Proc. Indian Acad. Sci. (Math. Sci.) Vol. 126, No. 2, May 2016, pp. 159-165.
© Indian Academy of Sciences
CrossMark
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Abstract. A graph G is called (k, d)*-choosable if for every list assignment L sat-
isfying |L(v)| > k for all v € V(G), there is an L-coloring of G such that each vertex
of G has at most d neighbors colored with the same color as itself. In this paper, it is
proved that every graph of nonnegative characteristic without intersecting i-cycles for
alli = 3,4, 5is (3, 1)*-choosable.
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1. Introduction

Graphs considered in this paper are finite, simple and undirected. Let G = (V, E, F) be
a graph, where V, E and F denote the set of vertices, edges and faces of G, respectively.
For the used but undefined terminologies and notations, we refer the reader to the book
by Bondy and Murty [1].

Let b be a positive integer. A proper b-set colouring of G is an assignment of a set B(v)
of b colors to each vertex v such that, for each pair {«, v} of adjacent vertices, B(u) and
B(v) are disjoint. When b = 1, this specializes to the standard proper vertex colouring
(see the definition in [13]). We say G is (k, b)-choosable if for every assignment of a
set S(v) of at least k colours to each vertex v € V(G), there is a proper b-set colouring
{B(v) : v € V(G)} of G such that B(v) € S(v) for each v. Such a proper b-set colouring
is said to be admissible by the collection {S(v) : v € V(G)}.

The b-choice number ch(G, b) (also referred to as the list b-chromatic number) of G is
the minimum value of k such that G is (k, b)-choosable. When b = 1, (k, 1)-choosability
is also known as k-choosability and the 1-choice number is also known simply as the
choice number or the list chromatic number (when » = 1, we use the shorter notation
ch(G) instead of ch(G, 1)). If, in addition to setting b = 1, we also set S(u) = S(v)
for each pair u, v of vertices, (k, b)-choosability specializes to k-colourability. Hence it
follows that for any » > 1 and any graph G, ch(G, b) > ch(G) > x(G), where x(G)
denotes the usual chromatic number of G.

The notion of (k, b)-choosability was introduced by Erdds et al. in [8], and its special-
ized version choice number was introduced earlier by Vizing in [14]. The notion of choice
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number has received a lot of attention recently and results have been obtained relating
ch(G) to various other parameters.

In the above definition, while S(u) = S(v), |S(u)| = |S(v)| =k, and |B(u)| = |B(v)| =1,
B(u) # B(v) for any adjacent two vertices « and v, then the (k, b)-choosability specializes
to the proper k-coloring of G. Here we cited another coloring (k, d)*-colorability, also
called defective colorability, or improper colorability, which was introduced in 1986 by
Cowen et al. [4]. A graph G is said to be d-improper k-colorable, or simply, (k, d)*-
colorable, if the vertices of G can be colored with k colors in such a way that each vertex
has at most d neighbors receiving the same color as itself, that is S(u) = S(v), |[S(u)| =
|S(v)| = k, and |B(1)| = |B(v)| = 1, and |{v|B(v) = B(u), v € Ng(u)}| < d for any vertex
u in the (k, b)-choosability. Here, we use (k, d)*-coloring in order to stand apart from
the definition of the (k, d)-choosable. Obviously, a (k, 0)*-coloring is an ordinary proper
k-coloring.

A list assignment of G is a function L that assigns a list L(v) of colors to each vertex v
€ V(G). An L-coloring with impropriety d for integer d > 0, or simply (L, d)*-coloring,
is a mapping ¢ that assigns a color ¢(v) € L(v) to each vertex v € V(G) such that v has
at most d neighbors colored with ¢ (v). For integers m > d > 0, a graph is called (m, d)*-
choosable, if G admits an (L, d)*-coloring for every list assignment L with |L(v)| = m
for all v € V(G). An (m, 0)*-choosable graph is simply called m-choosable.

The notion of list improper coloring was introduced independently by Skrekovski [10]
and Eaton and Hull [7]. They proved that every planar graph is (3, 2)*-choosable and
every outerplanar graph is (2, 2)*-choosable. Skrekovski proved in [11] that every pla-
nar graph without 3-cycles is (3, 1)*-choosable, and in [12] he proved that every planar
graph G is (2, 1)*-choosable if its girth g(G) > 9, (2, 2)*-choosable if g(G) > 7,
(2, 3)*-choosable if g(G) > 6, and (2, 4)*-choosable if g(G) > 5. Lih et al. [9] proved
that every planar graph without 4-cycles and /-cycles for some / € {5, 6,7} is (3, 1)*-
choosable. Dong and Xu [6] showed that it is also true for some / € {8, 9}. Cushing and
Kierstead [5] constructively proved that every planar graph is (4, 1)*-choosable which
perfectly solved the last remaining question left open in [7, 10]. In [3], Chen and Ras-
paud proved that every planar graph without 4-cycles adjacent to 3- and 4-cycles is
(3, 1)*-choosable, as a corollary, every planar graph without 4-cycle is (3, 1)*-choosable.
Wang and Xu proved every planar graph without cycles of length 4 is (3, 1)*-choosable
in [15].

For other classes of graphs, Zhang [17] proved that every graph G embeddable on the
torus without 5- and 6-cycles is (3, 1)*-choosable. Xu and Zhang [16] proved that every
toroidal graph without adjacent triangles is (4, 1)*-choosable.

Recall that the Euler characteristic of a surface is equal to |V (G) — | E(G)|+ | F(G)| for
any graph G that is 2-cell embedded in that surface. The Euclidean plane, the projective
plane, the torus, and the Klein bottle are all the surfaces of nonnegative characteristic.
For simplification, we call a graph of nonnegative characteristic an NC-graph. Chen et al.
[2] proved that every graph embeddable in a surface of nonnegative characteristic without
a 5-cycle with a chord or a 6-cycle with a chord is (4, 1)*-choosable, and every graph
embeddable in a surface of nonnegative characteristic without a k-cycle with a chord for
all k € {4, 5, 6} is (3, 1)*-choosable.

In [15], Wang and Xu conjectured every planar graph without intersecting triangles
is (3, 1)*-choosable. We consider this problem with a relaxed condition. In fact, this
paper investigates improper choosability for graphs of nonnegative characteristic without
intersecting short cycles.
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We call two cycles intersecting if they share at least one common vertex or edge. Let
G denote the family of graphs with nonnegative characteristic containing no intersecting
3-, 4- and 5-cycles. The main result is to show that every graph in G is (3, 1)*-choosable.
In order to prove the main theorem, we use the technique of discharging to obtain several
forbidden configurations for the graphs in G and state a theorem as follows:

Theorem 1. For every graph G € G, one of the following must hold:
(1) 86(G) <3.

(2) G contains two adjacent 3~ -vertices.
3) G contains a (4,47 ,47)-face.
(4) G contains an even (3~,4=,...,37,47)-2n-face, here n > 2.

As a consequence of Theorem 1, we can prove the following theorem.

Theorem 2. Every graph with nonnegative characteristic without intersecting i-cycles
foralli =3,4,5is (3, 1)*-choosable.

2. Notation

We use Ng(v) and dg (v) to denote the set and number of vertices adjacent to a vertex v,
respectively, and use §(G) to denote the minimum degree of G. A face of an embedded
graph is said to be incident with all edges and vertices on its boundary. Two faces are adja-
cent if they share a common edge. The degree of a face f of G, denoted also by dg (f), is
the number of edges incident with it, where each cut-edge is counted twice. When no con-
fusion may occur, we write N (v), d(v), d(f) instead of NG (v), dg (v), dg(f). A k-vertex
(or k-face) is a vertex (or face) of degree k, a k™~ -vertex (or k~-face) is a vertex (or face) of
degree at most k, and a k" -vertex (or kT -face) is a vertex (or face) of degree at least k. For
f € F(G),wewrite f = [ujua---upn]if uy, us, ..., u, are the vertices lying clockwise
on the boundary of f. An n-face [ujuousz - - - u,] is called an (my, mo, ms, ..., my)-face
ifd(u;) = m; fori =1,2,3,...,n. A k-cycle is a cycle with k edges. Two cycles are
adjacent if they share at least one common edge. Two cycles or faces are intersecting if
they share at least one common (boundary) vertex. A chord of a k-cycle (k > 4) is an edge
joining two nonconsecutive vertices on C and a chordal cycle is a cycle with a chord.

3. Proof of Theorem 1

In the proof of Theorem 1, we use the technique of discharging. In the beginning, each
vertex v is assigned a charge @ — 1 and each face f is assigned a charge % — 1.

If K is a finite cell complex, then its Euler characteristic is equal to the alternating sum
of the Betti numbers of each dimension, that is x (K) = Z(—1)*x(K). Using the Euler—
Poincaré formula for the NC-graphs |V (G)| — |E(G)| + |F(G)| = 0 and the well-known

hand-shaking relation ZUGV(G) dv) = ZfeF(G) d(f) =2|E(G)|, we have

3 {2d6(”)—1}+ 3 {d%—l}go. (1)

veV(G) feF(G)
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By the discharging rules stated in the following, we will redistribute the charges for
the vertices and faces so that the total sum of the weights is kept constant while the
transferring is in progress. However, once the transferring is finished, we get that the
new charges are nonnegative, moreover, there exists some x € V(G) U F(G) such that
w’(x) > 0, then

0 < > w'(x) = > w(x) = 0. )

xeV(G)|JF(G) xeV(G)JF(G)

This contradiction completes the proof of Theorem 1.
Assume in the contrary that the theorem does not hold. Let G be such a connected graph
in G. Let w be a weight on V(G) U F(G) by defining w(v) = 22 — 1if v € V(G),

and w(f) = &6‘70) — 1if f € F(G). For two elements x and y of V(G) U F(G), we use
T(x — y) to denote the charge transferred from x to y.
By the choice of G, we have

(01) é(G) = 3;

(02) Every 3-vertex is adjacent to only 4T -vertices;

(03) G contains no (47,4, 47 )-face;

(O4) G contains no intersecting i-cycles for all i € {3, 4, 5};
(O5) G contains no even (3,4, ..., 3, 4)-face.

Let m;(v) be the number of i-faces incident with v and 7 ;(v) be the number of j-
vertices adjacent to v. Let n; (f) denote the number of i-vertices incident with f. We have
as follows:

Claim 1. For each vertex v € V(G), |m;(v)| < 1foralli € {3, 4, 5}.
Claim 2. For each face f € F(G), n3(f) < |“L].

Let v be a k-vertex and f be an [-face incident with v. The new charge function w’(x)
is obtained by the discharging rules given below:

(R1) Fork=4,7(v > f) = 5 if =5, § if | =4,and } if | = 3.
(R2) Fork = 5,6, 7(v > f) = (g if/ =5, 3ifl =4,and  if/ = 3 and f isa
(3, 4, 51)-face, }‘ to other incident 3-faces.

(R3) Fork >7,71(v — f) = g if| =53 if/ =4,and § if | = 3.

We now verify that w’(x) > 0 for any x € V(G) U F(G).
Let f be an h-face of G. The proof is divided into four cases according to the value of 4.

Case 1: h > 6. Then w'(f) = w(f) > 0.

Case2:h = 5.Thenn3(f) < 2by Claim 2. Song+(f) = 3, then w'(f) = w(f)+3 15 =
0 by (R1), (R2) and (R3).

Case 3: h = 4. Then n3(f)
have w'(f) > w(f) +3 -%
w(f)+1-5+1-2>0.

< 2 by (02), (05) and Claim 2. While n3(f) = 1, we
= 0, if n3(f) = 2, we have ns+(f) > 1, so w'(f) >
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Case4:h = 3. Then w(f) = 2 — 1 = —1. We write f = [vjv,v3]. By Claim 2, we have
n3(f) = 1.

Subcase 4.1. It n3(f) =0, then w'(f) > w(f) +3- % =0.

Subcase 4.2. If n3(f) = 1, then there must be a 5T-vertex incident with f by (O2) and
(03).1f fisa (3,4,5%)-face, then w'(f) = w(f) +1- ¢+ 1§ =0by (RI), (R2) and
(R3).If fisa (3,5T, 5F)-face, then w'(f) > w(f) +2 - § = 0 by (R1), (R2) and (R3).

Let v be a k-vertex of G. If k = 3, then w’(v) > w() = 0. If k = 4, then w'(v) >
w(v) — 1 — 5 — ¢ = 0 by Claim I and (R1). If k > 5, by Claim 1, (R2) and (R3), we
have w'(v) = w(v) — & — 3 — 3 = “=2 > 0 by (R2) and (R3).

Now, we get that w’(x) > 0 for each x € V(G) U F(G). It follows that 0 <
2 oxev(GUFG) W X)) =Y ey curc wk) < 0.

<eV(G)UF(G) w’(x) > 0, we are done. Assume that erV(G)UF(G) w'(x) =0, so
we have no 5"-vertices and 7" -faces by the above proof.

Claim 3. G contains no 3-faces.

Proof. Let G be a graph in G. We have that G contains no 57 -vertices, so the ver-
tices incident with any 3-faces must be 4~ -vertices, and we get it as G contains no
4=,47,47)-faces. O

Claim 4. G contains no 4-vertices.

Proof. Let v be a vertex in V(G), then m3(f) + ma(f) + ms(f) < 2 by Claim 3, so
w’(v)zw(v)—%—%=é>0.

By Claim 4, we have d(v) = 3 for every vertex in V (G), this contradiction completes
the proof of Theorem 1. O

4. Proof of Theorem 2

Suppose Theorem 2 is false. Let G = (V, E) be a counterexample to Theorem 2 with the
smallest |V| + |E|. Clearly G is connected. Embedding G into the surface with nonnega-
tive characteristic, let L = {L(v)||L(v)| > 3 for all v € V(G)} be a list assignment such
that G has no L-coloring in the sense that every vertex has at most one neighbor colored
the same color as itself.

For proving this theorem, we need the following lemma in [9].

Lemma 1 [9]. Let G be a graph and d > 1 an integer. If G is not (k, d)*-choosable but
every subgraph of G with fewer vertices is, then the following facts hold:
(@) 8(G) = k;
(b) If ue V(G) is a k-vertex and v is a neighbor of u, then d(v) > k +d.
By the minimality of G, the following lemma is straightforward.
Lemma 2. Let G = (V, E) be a counterexample to Theorem 2 with the smallest |V |+ |E|.
Then we have
(1) 8(G) = 3;
(2) G has no adjacent 3-vertices;
(3) There is no (3,4, 4)-face.
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Proof. The proof of Claim (1) and (2) can be got by Lemma 1. Claim (3) goes as follows.
Suppose to the contrary that G contains a (3,4,4)-face [uvw] such that d(u) = 3 and
d(v) = d(w) = 4. By the minimality of G, G-{u, v, w} has an (L, 1)*-coloring ¢. Define
L'(x) = L(x) — A(x) for every x € {u, v, w}, where A(x) denotes the set of colors
that ¢ assigns to the neighbors of x in G-{u, v, w}. Thus |L'(u)| >2, |L'(v)| > 1, and
|L'(w)| >1. An (L', 1)*-coloring of the 3-circuit uvwu can be constructed easily. Hence,
G is (L, 1)*-colorable, this contradicts the choice of G.

By Theorem 1, G must either contain a (47,47, 47 )-face or an even (3,4, ...,3,4)-
face. Now we show that both cases are impossible.

If G contains a (4—, 47, 47 )-face, then it is a (4, 4, 4)-face by Lemma 2 (see Figure 1).
Let f = [x,y,z], and let x', x”, ¥', y”, 2/, z” be the neighbors of x, y, z respectively.
Let G'=G-xy. Then we know G’ is (3, 1)*-choosable, we denote the coloring of G’ by ¢.
Now we will show that ¢ can be extended to the (3, 1)*-coloring of the whole graph G.

If ¢ (x) # ¢ (y), then G itself is (L, 1)*-colorable, so we get it. Otherwise, we assume
that ¢(x) = ¢ (). If p(x) = ¢ (¥) & {p(x), ¢ (x"), (), #(Y")}, ¢ is also a (L, 1)*-
coloring of G. So we conclude ¢ (x) = ¢(y) € {p(x"), d(x"), d(Y), (Y}

So, by symmetry, we can assume that ¢ (x) = ¢(y) = 1, and ¢(z) = 2. Of course,
1 € {p(x), p(x"), d(y), p(y")}, assume ¢ (x’) = 1, and the neighbors of x" except x
are not colored 1.

Now we recolor the vertex x with a color L(x)\{¢(x"), ¢(x”)}. Also, we color y with
a color L(y)\{¢(y"), ¢(y")}, z with a color L(z)\{¢(z), ¢ (")} in the new coloring ¢'.
Maybe the new color of x, y, z is same as that colored in ¢. Note that if at most two of
x,y, z are arranged with the same color, then the resulting coloring is an (L, 1)*-coloring
and we are done. So we should suppose that ¢’ (x) = ¢'(y) = ¢'(z), moreover ¢’ (x) # 1
because ¢ (x") = 1. We further rearrange the color 1 to x because 1 € L(x). Then we get
a (L, 1)*-coloring of G. This contradicts the choice of G.

If G contains an even (3,4, ..., 3,4)-face f. Let L be a 3-list assignment of G, and
f =[viva---va]besucha (3,4,...,...,3,4)-face.

By the assumption, there exists an (L, 1)*-coloring ¢ of G — V(f). Let L'(v) be the
color list of v after removing the colors used by the neighbors of v used in ¢. Thus
[L'(v;)| =2, |L'(vi+1)|>1, here i € {1,3,...,2k — 1}. Let ¢'(vax) be the remaining
color from its color list for k =1, ..., n, and ¢'(v;) with the color from L' (v;)\¢'(vj_1)

I Z”

Figure 1. The (4, 4, 4)-face f.
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for j = 3,5,7,...,2k — 1 in order, finally color v; by one color of in L'(vi)\¢'(var).
This coloring ¢" of V (f) combining with the coloring ¢ of V(G) — V (f) givesa (L, 1)*-
coloring of the graph G. This completes the proof of Theorem 2. (]
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