called the convergents of the continued fraction expansion. In this paper, we use

Theorem 1 to study the metric theory of continued fractions. In particular, we refine results

of DeVroedt [2, 3]. For more historic background, see [4, 15] and for basic background

on continued fractions, see [6].

For a real number y, let {y} denote its fractional part. We now consider the particular

ergodic properties of the Gauss map, defined on [0, 1] by

T x =

{ {

1
x

}

, if x 	= 0,

0, if x = 0.

Notice that cn(x) = cn−1(T x) (n = 1, 2, . . .). Let (X, β, μ, T ) denote the dynamical

system where X denotes [0, 1], β is the σ -algebra of Borel sets on X, μ = γ is the

measure on (X, β) defined for any A in β by

γ (A) =
1

log 2

∫

A

dx

x + 1
,
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and T is the Gauss map. Note that (X, β, μ, T ) is ergodic (see [1] for details). The ergodic

properties of the Gauss dynamical system (X, β, μ, T ) are not quite enough to carry out

this investigation. We also need ergodic theoretic information about its natural extension

which we now describe. Let � = ([0, 1) \ Q) × [0, 1]. Now let β∗ be the σ -algebra of

Borel subsets of � and let γ ∗ be the probability measure on the measurable space (�, β∗)

defined by

γ ∗(A) =
1

(log 2)

∫

A

dxdy

(1 + xy)2
.

Also define the map

T (x, y) =

(

T x,
1

[ 1
x
] + y

)

.

Then the map T preserves the measure γ ∗ and the dynamical system (�, β∗, γ ∗, T )

is ergodic, which we call the natural extension of the Gauss dynamical system (see [8]

for details). Our results are obtained by applying Theorem 1 to the maps T and T . In

particular we need the following theorem from [8] (see [1] for a definition of the natural

extension). In §2, we prove Theorem 1. In §3 we state and derive our results about the

metric theory of continued fractions.

2. Proof of Theorem 1

To prove Theorem 1, we need the following lemma.

Lemma 2.1. Suppose (X, β, μ, T ) is an ergodic dynamical system and suppose f : X →

R is μ-integrable with
∫

X
f dμ = 0. Also suppose, for non-negative integer k, that

∫

X

∣

∣

∣

∣

∣

∣

2k−1
∑

n=0

f (T nx)

∣

∣

∣

∣

∣

∣

2

dμ ≤ B2k,

for B > 0. Then also for k ≥ 0,

∫

X

max
1≤j≤2k

∣

∣

∣

∣

∣

∣

j−1
∑

n=0

f (T nx)

∣

∣

∣

∣

∣

∣

2

dμ = O(k22k).

Proof of Lemma 2.1. Let

F(M,N, x) =

N−1
∑

n=M

f (T nx), (0 ≤ M < N)

and let

mn(f, x) = max
1≤l≤n

|F(0, l, x))|, (n ≥ 1).
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Suppose 1 ≤ j < 2K+1. Note that any natural number j can be written uniquely in the

form j = 2a1 + · · · + 2ah , where ai depends on j with a1 > · · · > ah ≥ 0. With our

bound on j , it follows that h = h(j) < K + 1. With this notation, we have

F(0, j, x) =

h−1
∑

i=0

F(li, li+1, x),

where l0 = 0, li = li(j) = 2a1 + · · · + 2ai for 1 ≤ i ≤ h, and lh = j . Note that li = 0

(mod 2ai ) for all i and all choices of j . By the Cauchy–Schwarz inequality,

|F(0, j, x)|2 ≤ (K + 1)

h−1
∑

i=0

|F(li, li+1, x)|2, (j = 1, 2, . . . , h).

Also, regardless of j or of the particular sequence of li pertaining to j , we have

h−1
∑

i=1

|F(li, li+1, x)|2 ≤

K+1
∑

p=1

2p−1
∑

ν =0
ν even

|F(ν2(K+1)−p, (ν + 1)2(K+1)−p, x)|2.

This is because every term on the left occurs as a term on the right.

Integrating over X, and using the premise that T is measure-preserving, we obtain that

∫

X

m2
2K (f, x)dμ ≤

∫

X

⎛

⎜

⎝
(K + 1)

K+1
∑

p=1

2p−1
∑

ν =0
ν even

|F(0, 2K+1−p, x)|2

⎞

⎟

⎠
dμ

= (K + 1)

K+1
∑

p=1

2p−1

∫

X

|F(0, 2K+1−p, x)|2dμ.

By the hypothesis of this lemma, the last quantity is no more than

(K + 1)

K+1
∑

p=1

2p−1B(2K+1−p) = B(K + 1)

K+1
∑

p=1

2p−12K+1−p

≤ BC′(K + 1)22K ≤ C′′K2.2K

for some positive constants C′, C′′. This completes the proof of Lemma 2.1.

We now complete the proof of Theorem 1. Given ǫ > 0, we set

g(N) = (BN)
1
2 (log N)

3
2 (log log N)

1
2 +ǫ

and set

Eǫ =

{

x ∈ X : lim sup
N→∞

|
∑N−1

n=0 f (T nx) − N
∫

X
f dμ|

g(N)
> 0

}

.
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To prove Theorem 1, we need to show μ(Eǫ) = 0. Set

Ak =

{

x : max
4k−1≤l<4k

∣

∣

∣

∣

∣

l−1
∑

n=0

f (T nx) − l

∫

X

f dμ

∣

∣

∣

∣

∣

> (log k)−ǫ/2g(4k)

}

.

One checks easily that

Eǫ ⊆

∞
⋂

r=1

∞
⋃

k=r

Ak.

By the Borel–Cantelli lemma, we need to show
∑∞

k=1 μ(Ak) < ∞. Note that

μ(Ak)(log k)−ǫg(4k)2 ≤

∫

Ak

max
4k−1≤l<4k

∣

∣

∣

∣

∣

l−1
∑

n=0

f (T nx) − l

∫

X

f dμ

∣

∣

∣

∣

∣

2

dμ.

By the premise of Theorem 1, for all k,

∫

X

∣

∣

∣

∣

∣

∣

2k−1
∑

n=0

f (T nx) − 2k

∫

X

f dμ

∣

∣

∣

∣

∣

∣

2

dμ ≤ B2k.

Thus, by Lemma 2.1, there exists C1 > 0 such that

∫

X

max
0≤l≤22k

∣

∣

∣

∣

∣

l−1
∑

n=0

f (T nx) − l

∫

X

f dμ

∣

∣

∣

∣

∣

2

dμ ≤ C′′k222k.

Hence, there exists C0 > 0 such that

μ(Ak)(log k)−ǫ4k(k log 4)3(log(k log 4))1+2ǫ ≤ C0k
2 · 4k

and so

μ(Ak) = O

(

1

k(log k)1+ǫ

)

.

It follows that
∑∞

k=1 μ(Ak) < ∞ and so Theorem 1 is proved.

3. Mixing properties of continued fraction maps

Let Bk
1 denote the σ -algebra of the subsets of X generated by the sequence of functions

a1(α), . . . , ak(α) and let B∞
k denote the σ -algebra generated by the sequence of functions

ak(α), ak+1(α), . . .. For a Borel probability measure μ on [0, 1) and for each natural

number n, set

ψμ(n) = sup

∣

∣

∣

∣

μ(A ∩ B)

μ(A)μ(B)
− 1

∣

∣

∣

∣

,

where the supremum is taken over all sets A ∈ Bk
1 and B ∈ B∞

k+n, with μ(A)μ(B) 	= 0 for

all natural numbers k. We call the sequence (an)n∈N ψ-mixing if ψ(n) = o(1). In [14], it

is shown that ψγ (n) ≤ ρn where ρ ∈ (0, 0.8). It then follows readily that ψγ ∗(n) ≤ ρn.



172 J Hančl et al.

From Chapter 1 of [5], we have

Lemma 3.1. Let (a(T nx))n∈N, be a ψ-mixing for dynamical system (X, β, μ, T ) and sup-

pose
∑

n∈N ψ(n) < ∞. Also suppose for a function f with domain containing the range

of a, that
∫

X
f ((a(x))2dμ < ∞. Then the series

σ 2 =

∫

X

f 2(a(x))dμ −

(∫

X

f (a(x))dμ

)2

+ 2
∑

n∈N

∫

X

{(

f (a(x))−

∫

X

f (a(x))dμ

)

(

f (a(T nx))

−

∫

X

f (a(x))dμ

)}

dμ,

is absolutely convergent and non-negative and we have

∥

∥

∥

∥

∥

N
∑

n=1

f (a(T nx)) − N

∫

X

f dμ

∥

∥

∥

∥

∥

2

= σ(N + o(1)).

Evidently
∑∞

n=1 ρn < ∞. We have shown that ψγ (n), ψγ ∗(n) = O(n) as n tends to

infinity.

4. Statistical properties of continued fractions

In this section, we use Theorem 1 to refine classical results of metric theory of continued

fractions [2, 3, 7, 9–11, 13]. See also [12] for related matter on subsequence averages.

This is possible because we use Theorem 1 instead of the classical and well known

method of I. S. Gál and J. F. Koksma, which for any ǫ > 0 gives an error term of order

o(n− 1
2 (log n)

3
2 +ǫ). The improvement seems small but is the first in nearly 50 years.

For i(m) = (i1, . . . , im) ∈ Nm, suppose
pn(α)
qn(α)

= [i1, . . . , in] (n = 1, 2, . . .)

are the convergents of the continued fraction expansion of the real number α, with

g.c.d.(pn−1, qn−1) = g.c.d.(pn, qn) = 1 and p0 = q0 = 1. Let

K(i(m)) =

{

pm+pm−1

qm+qm−1
, if m is odd,

pm

qm
, if m is even

and

L(i(m)) =

{

pm+pm−1

qm+qm−1
, if m is even,

pm

qm
, if m is odd.

We have the following application of Theorem 1.

PROPOSITION 4.1

Suppose m ∈ N and let F : Nm → R be such that
∫

X

F 2(c1(x), . . . , cm(x))dγ (x) < ∞
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or equivalently that

∑

i(m)∈Nm

|F(i(m))|2(L(i(m)) − K(i(m))) < ∞.

Let

δm =
1

log 2

∑

i(m)∈Nm

F(i(m)) log
1 + K(i(m))

1 + L(i(m))
.

Then

1

n

n−1
∑

k=1

F(ck(x), . . . , ck+m−1(x)) = δm + o(n− 1
2 (log n)

3
2 (log log n)1+ǫ)

almost everywhere with respect to Lebesgue measure.

Proof. Take f (x) = F(c1(x), . . . , cm(x)) in Lemma 3.1 . �

Proposition 4.1 has a number of consequences, that follow from self-evident choices of

m and F , which we collect together in the following proposition. We do, however, need

the following lemma from [13].

Lemma 4.2. We have
∑∞

p=0 log
(l+pm+1)2

(l+pm)(l+pm+2)
= log

(

Ŵ( l
m

)Ŵ( l+2
m

)

Ŵ( l+1
m

)2

)

.

For brevity set 
(n, ǫ) = n− 1
2 (log n)

3
2 (log log n)

1
2 +ǫ (n = 1, 2, . . .).

PROPOSITION 4.2

Given ǫ > 0, we have

(a) 1
n

#{k ∈ [1, n] : ck(x) = i} = 1
2

log
(

1 + 1
i(i+1)

)

+ o(
(n, ǫ));

(b) 1
n

#{k ∈ [1, n] : ck(x) ≥ i} = 1
2

log
(

i+1
i

)

+ o(
(n, ǫ));

(c) 1
n

#{k ∈ [1, n] : i ≤ ck(x) ≤ j} = 1
2

log
(

(i+1)(j+1)
i(j+2)

)

+ o(
(n, ǫ));

(d) 1
n

#{k ∈ [1, n] : (ck(x), . . . , ck+m−1(x)) = i(m)} = 1
2

log
(

1+K(i(m))

1+L(i(m))

)

+ o(
(n, ǫ));

(e) 1
n

#{k ∈ [1, n] : ck(x) ≡ l mod m} = 1
2

log

(

Ŵ( l
m

)Ŵ( l+2
m

)

Ŵ( l+1
m

)

)

+ o(
(n, ǫ));

and

(f ) for p ≤ 1, p 	= 0 we have
(

c1(x)p+···+cn(x)p

N

)
1
p

= Kp + o(
(n, ǫ)), where K1 =

∏∞
k=1

(

1 + 1
k(k+2)

)

log i
log 2

and Kp =

(

1
2

∫ 1
0

(⌊ 1
t
⌋)p

t+1

)
1
p

, almost everywhere with respect

to the Lebesgue measure.

To the sequence of strictly stationary random variables (an(x))n∈N, defined on the mea-

surable space ([0, 1),B([0, 1)) via the natural extension construction we can construct

the doubly infinite sequence of random variables (a∗
n)n∈N on ([0, 1)2,B([0, 1)2)) defined

μ almost everywhere on [0, 1)2 for any probability measure μ assigning zero to the
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measure of [0, 1)2\�2 (e.g. μ = γ ∗), where � = [0, 1)\Q. We define s∗
l = [a∗

l , a∗
l−1, . . .]

and y∗
l = 1

s∗
l

. Evidently s∗
l = s∗

0 ◦ T l and y∗
l = y∗

0 ◦ T l . Also for a ∈ [0, 1), put sa
0 = a

and sa
l = 1

sa
l−1+an

.

Samur [16, 17] showed that

σ 2 = lim
n→∞

∫

[0,1)×([0,1)\Q)

(

n−1
∑

i=0

(log y∗
i (x, y) −

π2

12 log 2

)

dxdy

((1 + xy)

exists and is positive. Theorem 1 applied to T , for ǫ > 0, gives

1

n

n−1
∑

i=0

f (T i(x, y)) =

∫

[0,1)×([0,1)\Q)

f (x, y)
dxdy

1 + xy
+ o(
(n, ǫ))

for f ∈ L2(γ ∗). Let f = χB denote the characteristic function of the set B ∈ B2([0, 1)).

Now noting that from the definition of (sk∗)∞k=1, the fact that

T (x, y) =

(

T x,
1

c1(y) + x

)

, (x, y) ∈ ([0, 1)\Q × [0, 1)),

that for (i ≥ 2),

T
i(x, y) = (T i(x), [ci(x), . . . , c2(x), c1(x)+y]), (x, y) ∈ ([0, 1)\Q×[0, 1)),

and that for (i ≥ 0),

T
i(x, y) = (T i(x), s∗

i ), (x, y) ∈ ([0, 1)\Q) × [0, 1).

Theorem 1 gives the following proposition.

PROPOSITION 4.3

Given ǫ > 0, we have

1

n

n−1
∑

i=0

log y∗
n = −

1

n

n−1
∑

i=0

log s∗
i =

π2

12 log 2
+ o(
(n, ǫ))

almost everywhere with respect to the Lebesgue measure on ([0, 1)\Q) × [0, 1).

We also have the following result.

PROPOSITION 4.4

Given ǫ > 0, for any a ∈ [0, 1),

1

n

n−1
∑

i=0

log y∗
i = −

1

n

n−1
∑

i=0

log sa
i =

π2

12 log 2
+ o(
(n, ǫ))

almost everywhere with respect to the Lebesgue measure on [0, 1)\Q.
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Proof. By the mean value theorem we can see that |
log x−log y

x−y
| ≤ 1

min(x,y)
for any 0 <

x, y ≤ 1 with x 	= y. Now note that if (Fm)∞m=1 denotes the Fibonacci sequence, then

0 <
L(i(m))

K(i(m))
− 1 ≤

(

1

Fm−1Fm

,
1

F 2
m

)

for any interval I (i(m)) = [0, 1)\Q(K(i(m)), L(i(m))(i(m) ∈ Nm and k ∈ N), as follows

from basic properties of continued fractions. For a ∈ [0, 1), we have

∣

∣log s∗
m − log sa

m

∣

∣ ≤ max

(

1

Fm−1Fm

,
1

F 2
m

)

= o(g2k),

where g denotes the golden ratio, as m tends to ∞ for all (x, y) ∈ ([0, 1)\Q) × [0, 1).

The proof of Proposition 4.3 is complete. �

In the case a = 0, we have s0
k =

qk

qk−1
(k ≥ 1) so we get the following Proposition.

PROPOSITION 4.5

Given ǫ > 0, we have

q
1
n
n (x) = e

π2

12 log 2 + o(
(n, ǫ))

almost everywhere with respect to the Lebesgue measure on [0, 1)\Q.

PROPOSITION 4.6

Given ǫ > 0, we have

1

n
log

∣

∣

∣

∣

x −
pn

qn

∣

∣

∣

∣

= −
π2

6 log 2
+ o(
(n, ǫ))

almost everywhere with respect to the Lebesgue measure on [0, 1)\Q.

Proof. Note the classical inequality 1

2q2
n+1

<

∣

∣

∣
x −

pn

qn

∣

∣

∣
< 1

q2
n

. The proposition now follows

from Proposition 4.4. �

PROPOSITION 4.7

Let I (a1, . . . , an) = {x ∈ [0, 1) : c1(x) = a1, . . . , cn(x) = an}. Given ǫ > 0, we have

1

n
log λ(I (a1, a2, . . . , an)) = −

π2

6 log 2
+ o(
(n, ǫ))

almost everywhere with respect to the Lebesgue measure on [0, 1)\Q.

Proof. Let λ denote the Lebesgue measure, and let I (c1, . . . , cn) be a cylinder in [0, 1).

Recall that sn =
qn−1

qn
and that λ(I (c1, . . . , cn)) = 1

qn(qn+qn−1)
. This means that

log λ(I (c1, . . . , cn)) = −2 log qn − log(sn + 1)

for (n ∈ N). Since sn ∈ [0, 1), the proposition follows from Proposition 4.5. �
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We also have the following proposition.

PROPOSITION 4.8

Given ǫ > 0, we have

p
1
n
n (x) = x

1
n e

π2

12 log 2 + o(
(n, ǫ))

almost everywhere with respect to the Lebesgue measure on [0, 1)\Q.

Proof. This proposition follows from the inequality

∣

∣

∣
pn(x)

1
n − (xqn(x))

1
n

∣

∣

∣
≤

1

Fn+1F
(n−1)

n
n

for all x ∈ [0, 1)\Q and n ∈ N, which is easily checked. �
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