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Abstract. A new approach, named the exponential function method (EFM) is used to
obtain solutions to nonlinear ordinary differential equations with constant coefficients
in a semi-infinite domain. The form of the solutions of these problems is considered to
be an expansion of exponential functions with unknown coefficients. The derivative and
product operational matrices arising from substituting in the proposed functions convert
the solutions of these problems into an iterative method for finding the unknown coef-
ficients. The method is applied to two problems: viscous flow due to a stretching sheet
with surface slip and suction; and mageto hydrodynamic (MHD) flow of an incom-
pressible viscous fluid over a stretching sheet. The two resulting solutions are compared
against some standard methods which demonstrates the validity and applicability of the
new approach.
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1. Introduction

Many science and engineering models have semi-infinite domains, and a quick and effec-

tive approach to finding solutions to such problems is valuable. During the last few

decades, several methods have been introduced to solve nonlinear ordinary differential

equations on a semi-infinite domain. Guo [12, 13] proposed a method that maps the

original problem in an unbounded domain onto a problem in a bounded domain, and

used suitable Jacobi polynomials to approximate the resulting functions. Boyd [6] used a

domain truncation method thereby replacing the semi-infinite interval by a finite interval.

There are also effective direct approaches to solving these problems based on rational

approximations. Christov [9] and Boyd [4, 5] developed spectral methods on unbounded

intervals by using mutually orthogonal systems of rational functions. Boyd [4] defined a

new spectral basis named rational Chebyshev functions on the semi-infinite interval by

mapping to Chebyshev polynomials. Guo et al. [14] introduced a new system of rational
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Legendre functions which are mutually orthogonal in L2[0,+∞). They applied to a

spectral scheme using the rational Legendre functions for solving the Korteweg-de Vries

equation on the half-line. Boyd et al. [7] applied pseudospectral methods on a semi-

infinite interval and compared this with the rational Chebyshev, Laguerre and mapped

Fourier sine methods.

A number of spectral methods for treating various problems such as semi-infinite

domains problems have been proposed by different researchers [20, 21, 23].

A particularly efficient method is called the homotopy analysis method (HAM), and has

been presented in [1, 16], and other related methods are given in [3, 11, 17, 18, 22, 25].

However, spectral methods often produce systems of non-linear equations which increase

the complexity, and also HAM can produce extra chaotic terms that are computationally

intensive.

In the present paper a linearization method is applied using exponential functions on

the semi-infinite interval for solving nonlinear ordinary differential equations of the form

k
∑

j=0

djf
(j)(η) +

k
∑

i,j=0

aijf
(i)(η)f (j)(η) = 0, (1)

where f (j)(η) is the j ’s derivative of f with respect to η. From this, the problems of

viscous flow due to a stretching sheet with surface slip and suction, and also of MHD flow

of an incompressible viscous fluid over a stretching sheet (see, for example, Wang and

Chaim [8, 26]) are solved numerically.

The remainder of this paper is organized as follows: in §2 the problem is defined and

the theory supporting the exponential function method; in §3 the constructions of the

exponential functions operational matrices for the derivative and product are presented;

in §4 the application of EFM to the semi-infinite interval is presented; and finally in §5

the application of EFM for the two fluid problems is presented.

2. Exponential functions

The exponential functions can be defined on a semi-infinite plate by

En(η) = e−nLη, n = 0, 1, 2, . . .

where the parameter L is a positive constant parameter and it sets the length scale of the

mapping. En(η) satisfy the following recurrence relation:

E′
0(η) = 0, E′

n(η) = −nL En(η), (2)

En(η) Em(η) = En+m(η). (3)

We are going to show that the exponential functions method is based on strong the-

oretical background. In fact, we want to prove why we have chosen this special basis.

Denote

Ĉ[0,∞) = {f : [0,∞) → C
∣

∣f is continuous and lim
η→∞

f (η) exists}.

Also, define

ψ : C[0, 1] → Ĉ[0,∞) by f �→ f ◦g, (4)
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where g(η) = e−Lη for some positive L. So, ψ(f )(η) = f (e−Lη), 0 ≤ η < ∞. Obvi-

ously ψ(0) = 0 and for any f1, f2 ∈ C[0, 1] and any complex number c, there holds

ψ(cf1 + f2)(η) = (cf1 + f2)(e
−Lη) = cψ(f1) + ψ(f2), hence ψ is linear. Let ω be a

positive measure on [0,∞) such that dω = e−Lηdη, then

〈ψ(f1), ψ(f2)〉ω =
∫ ∞

0

f1◦g(η) f2◦g(η) e−Lηdη

= 1

L

∫ 1

0

f1(t) f2(t)dt = 1

L
〈f1, f2〉C[0,1],

shows that ψ is a preserving inner product as well. The kernel of ψ is 0 and for any

φ ∈ Ĉ[0,∞), ψ(α) = φ, where

α(t) =
{

φ(
− ln(t)

L
) , 0 < t ≤ 1,

lim
η→∞

φ(η) , t = 0.

Therefore ψ is an isometry.

According to Stone–Weierstrass theorem [24] for any complex continuous function f

defined on [0, 1], there exists a sequence of polynomials, converging to f , subject to the

sup norm. So, span {fn, n = 0, 1, 2, . . .} where fn(x) = xn is dense in C[0, 1]. We

proved that ψ in (4) is an isometry, so C[0, 1] is isometric with Ĉ[0,∞), therefore, span

{ψ(fn), n = 0, 1, 2, . . .} would also be dense in Ĉ[0,∞). Since

ψ(fn)(η) = fn(e
−Lη) = (e−Lη)n = e−nLη,

therefore, span {e−nLη, n = 0, 1, 2, . . .} is dense in Ĉ[0,∞), and now we ensure that any

continuous function that has a limit at infinity, can be considered as limit of a sequence in

span {e−nLη, n = 0, 1, 2, . . .}. On the other hand, any f ∈ Ĉ[0,∞) can be expressed in

exponential expansion

f (η) =
+∞
∑

n=0

ane−Lnη, an ∈ C, (5)

which guarantees that if f is the solution of an equation in Ĉ[0,∞), then
∑N

n=0ane−Lnη

practically converges to f (η) as N grows up.

Now we proceed the arithmetic computations.

2.1 Function approximation

Let f ∈ Ĉ[0,∞), consider its expansion as shown in (5), denote

A = [a0, a1, a2, . . .]T , E(η) = [1, e−Lη, e−2Lη, . . .]T , (6)

and then we can reform (5) in matrix form as follows

f (η) =
+∞
∑

n=0

ane−Lnη = AT E(η) = ET (η)A. (7)
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The right-hand side of (7) says f = f T and this is because f is a one-dimensional

function. Since,

〈e−nLη, e−mLη〉ω =
∫ ∞

0

e−nLηe−mLηe−Lηdη

= 1

L(m + n + 1)
, m, n = 0, 1, 2, ...,

then

L〈E(η),ET (η)〉ω =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1
2

1
3

1
4

· · ·
1
2

1
3

1
4

1
5

· · ·
1
3

1
4

1
5

1
6

· · ·
1
4

1
5

1
6

1
7

· · ·
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

which conventionally is the Hilbert matrix H and so,

L〈f (η), ET (η)〉ω = AT H,

which yields

AT = L〈f (η), ET (η)〉ωH−1.

However the cost of computing the Hilbert matrix inverse is expensive, but also

for a finite approximation its entries can be expressed in closed form using binomial

coefficients as follows:

(H−1)nm = (−1)n+m(n + m + 1)
(

N+n
N−m+1

)(

N+m
N−n+1

) (

n+m
n

)2
,

n,m = 0, 1, 2, . . . ,

where N is the order of the matrix. Recent formula shows that all entries of the inverse

matrix are integer numbers. The Hilbert matrices are known as canonical examples of

ill-conditioned matrices, making them notoriously difficult to use in numerical computa-

tion, but in our method we have skillfully avoided this complexity as has been explained

in §4.

3. EFM operational matrix

3.1 Derivative matrix for exponential functions

The derivative of the vector E(η) defined in eq. (6) can be expressed as

E′(η) = dE

dη
= DE(η), (8)

where D is the operational matrix for the derivative. Applying eq. (2), it is then deduced

that

(D)nm = −nLδnm, n,m = 0, 1, 2, . . . .
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Remark 1. In general, for the j -order (j = 0, 1, 2, . . .) derivative of the function f ∈
Ĉ[0,∞), we have

f (j)(η) = AT DjE(η), (Dj )nm = (−nL)j δnm, n,m = 0, 1, 2,. . . .

(9)

Thus, all derivative matrices of exponential functions are diagonal which can efficiently

decrease the amount of computation for solving differential equations.

3.2 The product operational matrix

Again with respect to (6) and (7), we have

E(η)ET (η)A =

⎛

⎜

⎜

⎜

⎝

ET (η)

e−LηET (η)

e−2LηET (η)
...

⎞

⎟

⎟

⎟

⎠

A =

⎛

⎜

⎜

⎜

⎝

ET (η)A

e−LηET (η)A

e−2LηET (η)A
...

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

AT E(η)

e−LηAT E(η)

e−2LηAT E(η)
...

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

a0 + a1e
−Lη + a2e

−2Lη + a3e
−3Lη + . . .

a0e
−Lη + a1e

−2Lη + a2e
−3Lη + . . .

a0e
−2Lη + a1e

−3Lη + a2e
−4Lη + . . .

...

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

a0 a1 a2 a3 . . .

0 a0 a1 a2 . . .

0 0 a0 a1 . . .
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎠

E(η)

= ÃE(η), where (Ã)nm =
{

am−n, m ≥ n,

0, otherwise.
(10)

If g is also a function that belongs to Ĉ[0,∞), according to (7) we can write g(η) =
∑∞

n=0bne−Lnη = BT E(η) = ET (η)B, where BT = [b0, b1, b2, . . .], thus by (10) we

have

f (η)g(η) = AT E(η)ET (η)B = AT B̃E(η). (11)

Remark 2. Equation (9) and (7) yield f (i)(η) = (f (i)(η))T = (AT DiE(η))T =
DiET (η)A, and since f (j), f (i) ∈ Ĉ[0,∞), similar to (11) we will have

f (j)(η)f (i)(η) = AT DjE(η)DiET (η)A = AT Dj ÃiE(η), (12)
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where D0 is the identity matrix, Ai = DiA and Ãi’s are as follows:

Ã0 = Ã, Ai = (−L)i

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

a1

2ia2

3ia3

...

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

Ãi = (−L)i

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 a1 2ia2 3ia3 4ia4 . . .

0 0 a1 2ia2 3ia3 . . .

0 0 0 a1 2ia2 . . .

0 0 0 0 a1 . . .
...

...
...

...
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, i ≥ 1,

(Ãi)nm = (−L)i
{

(m − n)iam−n , m > n,

0, otherwise.
(13)

Also, for k-power of function f (η), by induction, we have

f k(η) = f 2(η)f k−2(η) = AT ÃE(η)f k−2(η)

= AT Ã2E(η)f k−3(η) = · · · = AT Ãk−1E(η)

As is seen above, the product operational matrix is an upper triangular matrix which

converts a nonlinear problem into a linear form.

4. Applications of the EFM

Here, we consider the nonlinear ordinary differential equations of the form

k
∑

j=0

djf
(j)(η) +

k
∑

i,j=0

eijf
(i)(η)f (j)(η) = 0, η ∈ [0,∞). (14)

Combining former expansion

f (η) =
+∞
∑

n=0

ane−nLη (15)

together with identity (12), gives an operational form for eq. (14) as follows:

k
∑

j=0

djA
T DjE(η) +

k
∑

i,j=0

eijA
T Dj ÃiE(η) = 0 . (16)

Imposing inner product to the above equation by ET (η), results in

AT

⎡

⎣

k
∑

j=0

djD
j +

k
∑

i,j=0

eijD
j Ãi

⎤

⎦ 〈E(η),ET (η)〉ω
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= AT

⎡

⎣

k
∑

i=0

diD
i +

k
∑

i,j=0

eijD
j Ãi

⎤

⎦H = 0T .

It is known that the Hilbert matrix H is non-singular, so multiplying H−1 will reform to

AT

⎡

⎣

k
∑

j=0

djD
j +

k
∑

i,j=0

eijD
j Ãi

⎤

⎦ = AT BT = 0T , (17)

which does not involve the Hilbert matrix.

By using eqs (9), (10) and (13), Dj Ãi is computed as

Dj Ã0 = Dj Ã = (−L)j

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 . . .

0 a0 a1 a2 a3 . . .

0 0 2ja0 2ja1 2ja2 . . .

0 0 0 3ja0 3ja1 . . .
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, j ≥ 1, (18)

(Dj Ã)nm = (−L)j
{

njam−n , m ≥ n,

0, otherwise.

D0Ãi = Ãi , i ≥ 1,

D0Ã0 = Ã. (19)

Dj Ãi = (−L)i+j

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 . . .

0 0 a1 2ia2 3ia3 4ia4 . . .

0 0 0 2ja1 2j 2ia2 2j 3ia3 . . .

0 0 0 0 3ja1 3j 2ia2 . . .
...

...
...

...
...

...
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, i, j ≥ 1,

(Dj Ãi)nm = (−L)i+j

{

nj (m − n)iam−n , m > n,

0, otherwise.
(20)

Now we can rewrite eq. (17) as

BT = e00Ã + d0I +
k
∑

j=1

Dj
(

e0j Ã + dj I
)

+
k
∑

i=1

ei0Ãi +
k
∑

i,j=1

eijD
j Ãi .

The entries bnm of B are obtained by using eqs (10), (13), (20) and (18) as

bnm =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

k
∑

j=0

(−nL)j
(

a0e0j + dj

)

, n = m,

an−m

k
∑

i,j=0

(−L)i+jmj (n − m)ieij , n > m,

0, m > n.

(21)

Therefore, we can write

∞
∑

m=0

bnmam =
n
∑

m=0

bnmam = bn0a0 + bnnan +
n−1
∑

m=1

bnmam
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= an

(

a0

k
∑

i=0

(−nL)iei0 + bnn

)

+
n−1
∑

m=1

bnmam = 0,

an = − 1

a0

k
∑

i=0

(−nL)iei0 + bnn

n−1
∑

m=1

bnmam , n ≥ 2. (22)

As seen in the above equation, the coefficients an can be obtained iteratively from a1 and

L. The following conditions occur for a0:

(i) If either d0 or e00 is equal to zero, then a0 = 0.

(ii) If both d0, and e00 are nonzero, then

a0 = − d0

e00
.

(iii) Else (d0 = e00 = 0),

a0 =
−

k
∑

j=0

(−L)jdj

k
∑

j=0

(−L)j (ej0 + e0j )

.

As long as the series
∑+∞

n=0 ane−nLη converges, the general solution of eq. (14) will

be obtained by replacing a0 in eq. (22) . From the boundary conditions of a problem,

determining parameters L and a1 will give a particular solution.

4.1 Error and stop analysis of EFM

For an N + 1-term truncation approximation of (15) namely

fN (η) =
N
∑

n=0

ane−nLη,

we may check the error of the method from the residual function by using eq. (14) as

follows:

R(η) =
k
∑

j=0

djf
(j)

N (η) +
k
∑

i,j=0

eijf
(i)
N (η)f

(j)

N (η). (23)

Now compute the error

‖R(η)‖ω =

⎛

⎝

+∞
∫

0

|R(η)|2 ω(η) dη

⎞

⎠

1/2

, (24)

as long as the desired approximation is reached.
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As long as the series (15) converges, we can determine the valid N for an appropriate

error, ε > 0, by applying the Cauchy condition

‖fN (η) − fM(η)‖2
ω ≤ ε, N, M ≥ N0, for some fixed integer number N0.

Let us consider M = N − 1, then one has

|aN |2
+∞
∫

0

e−(2N+1)Lη dη ≤ ε �⇒ aN
2

(2N + 1)L
≤ ε

�⇒ N ≥ aN
2

2Lε
− 1

2
, (25)

which is an essential criteria to stop computations. Obviously, such as spectral method,

whatever the number of sentences of series increases, the approximated solution will be

more accurate. By the way, we offer a criteria to stop computations in term of an arbitrary

Cauchy error ε and L and an. According to eq. (25), we can derive that the approximated

solutions with big L have faster convergence.

5. Applications

The first problem considers viscous flow due to a stretching sheet with surface slip and

suction studied by Wang [26] and the second problem arises from MHD flow over a

non-linear stretching sheet [2, 8, 15, 19].

5.1 A brief introduction to problem 1

In this section, we shall obtain the solution for the model studied by Wang [26]. This

model is an extension to Crane’s solution [10] to include both suction and slip for

two-dimensional stretching and axisymmetric stretching. Uniqueness of the solution was

shown by Wang [26].

5.2 Formulation

Consider the velocity on the stretching surface at z = 0 to be

u = ax, v = (m − 1)ay, w = 0,

where a > 0 is the stretching rate, (u, v,w) is the velocity vector in the Cartesian (x, y, z)

coordinates respectively. Two-dimensional stretching occurs when m = 1 , and axisym-

metric stretching occurs when m = 2. Axisymmetric stretching occurs on surfaces such

as expanding balloons. The similarity transform is

u=axf ′(η), v=(m − 1)ayf ′(η), w=−m

√
aνf (η), η = z

√

a

ν
, (26)

where ν is the kinematic viscosity of the fluid. The continuity equation is satisfied and the

Navier–Stokes equation becomes

f ′′′(η) + mff ′′(η) − f ′(η)2 = 0. (27)
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Here we have used the fact that there is no lateral pressure gradient at infinity. On the

surface, the velocity slip is assumed to be proportional to the local shear stress (Navier’s

condition)

u − ax = Nρν
∂u

∂z
< 0, v − (m − 1)ay = Nρν

∂v

∂z
< 0, (28)

where ρ is the density and N is a slip constant. Equation (28) can be rewritten as

f ′(0) = 1 + λf ′′(0), (29)

where λ = Nρ
√

aν > 0 is a non-dimensional slip factor. Note that from eq. (28), f ′′(0) <

0. If there is suction velocity of −w on the surface, the boundary condition is

f (0) = s, (30)

where the suction factor is s = w/(m
√

aν). The third boundary condition is that there is

no lateral velocity at infinity

lim
η→∞

f ′(η) = 0. (31)

We now use EFM to solve eqs (27) considering its conditions (29)–(31), and let

C = limη→∞ f (η).

5.3 Applying EFM for solving the model

In the first step of our analysis, we replace f (η) and its derivatives for solving the model

by exponential functions as follows:

f (η) = AT E(η), f ′(η) = AT DE(η),

f ′′(η) = AT D2E(η), f ′′′(η) = AT D3E(η). (32)

Using eq. (10), we have

f (η) f ′′(η) = AT D2E(η)ET (η)A = AT D2ÃE(η), (33)

f ′2(η) = AT DE(η)ET (η)DA = AT DÃ1E(η), (34)

where A1 = DA, and

D2Ã = L2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 . . . 0 . . .

0 a0 a1 . . . an−1 . . .

0 0 4a0 . . . 4an−2 . . .
...

...
...

. . .
... . . .

0 0 0 . . . n2a0 . . .
...

...
...

...
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

DÃ1 = L2

⎛

⎜

⎜

⎜

⎝

0 0 0 0 . . . 0 . . .

0 0 a1 2a2 . . . (n − 1)an−1 . . .

0 0 0 2a1 . . . 2(n − 2)an−2 . . .
...

...
...

...
. . .

...
. . .

⎞

⎟

⎟

⎟

⎠

.
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The residual function is constructed by substituting eqs (32), (33) and (34) in eq. (27):

R(η) = AT
(

D3 + m D2Ã − DÃ1

)

E(η) = L2AT BT E(η),

where entries of B have been obtained as follows:

bnm =

⎧

⎨

⎩

0, (n = m = 0) or (m > n),

mm2a0 − Lm3, n = m �= 0,

[mm2 − m(n − m)]an−m , n > m.

(35)

The residual function R(η) should be equal to zero, therefore, one has

0 = 〈R(η),ET (η)〉w(η) = LAT BT H,

which yields BA = 0. Therefore, we can write

∞
∑

m=0

bnmam =
n
∑

m=1

bnmam = 0 �⇒ mn2a0an +
n−1
∑

m=1

bnmam

= Ln3an �⇒
n
∑

m=1

[mm2 − m(n − m)]an−mam

= Ln3an . (36)

Now when n = m = 1, and by assuming on coefficient an, say a1 �= 0, one has

m a0a1 = La1 �⇒ a0 = L

m

. (37)

Subsequently, the other unknown coefficients an, n ≥ 2 obtained from a1 and L using

eqs (36) and (37) are

n−1
∑

m=1

bnmam = n2an

(

Ln − m

L

m

)

= Ln2an(n − 1),

an = 1

Ln2(n − 1)

n−1
∑

m=1

[(m + 1)m2−nm]an−mam , n ≥ 2. (38)

The general solution for eq. (27) is now obtained from (37) and (38) in the following form:

f (η) = L

m

+ a1e−Lη +
∞
∑

n=2

ane−nLη, (39)

and hence C = L/m. Particular solution for this problem will be achieved by using the

boundary conditions (29) and (30) to get the following equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (0) =
n
∑

m=0

am = s,

f ′(0) = −L
n
∑

m=0

mam = 1 + λL2
n
∑

m=0

m2am ,
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which will give us the special parameters L and a1. The above system can simply be

solved by the Newton method. Thus, all coefficients an, n ≥ 2 are obtained iteratively.

It is worth mentioning that the third boundary conditions (31), (f ′(∞) = 0) satisfy

eq. (39).

Two-dimensional case

For m = 1, eq. (38) becomes

an = 1

Ln2(n − 1)

n−1
∑

m=1

(2m2 − nm)an−mam , n ≥ 2.

For a2, one has

a2 = 1

4L
(2 − 2)a1

2 = 0.

Consequently, for any n ≥ 2, we have an = 0, and the exact solution by using the

boundary conditions (29) and (30) can be obtained as

f (η) = L + (s − L)e−Lη, (40)

where L is the positive root of the following equation:

λL3 + (1 − λs)L2 − sL − 1 = 0. (41)

The solutions exist for all s and all λ ≥ 0.

Figure 1 displays typical curves for f ′(η) which represents lateral velocity. It is seen

that for increased slip λ the lateral velocity decreases near the surface but increases at

larger distances. Figure 2 shows the normal velocity for suction (s > 0) represented by

f (η) which is always towards the stretching surface, but for injection (s < 0), the normal

Figure 1. Graph of the function f ′(η) for two-dimensional case, s = 0.
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Figure 2. Graph of the function f (η) for two-dimensional case, λ = 1.

velocity is zero at some finite distance η. Also note that the boundary layer thickness is

larger for small s.

The axisymmetric case

For m = 2, eq. (38) becomes

an = 1

Ln2(n − 1)

n−1
∑

m=1

(3m2 − nm)an−mam , n ≥ 2.

The coefficients an, n ≥ 2 are obtained by a1 and L as follows

a2 = a1
2

4L
, a3 = a1

3

12L2
, a4 = 17a1

4

576L3
, a5 = 61a1

5

5760L4
, a6 = 73a1

6

19200L5
, . . .

The initial value f ′′(0) for some s and λ in comparison with solutions of the shooting

method which is used and applied by the authors in ref. [26] are shown in Table 1. The

final value C is given in Table 2. The residual errors of this problem for various values

of λ and N have been displayed in Table 3. Also the rate of convergence using the residual

error for the problems are obtained as follows

rate = log m
n

(

en

em

)

,

where en denotes the error ‖R(η)‖ω for approximation fn(η). This table demonstrates the

reliability and efficiency of the method.

5.4 A brief introduction to problem 2

In this section, we also wish to find the EFM solution for the model studied by Chaim [8].

This model considers the MHD flow of an incompressible viscous fluid over a stretching

sheet.
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Table 1. The initial value f ′′(0), axisymmetric case.

λ Method s = 3 s = 2 s = 1 s = 0 s = −0.5

0 EFM −6.23939791 −4.34248658 −2.57031866 −1.17372073 −0.73825524

Shooting −6.2394 −4.3425 −2.5703 −1.1737 −0.7382

0.5 EFM −1.50380385 −1.34626285 −1.06961564 −0.65052766 −0.46510104

Shooting −1.5038 −1.3463 −1.0696 −0.6505 −0.4651

1 EFM −0.85785973 −0.80285739 −0.68841453 −0.46250964 −0.34824701

Shooting −0.8579 + −0.8029 −0.6884 −0.4625 −0.3482

3 EFM −0.31582568 −0.30785946 −0.28762542 −0.22312755 −0.18181655

Shooting −0.3158 −0.3079 −0.2876 −0.2231 −0.1818

10 EFM −0.09836175 −0.09756638 −0.09531501 −0.08291164 −0.07231371

Shooting −0.09836 −0.09757 −0.09532 −0.08291 −0.07231

Table 2. The value of C as a function of s and λ, axisymmetric case.

λ Method s = 3 s = 2 s = 1 s = 0 s = −0.5

0 EFM 3.159264088 2.227357515 1.375936041 0.751497028 0.578063367

Shooting 3.1592 2.2274 1.3759 0.7515 0.5781

0.5 EFM 3.040862590 2.078986410 1.198167041 0.617297138 0.490823463

Shooting 3.0409 2.0790 1.1982 0.6173 0.4908

1 EFM 3.023528564 2.048266155 1.138889276 0.550950530 0.443101403

Shooting 3.0235 2.0483 1.1389 0.5510 0.4431

3 EFM 3.008731587 2.018948310 1.064876361 0.432105781 0.352461316

Shooting 3.0087 2.0190 1.0649 0.4321 0.3525

10 EFM 3.002728238 2.006067944 1.022963411 0.310654396 0.255606558

Shooting 3.0027 2.0061 1.0230 0.3107 0.2556

Table 3. The residual errors ‖R(η)‖ω for the axisymmetric case with s = −0.5 and

various values of λ and N .

λ N = 5 N = 10 N = 20 N = 40 N = 60 N = 80 N = 100

0 0.65959 0.04582 0.00004 1.61×10−11 5.52×10−18 3.91×10−25 2.19×10−32

Rate – 3.84 10.16 21.24 36.71 57.22 74.83

0.5 0.65240 0.07348 0.00018 2.02×10−10 2.26×10−16 6.26×10−23 2.57×10−29

Rate – 3.15 8.67 19.76 33.80 52.48 65.90

1 0.69429 0.10072 0.00050 2.20×10−9 5.04×10−15 8.62×10−21 1.52×10−26

Rate – 2.78 7.65 17.92 31.82 46.16 59.37

3 0.64456 0.18603 0.00684 8.58×10−7 3.88×10−11 1.59×10−15 1.14×10−20

Rate – 1.79 4.76 12.96 24.67 35.12 53.08

5 0.59087 0.07152 0.09768 3.47×10−5 1.29×10−8 6.78×10−13 5.39×10−16

Rate – 3.04 −0.45 11.46 19.48 34.25 31.98
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5.5 Formulation

Let us consider the MHD flow of an incompressible viscous fluid over a stretching sheet

at y = 0. The fluid is electrically conducting under the influence of an applied magnetic

field B(x) normal to the stretching sheet. The induced magnetic field is neglected. Let

(u, v) be the fluid velocities in the (x, y) directions, then the resulting boundary layer

equations are

∂u

∂x
+ ∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂f 2
− σB2(x)

ρ
u, (42)

where ρ is the fluid density, σ is the electrical conductivity of the fluid and the external

electric field and the polarization effects are negligible and B(x) is assumed by Chaim [8]

as

B(x) = B0x
n−1

2 . (43)

The boundary conditions corresponding to the non-linear stretching of a sheet are

u(x, 0) = cxn, v(x, 0) = 0, lim
y→∞

u(x, y) = 0. (44)

The similarity transformation is

η =
√

c(n + 1)

2ν
x

n−1
2 y, u = cxnf ′(η),

v = −
√

cν(n + 1)

2
x

n−1
2

[

f (η) + n − 1

n + 1
ηf ′(η)

]

. (45)

The continuity equation is automatically satisfied. Using eqs (43)–(45), eq. (42) reduces

to the non-linear differential equation with boundary conditions of the form

f ′′′(η) + f (η)f ′′(η) − βf ′(η)2 − Mf ′(η) = 0, (46)

f (0) = 0, f ′(0) = 1, f ′(∞) = 0, (47)

where

β = 2n

n + 1
, M =

2σB2
0

ρc(1 + n)
. (48)

5.6 Applying EFM for solving the model 2

As with the previous section, the entries of B will be deduced as follows:

bnm =

⎧

⎪

⎨

⎪

⎩

0, (n = m = 0) or (m > n)

Mm − L2m3, n = m �= 0

L[(n − m)2 − βm(n − m)]an−m , n > m.

(49)

Now when n = m = 1, and by assuming a1 �= 0, one has

La0a1 + (M − L2)a1 = 0 �⇒ a0 = L2 − M

L
. (50)
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Consequently, the other unknown coefficients an, n ≥ 2 by using eqs (22) and (50), will

be found using

n−1
∑

m=1

bnmam = n(n − 1)(nL2 + M) an,

an = L

n(n − 1)(nL2 + M)

n−1
∑

m=1

[(n − m)2 − βm(n − m)]an−mam. (51)

Table 4. Comparison of the numerical value of f ′′(0), obtained by EFM.

Croco

transformation Shooting Modified

β M [8] method [8] ADM [15] HPM [19] EFM ‖R(η)‖ω

1.5 0 −1.14902 −1.14860 −1.14902 −1.1486 −1.1485932051 1.38×10−11

1 −1.5253 −1.52527 −1.5253 −1.5252 −1.5252747637 7.06×10−15

5 −2.94150 −2.94144 −2.94142 −2.5161 −2.5161546412 1.72×10−19

10 −3.69567 −3.6956 −3.6956 −3.3663 −3.3663148778 5.82×10−22

50 −7.32561 −7.3256 −7.3256 −7.1647 −7.1647094332 3.16×10−24

100 10.1816 −10.1816 −10.1816 −10.0664 −10.066439086 1.45×10−28

5 0 −1.90433 −1.9025 −1.9031 −1.9025 −1.9025048006 1.02×10−10

1 −2.15344 −2.1529 −2.1529 −2.1529 −2.1528632536 1.35×10−11

5 −2.94150 −2.94144 −2.94142 −2.9414 −2.9414368451 3.80×10−18

10 −3.69567 −3.6956 −3.6956 −3.6956 −3.6956559936 3.74×10−20

50 −7.32561 −7.3256 −7.3256 −7.3256 −7.3256096800 6.45×10−19

100 −10.1816 −10.1816 −10.1816 −10.1816 −10.181629758 8.27×10−29

Figure 3. Variation of f ′(η) for different values of M with β = 0.5.
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Using the boundary conditions (47), the particular solution of this problem can be

obtained by solving the following equations to find L and a1:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (0) =
n
∑

m=0

am = 0,

f ′(0) = −L
n
∑

m=0

mam = 1.

For the special case of β = 1, one has

a2 = L

4L2 + 2M
(1 − 1)a1

2 = 0.

Figure 4. Variation of f ′(η) for different values of β with M = 0.5.

Figure 5. |R(η)| for various iterations with β = 5 and M = 0.5.



96 Edmund Chadwick et al.

Subsequently, for any n ≥ 2, we have an = 0. Thus the solution is obtained using EFM as

f (η) = a0 + a1 exp(−Lη).

Using the problem conditions (47), a1 and L obtained are

a1 = −1√
M + 1

, L =
√

M + 1.

which are reduced to the exact solution of the problem

f (η) = 1 − exp(−
√

M + 1η)√
M + 1

.

Table 4 clearly reveals that the new solution method shows excellent agreement with the

existing solutions in the literatures [8, 15, 19]. Also from the last column of this table, the

residual error ‖R(η)‖ω demonstrates the rapid convergence and efficiency of the method.

In figures 3 and 4, the variations of f ′(η) approximated by the new method for some

typical problem’s parameters are plotted. Figure 5 illustrates function |R(η)| for various

iterations. It is evident that this method is convergent according to norm-∞.

6. Conclusion

Solutions based on the exponential functions methods (EFM) have been presented for

nonlinear differential equations in semi-interval arising from two models of viscous flow

due to a stretching sheet. The first model is Crane’s solution extended to include both

suction and slip for two-dimensional stretching and axisymmetric stretching for which the

uniqueness of the solution was shown by Wang. The other is the MHD flow over a non-

linear stretching sheet. The method presented in this paper uses a set of functions which

solve the problems on the whole domain without requiring small parameters, truncating

it to a finite domain, imposing the asymptotic condition, and transforming the domain of

the problem.

These functions are proposed to provide an effective but simple way to improve the con-

vergence of the solution by an iterative method. The validity of the method is based on the

assumption that it converges by increasing the number of iterations. Comparisons made

among the numerical solutions, demonstrate rapid convergence and numerical efficiency

of the new method for these kind of problems.
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