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The result thus gives new examples of normal orbit closures of quiver representations.

Keywords. Quiver representation; orbit closure; hypersurface; normality.

2010 Mathematics Subject Classification. Primary: 14B05; Secondary: 14L30,
16G20.

1. Introduction

Throughout the paper, k denotes a fixed algebraically closed field of characteristic zero.

Quiver is the terminology in representation theory for a directed graph. So a quiver con-

sists of a set of vertices and a set of directed edges or arrows. We shall only consider finite

quivers, i.e., those quivers whose set of vertices and the set of arrows are finite. A k-linear

representation (representation, for short) of a quiver Q assigns a k-vector space to each

vertex and a k-linear map to each arrow of Q. If we fix a natural number di for each ver-

tex i of the quiver Q, then the representations of Q of dimension vector d = (di) form an

affine space repQ(d). The linear algebraic group GL(d) =
⊕

GL(di, k) acts on repQ(d)

by conjugation, so that the GL(d)-orbits in repQ(d) correspond bijectively to the isomor-

phism classes of representations of Q of dimension vector d (see §2 for a brief account of

quiver representations).

It is an interesting task to study geometric properties of the Zariski closures –

being affine varieties – of GL(d)-orbits in repQ(d), as well as their connections with

representation-theoretic properties of the quiver Q and its representations. Among the

geometric properties of orbit closures that have attracted a lot of attention are the normal-

ity and the Cohen–Macaulayness. For instance, if Q is a Dynkin quiver of type A or D,

then Bobiński and Zwara [2, 3] proved that GL(d)-orbit closures in repQ(d) are normal

and Cohen-Macaulay. If Q is the extended Dynkin quiver of type Ã0 (i.e., the quiver con-

sisting of one vertex and one loop), then orbit closures are normal and Cohen–Macaulay

by a classical result of Kraft and Procesi [4]. On the other hand, there exist orbit clo-

sures that are neither normal nor Cohen-Macaulay [8]. We refer to the survey [9] for more

results on singularties of orbit closures of modules and quiver representations. In partic-

ular, it is shown in section 2 of [9] that in studying singularties of orbit closures, we may
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restrict our consideration to the quiver representations whose annihilators are admissible

ideals (see §2 for definitions).

In [5, 6], we characterize the quiver representations for which the orbit closures are

hypersurfaces. More precisely, we have the following two theorems (the first one holds in

any characteristic).

Theorem 1.1 (Theorem 2.1 of [5]). Let Q be a quiver and d ∈ N
Q0 be a dimension

vector. Let N be a representation in repQ(d) such that the annihilator Ann(N) is an

admissible ideal in kQ. Then the orbit closure ŌN is a non-singular variety if and only if

Ann(N) = 0 and ŌN = repQ(d).

Theorem 1.2 (Theorem 1.4 of [6]). Let Q be a quiver and d = (di)i∈Q0
be a dimension

vector. Let N be a representation in repQ(d) such that Ann(N) is an admissible ideal in kQ.

Then ŌN is a singular hypersurface if and only if one of the following conditions hold:

(A) Ann(N) = 〈γ 2〉, where γ is a loop in Q at a vertex i with di = 2,

and Ext1
kQ/〈γ 2〉

(N,N) = 0.

(B) Ann(N) = 〈ρ〉, where ρ is a relation in Q from a vertex i to a vertex

j with di = dj = 1, and Ext1kQ/〈ρ〉(N,N) = 0.

(C) Ann(N) = 0 and Ext1kQ(N,N) ∼= k.

Since a hypersurface is a complete intersection, it is Cohen–Macaulay. Our next aim is

to prove the normality of the orbit closure which is a (singular) hypersurface. The main

result of the paper states as follows.

Theorem 1.3. Let Q be a quiver and d = (di)i∈Q0
be a dimension vector. Let N be a

representation in repQ(d) such that Ann(N) is a non-zero admissible ideal in kQ. If ŌN

is a hypersurface, then ŌN is a normal variety.

This theorem deals essentially with the cases (A) and (B) of Theorem 1.2. The normal-

ity of the orbit closure ŌN in the case (C) of Theorem 1.2 is an open question in general,

and we shall handle it in a separate paper.

Since ŌN is an irreducible affine hypersurface, then, by a well-known criterion of Serre

(see, for example, section III.8 of [7]), its normality is equivalent to the non-singularity

in codimension 1, i.e., the singular locus Sing(ŌN ) is a closed subvariety of ŌN of

codimension at least 2. This is our strategy for proving the normality of ŌN .

In §2, we recall some notions on representations of quivers that are necessary. The proof

of Theorem 1.3 is presented in §3. We illustrate Theorem 1.3 with two examples in §4.

For basic background on the representation theory of algebras and quivers, we refer to [1].

2. Representations of quivers

Let Q = (Q0,Q1; s, t : Q1 → Q0) be a finite quiver, i.e., Q0 is a finite set of vertices,

Q1 is a finite set of arrows α : s(α) → t (α), where s(α) and t (α) denote the starting and

terminating vertex of α, respectively. By an oriented path (path, for short) of length r ≥ 1

in Q, we mean a sequence of arrows in Q1:

ω = αr . . . α1,
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such that s(αl+1) = t (αl) for l = 1, . . . , r − 1. In this situation we write s(ω) = s(α1)

and t (ω) = t (αr), and say that ω is a path from s(α1) to t (αr). We agree to associate to

each vertex i ∈ Q0 a path εi in Q of length zero with s(εi) = t (εi) = i. We call a path ω

of positive length with s(ω) = t (ω) an oriented cycle. By a primitive cycle, we mean an

oriented cycle which does not contain other oriented cycles as proper subpaths. A loop is

an oriented cycle of length one.

The paths in Q form a k-linear basis of the path algebra kQ, in which the product of

two paths ω and ρ is the path ωρ if s(ω) = t (ρ), and is zero otherwise. A relation from a

vertex i to a vertex j is a k-linear combination of paths from i to j of length at least two.

In particular, a relation is an element in the vector space εj · kQ · εi . Given an element ρ

in εj · kQ · εi , we denote by 〈ρ〉 the two-sided ideal in kQ generated by ρ.

By a representation of Q, we mean a collection V = (Vi, Vα) of finite dimensional

k-vector spaces Vi , i ∈ Q0, together with linear maps Vα : Vs(α) → Vt (α), α ∈ Q1. The

dimension vector of the representation V is the vector

dim V = (dimkVi) ∈ N
Q0 .

A morphism f : V → W between two representations is a collection of linear maps

fi : Vi → Wi , i ∈ Q0, such that ft (α)Vα = Wαfs(α) for each α ∈ Q1. The category of

representations of Q is an abelian k-linear category, which is naturally equivalent to the

category mod (kQ) of finite-dimensional left kQ-modules (see section III.1 of [1]).

For a path ω = αr . . . α1 and a representation V of Q, we define

Vω = Vαr ◦ . . . ◦ Vα1
: Vs(ω) → Vt (ω)

and extend easily this definition to Vρ : Vi → Vj for any ρ in εj ·kQ ·εi , where i, j ∈ Q0,

as ρ is a linear combination of paths ω with s(ω) = i and t (ω) = j . We set the annihilator

of the representation V to be

Ann(V ) =
{

ρ ∈ kQ | Vεj ·ρ·εi
= 0 for all i, j ∈ Q0

}

,

which is a two-sided ideal in kQ. In fact, it is the annihilator of the kQ-module

corresponding to V.

A two-sided ideal I in kQ is called admissible if (RQ)r ⊆ I ⊆ (RQ)2 for some

integer r ≥ 2, where RQ denotes the two-sided ideal in kQ generated by arrows in Q.

For such an ideal I , the category mod (kQ/I) of finite-dimensional left kQ/I -modules

is equivalent to the full subcategory consisting of all the representations V of Q such that

Ann(V ) ⊇ I . We shall identify these two categories.

Let d = (di)i∈Q0
∈ N

Q0 be a dimension vector. The representations V = (Vi, Vα) of

Q with Vi = kdi , i ∈ Q0, form an affine space

repQ(d) =
⊕

α∈Q1

Homk(Vs(α), Vt (α)) =
⊕

α∈Q1

Mdt (α)×ds(α)
(k),

where Md ′×d ′′(k) stands for the space of d ′ × d ′′-matrices with entries in k. The group

GL(d) =
⊕

i∈Q0

GL(di, k)

acts regularly on repQ(d) by simultaneous conjugation

(gi)i∈Q0
∗ (Vα)α∈Q1

= (gt (α) · Vα · g−1
s(α))α∈Q1

.
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The action of an element of GL(d) on repQ(d) corresponds to a change of basis at each

vector space kdi , i ∈ Q0, so that two representations in repQ(d) are isomorphic if and only

if they belong to the same GL(d)-orbit. Given a representation W = (Wi,Wα) of Q with

dimW = d, we denote by OW the GL(d)-orbit in repQ(d) of representations isomorphic

to W , and by ŌW the Zariski closure of OW in repQ(d). Notice that OW being the image

of GL(d) under an orbit map, is irreducible. Thus ŌW is an irreducible affine variety.

The algebra of polynomial functions on the affine space repQ(d) is

k[repQ(d)] = k[Xα,p,q | α ∈ Q1, 1 ≤ p ≤ dt (α), 1 ≤ q ≤ ds(α)].

Here, Xβ,p,q maps a representation W = (Wα) to the (p, q)-entry of the matrix Wβ . Let

Xα stand for the dt (α) × ds(α)-matrix whose (p, q)-entry is the variable Xα,p,q , for any

arrow α ∈ Q1. We define the dj × di-matrix Xρ for ρ ∈ εj · kQ · εi , with entries in

k[repQ(d)], in a similar way to that for representations of Q. For example, if ρ = βα is a

path in Q from the vertex 1 to the vertex 3, as illustrated below:

•
1

α •
2

β
•
3

and d1 = d3 = 1, d2 = 2, then Xρ is the polynomial Xβ,1,1Xα,1,1 + Xβ,1,2Xα,2,1.

We shall need the following auxiliary result.

Lemma 2.1. Let ξ = αr . . . α1 be a path in the quiver Q such that dt (αl) ≥ 2 for l =

1, . . . , r−1 and the arrows α1, . . . , αr are pairwise distinct. Then the entries of the matrix

Xξ are irreducible polynomials in k[repQ(d)]. In particular, if ds(ξ) = dt (ξ) = 1, then the

polynomial Xξ is irreducible in k[repQ(d)].

The proof of the lemma is straightforward. Indeed, we may assume that ξ is a path with

ds(ξ) = dt (ξ) = 1, so that Xξ is a polynomial (all the entries of Xξ in general case are

of this form). Suppose there is a non-trivial factorization Xξ = hg in k[repQ(d)]. Let H

(respectively, G) be the set of all arrows α ∈ Q1 such that some variable Xα,p,q appears

in the polynomial h (respectively, g). Then clearly H ∪G = {α1, . . . , αr } and H ∩G = ∅.

Since dt (αl) ≥ 2 for l = 1, . . . , r − 1, it follows that hg has a term which is not a term of

Xξ . Hence the lemma follows.

3. Proof of Theorem 1.3

Let N be a representation in repQ(d) such that Ann(N) is a non-zero admissible

ideal in kQ. Assume that the orbit closure ŌN is a hypersurface. Then, by Theorems

1.1 and 1.2, ŌN is a singular variety and we have either case (A) or case (B) of

Theorem 1.2.

Remark 3.1. It is shown in [6] that in the case (A), γ is a unique primitive cycle in Q,

while in the case (B), either the quiver Q contains no oriented cycles, or ρ is a subpath of

a unique primitive cycle that is not a loop in Q.

Remark 3.2. In the case (B), since di = dj = 1, so Nω is a scalar for any path ω from

i to j . Assume that Q contains no oriented cycles. Then the vector space εj · kQ · εi is

of dimension at most 2, i.e., there are at most two paths from i to j in Q. Indeed, assume
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there are two paths ω and ξ from i to j . Then there exist scalars a and b, not both zero,

such that

Naω+bξ = aNω + bNξ = 0.

This implies aω + bξ ∈ Ann(N) = 〈ρ〉. Hence, up to a scalar, ρ = aω + bξ , and clearly

there is no more path from i to j .

As usual, the zero set in the affine space A
n = A

n(k) of a subset T of k[X1, . . . , Xn]

is denoted by Z(T ). We shall use several times the following simple fact.

Lemma 3.3. The zero set of two coprime polynomials in k[X1, . . . , Xn] is of codimension

2 in the affine space A
n.

PROPOSITION 3.4

Let ω = αr . . . α2α1 be a path in the quiver Q of length r ≥ 2 such that ds(ω) = dt (ω) =

1, dt (αl) ≥ 2 for l = 1, . . . , r − 1 and the arrows αl are pairwise distinct. Then the

singular locus of Z(Xω) is of codimension at least 4 in repQ(d). In particular, Z(Xω) is

a normal variety.

Proof. The singular locus Sing(Z(Xω)) of Z(Xω) is given by the following equations in

repQ(d):

Xω = 0,
∂Xω

∂Xαl ,pl ,ql

= Xαr ...αl+1,1,pl
· Xαl−1...α1,ql ,1 = 0,

for l = 1, . . . , r and 1 ≤ pl ≤ dt (αl), 1 ≤ ql ≤ ds(αl). Here, Xαr ...αl+1,1,pl
denotes the

(1, pl)-entry of the matrix Xαr ...αl+1
, and analogously for Xαl−1...α1,ql ,1.

Let Z be an irreducible component of Sing(Z(Xω)). The vanishing of partial differ-

entials of Xω with respect to the variables Xαr ,1,qr for 1 ≤ qr ≤ ds(αr ) implies that Z

is contained in the zero set of all the entries of the matrix Xαr−1...α1
, which is denoted

by Z(Xαr−1...α1
). Let 1 ≤ s ≤ r − 1 be the least number such that Z ⊆ Z(Xαs ...α1

).

Then the vanishing of partial differentials with respect to the variables Xαs ,ps ,qs for

p ≤ dt (αs ), q ≤ ds(αs ), leads to the inclusion

Z ⊆ Z(Xαr ...αs+1
) ∪ Z(Xαs−1...α1

).

Since Z is irreducible, it follows from the choice of s that Z ⊆ Z(Xαr ...αs+1
). Hence

Z ⊆ Z(Xαr ...αs+1
) ∩ Z(Xαs ...α1

).

We define three subquivers Ŵ, Ŵ′ and Ŵ′′ of Q such that Ŵ0 = Ŵ′
0 = Ŵ′′

0 = Q0, Ŵ′
1 =

{α1, . . . , αs}, Ŵ′′
1 = {αs+1, . . . , αr } and Ŵ1 = Q1 \ (Ŵ′

1 ∪ Ŵ′′
1 ). By Lemma 2.1, the entries

of the matrix Xαs ...α1
are irreducible polynomials, and thus are mutually coprime. Since

dt (αs ) ≥ 2, the set V = Z(Xαs ...α1
) is of codimension at least 2 in repŴ′(d), by Lemma 3.3.

We get an analogous claim for the set W = Z(Xαr ...αs+1
) in repŴ′′(d). Since

Z(Xαr ...αs+1
) ∩ Z(Xαs ...α1

) = V × W × repŴ(d),

so Z is of codimension at least 4 in repQ(d). As a consequence, Sing(Z(Xω)) is of

codimension at least 3 in Z(Xω). Therefore, by Serre’s criterion, Z(Xω) is a normal

variety. �



40 Nguyen Quang Loc

Proof of Theorem 1.3 Let I (ON ) denote the defining ideal of the variety ON in

k[repQ(d)]. In the case (A), by Corollary 3.12 of [6], we have

I (ŌN ) = (Xγ,1,1 + Xγ,2,2, Xγ,1,1Xγ,2,2 − Xγ,1,2Xγ,2,1).

So ŌN is the zero set of the polynomial X2
γ,1,1 + Xγ,1,2Xγ,2,1 in the affine space

reptrace
Q (d) = {(Vα)α∈Q1

∈ repQ(d) | Vγ,1,1 + Vγ,2,2 = 0}.

It follows easily that codim
ŌN

Sing(ŌN ) = 2. Therefore ŌN is a normal variety.

In the case (B), it follows from the proof of Proposition 3.10 and Corollary 3.15 in [6]

that I (ŌN ) = (Xρ). By definition, ρ is a linear combination of paths from i to j of length

at least 2. If ρ is a single path, then the claim follows from Proposition 3.4. In particular,

this is the case when Q contains an oriented cycle (see Remark 3.1). Hence, in view of

Remark 3.2, we may assume that ρ = τ(a · ρ1 + b · ρ2)ω, where a, b ∈ k∗, and the paths

τ , ρ1, ρ2 and ω have no arrow in common. Let

ρ1 = αm . . . α1, ρ2 = βn . . . β1, τ = γr . . . γ1.

Let Z be an irreducible component of Sing(ŌN ). Analogously to the proof of Proposi-

tion 3.4, the vanishing of partial differentials of Xρ with respect to the variables Xαm,pm,qm

implies that

Z ⊆ Z(Xτ ) or Z ⊆ Z(Xαm−1...α1ω).

In the former case, we proceed as in the proof of Proposition 3.4 and obtain

Z ⊆ Z(Xγr ...γs+1
) ∩ Z(Xγs ...γ1(a·ρ1+b·ρ2)ω)

for some 0 ≤ s ≤ r − 1. Since the polynomial Xρ is irreducible, we have ds(γs+1) ≥ 2.

Then it follows from Lemmas 2.1 and 3.3 that Z is of codimension at least 3 in repQ(d).

We consider the latter case, when Z ⊆ Z(Xαm−1...α1ω). If Z ⊆ Z(Xω), then we are in

a similar situation as above. Thus assume Z �⊆ Z(Xω). Let 1 ≤ u ≤ m − 1 be the least

number such that Z ⊆ Z(Xαu...α1ω). Then the vanishing of partial differentials of Xρ with

respect to the variables Xαu,pu,qu implies that

Z ⊆ Z(Xταm...αu+1
) ∩ Z(Xαu...α1ω). (3.1)

In this case, however, dt (αu) may equal 1. Then we consider the path ρ2 = βn . . . β1 and

by using the same arguments, we obtain

Z ⊆ Z(Xτβn...βv+1
) ∩ Z(Xβv ...β1ω) (3.2)

for some 1 ≤ v ≤ n − 1. Let Ŵ, Ŵ′ and Ŵ′′ be subquivers of Q such that Ŵ0 = Ŵ′
0 =

Ŵ′′
0 = Q0. Ŵ′

1 consists of the arrows appearing in the paths ω, αu . . . α1 and βv . . . β1, Ŵ′′
1

consists of the arrows appearing in the paths αm . . . αu+1, βn . . . βv+1 and τ , and finally

Ŵ1 = Q1 \ (Ŵ′
1 ∪ Ŵ′′

1 ). Then, by Lemma 3.3, the set

V = Z(Xαu...α1ω) ∩ Z(Xβv ...β1ω)

is of codimension at least 2 in repŴ′(d), where the entries of the corresponding matrices

are considered as polynomials in k[repŴ′(d)]. We get an analogous claim for the set

W = Z(Xταm...αu+1
) ∩ Z(Xτβn...βv+1

)

¯¯
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•
β

• γ •

α

k3

1 0 0
0 1 0

k2
[ 0 1 ] k

1
0
0

in repŴ′′(d). Now it follows from (3.1) and (3.2) that

Z ⊆ V × W × repŴ(d),

so Z is of codimension at least 4 in repQ(d).

To sum up, we have codimrepQ(d)Z ≥ 3. Since ŌN is of codimension 1 in repQ(d), we

obtain codim
ŌN

Sing(ŌN ) ≥ 2. Hence, by Serre’s criterion, ŌN is a normal variety. �

4. Examples

We give two examples of normal orbit closures of quiver representations to illustrate The-

orem 1.3. Note that the quiver Q in Example 4.1 is a wild quiver, i.e., it is not a Dynkin

or extended Dynkin quiver, while the one in Example 4.2 is an extended Dynkin quiver

of type Ã2.

Example 4.1. In the case (A) of Theorem 1.2, the loop γ is a unique primitive cycle in

the quiver Q, see Remark 3.1. Hence the simplest and typical example of this case is the

representation

k
2 0 0

1 0

of the quiver consisting of one vertex and a loop. The corresponding orbit closure is the

normal variety of nilpotent 2 × 2-matrices.

For another example, let Q be the quiver

• α • γ

and N be the representation

k

1

0
k

2 0 0

1 0

of Q of dimension vector d = (1, 2). Here the linear maps Nα and Nγ are represented

by their matrices in the canonical bases of k and k2. Observe that Ann(N) = 〈γ 2〉 is an

admissible ideal in kQ. Moreover, N is a projective kQ/〈γ 2〉-module (see Lemma III.2.4

of [1]). Thus Ext1
kQ/〈γ 2〉

(N,N) = 0. Therefore ŌN is a hypersurface. By Theorem 1.3, it

is a normal variety.

Example 4.2. Let Q be the quiver

and N be the representation
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of Q of dimension vector d = (3, 2, 1). Then Ann(N) = 〈γβα〉 is an admissible ideal

in kQ. Consequently, the orbit closure ŌN is contained in the irreducible subvariety

Z(Xγβα) of repQ(d) of dimension 10. On the other hand, the stabilizer of N ,

Stab(N) = {g ∈ GL(d) | g ∗ N = N},

is precisely the group of automorphisms of N . It is an open and dense subset of the

space End(N) of endomorphisms of N . A simple calculation shows that the vector space

End(N) is four-dimensional. Thus we get

dimŌN = dimON = dimGL(d) − dimStab(N)

= dimGL(d) − dimEnd(N) = 10.

It follows that ŌN = Z(Xγβα). Hence ŌN is a hypersurface, and by Theorem 1.3, it is

normal.
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