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element methods for three dimensional elliptic problems on non-smooth domains. The
present paper addresses the proof of the main stability theorem. We assume that the dif-
ferential operator is a strongly elliptic operator which satisfies Lax–Milgram conditions.
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1. Introduction

Many stationary phenomena in science and engineering are modelled by elliptic boundary

value problems. It is well known that the regularity of solutions of these problems is

severely affected by the presence of corners and edges in a three-dimensional domain �.

There are three types of singularities caused by non-smoothness of domains in R3: the

vertex, the edge, and the vertex-edge singularities. In such cases, the standard numerical

methods such as finite element method (FEM) and finite difference method (FDM) yield

poor convergence results for numerical solutions of most of the practical problems. In

order to have reliable and economical approximate solutions, it is desirable to find an

efficient and accurate numerical technique.
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This paper is the second of a series of papers devoted to the study of the h-p spectral

element method for solving three dimensional elliptic problems on non-smooth domains

using parallel computers. The first paper [5], which deals with the regularity of the solu-

tion in the neighbourhoods of vertices, edges and vertex-edges and description of the main

stability theorem, will be published separately. The present paper develops the proof of

the basic stability estimate of [5] based on the work in [13]. In the forthcoming work,

we shall provide the numerical scheme, the parallel preconditioner, error estimates and

the solution techniques based on the stability estimates. It is shown that the error decays

exponentially with respect to the number of refinements in the geometric mesh and the

number of degrees of freedom in each variable on each element. Theoretical results have

been validated on parallel computers independently in [6].
The h-p version of the finite element method for solving three dimensional elliptic

problems on non-smooth domains with exponential accuracy was proposed by Guo in [9,

12]. To overcome the singularities which arise along vertices and edges they used geo-

metric meshes which are defined in neighbourhoods of vertices, edges and vertex-edges.

We refer to [1–4, 10–12] for a detailed discussion on the regularity and the h-p FEM for

three dimensional elliptic problems on non-smooth domains.
In [13], we proposed an exponentially accurate h-p spectral element method to solve

elliptic boundary value problems on non-smooth domains in R3. For Dirichlet problems,

we use spectral element functions which are non-conforming and hence there are no com-

mon boundary values. For problems with mixed boundary conditions, the spectral element

functions are essentially non-conforming except that they are continuous only at the wire-

basket (union of vertices and edges) of the elements. Hence the cardinality of the set of

common boundary values which is equal to the values of the function at the wirebasket of

the elements is much smaller than the cardinality of the common boundary values for the

standard finite element method.
To overcome the singularities which arise in the neighbourhoods of the vertices, vertex-

edges and edges we use local systems of coordinates. These local coordinates are modified

versions of spherical and cylindrical coordinate systems in their respective neighbour-

hoods. Away from these neighbourhoods standard cartesian coordinates are used. In each

of these neighbourhoods, we use a geometrical mesh which becomes finer near the cor-

ners and edges. The geometrical mesh becomes a quasi-uniform mesh in the new system

of coordinates.
We assume our spectral element functions to be a sum of tensor product of polynomials

of variable degree bounded by W . Let N denote the number of layers in the geomet-

ric mesh imposed on each of the neighbourhoods of vertices, edges and vertex-edges.

It is assumed that N is proportional to W . We remark that throughout the paper 1
N

and

W refer to h and p respectively for notational simplicity. We then define a quadratic

form VN,W ({Fu}) which measures the sum of the squares of the residuals in the partial

differential equation and a fractional Sobolev norm of the residuals in the boundary con-

ditions and enforce continuity across inter element boundaries by adding a term which

measures the sum of the squares of the jump in the function and its derivatives at inter

element boundaries in appropriate Sobolev norms suitably weighted to the functional

being minimized. We prove that there is another quadratic form UN,W ({Fu}) consist-

ing of the weighted H 2 norms of the spectral element functions which is bounded by

VN,W ({Fu}) multiplied by a factor which grows logarithmically in W for problems with

Dirichlet boundary conditions. For problems with mixed boundary conditions, this factor

may grow rapidly as N4 and thus the method is difficult to parallelize. To resolve this

difficulty of parallelization, we can make the spectral element functions conforming at the
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wirebasket. We prove a stability theorem for mixed problems when the spectral element

functions vanish on the wirebasket.

We remark that having obtained our approximate solution consisting of non-

conforming spectral element functions we can make a correction to the approximate

solution so that the corrected solution is conforming and the error between the corrected

and exact solution is exponentially small in N in the H 1 norm over the whole domain.

Throughout this paper, (x1, x2, x3), (ρ, φ, θ) and (r, θ, x3) denote the standard cartesian,

spherical and cylindrical coordinates, respectively.

This paper is organized as follows. In §2, we quote the notations, definitions of various

spaces, structure of the neighbourhoods of the vertices, edges and vertex-edges and the

modified local systems of coordinates in these neighbourhoods from [13]. In §3 and §4,

we derive estimates on the second order derivatives and the lower order derivatives of the

solution. Estimates for terms in the interior and on the boundary of the polyhedron � are

quoted in §5 and §6. In §7, we combine all the results of sections 3, 4, 5 and 6 to complete

the proof of the main stability estimate.

2. Preliminaries

Let � denote a polyhedron in R3, as shown in figure 1(a). We shall denote the boundary of

� by ∂�. Let Ŵi , i ∈ I = {1, 2, . . . , I }, be the faces of the polyhedron. Let D be a subset

of I and N = I \D. We impose Dirichlet and Neumann boundary conditions on the faces

Ŵi , i ∈D and Ŵj , j ∈N , respectively. Further, let ∂�= Ŵ[0] ∪ Ŵ[1], Ŵ[0] =
⋃

i∈DŴ̄i and

Ŵ[1] =
⋃

i∈DŴ̄i .

We consider an elliptic boundary value problem posed on � with mixed Neumann and

Dirichlet boundary conditions:

Lw = F in �,

w = g[0] for x ∈ Ŵ[0],
(

∂w

∂n

)

A

= g[1] for x ∈ Ŵ[1] , (2.1)

where n denotes the outward normal and
(

∂w
∂n

)

A
is the usual conormal derivative. It is

assumed that the differential operator

Lw(x) =
3
∑

i,j=1

−(aijwxj
)xi

+
3
∑

i=1

biwxi
+ cw (2.2)

is a strongly elliptic differential operator which satisfies the Lax–Milgram conditions.

Moreover, aij = aj i for all i, j and the coefficients of the differential operator are analytic.

The data F , g[0] and g[1] are analytic on each open face and g[0] is continuous on
⋃

i∈D Ŵ̄i .

In [5, 13], we divided the domain � into a regular region, a set of vertex neighbour-

hoods, a set of edge neighbourhoods and a set of vertex-edge neighbourhoods. A set of

modified coordinates have been defined in these neighoubrhoods which are modifications

of the standard spherical and cylindrical coordinates. Here, we briefly recall the notations,

definitions and the description of these neighbourhoods. For a detailed structure of these

neighbourhoods in various regions of the polyhedron �, we refer to [13].

Let Sj , j ∈J = {1, 2, . . . , J } be the edges and Ak , k ∈K= {1, 2, . . . , K} be the vertices

of the polyhedron. We shall also denote an edge by e, where e ∈ E = {S1, S2, . . . , SJ },
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the set of edges, and a vertex by v, where v ∈V = {A1, A2, . . . , AK }, the set of vertices.

Now consider a vertex v and let e denote one of the edges passing through it, which we

assume to coincide with the x3-axis. Let φ denote the angle at which x = (x1, x2, x3)

makes with the x3-axis. By �v , we denote the vertex neighbourhood of the vertex v

(figure 1(b)) defined by

�v =
(

Bρv (v)

∖

⋃

e∈Ev

Vρv,φv (v, e)

)

⋂

�,

where Bρv (v) = {x : dist(x, v)< ρv} and Vρv,φv (v, e)= {x ∈ � : 0 < dist(x, v)< ρv, 0 < φ

< φv}, where φv is a constant. For every vertex v, ρv and φv are chosen so small that

Bρv (v) ∩ Bρv′ (v
′)= ∅ if the vertices v and v′ are distinct and Vρv,φv (v, e′)

⋂

Vρv,φv

(v, e′′)= ∅ if e′and e′′ are distinct edges having v as a common vertex. Moreover, ρv and

φv are chosen so that ρv sin(φv) = Z, a constant for all v ∈ V , the set of vertices.

Next, let e denote an edge, which we assume to coincide with the x3-axis, whose end

points are the vertices v and v′. Then we define the edge neighbourhood of the edge e

denoted as �e shown in figure 1(c) by

�e = {x ∈ � : δv < x3 < le − δv′, 0 < r < Z} ,

where le is the length of the edge e, δv = ρv cos(φv), δv′ = ρv′ cos(φv′) and r =
√

x1
2 + x2

2.

Now, by �v−e we denote the vertex-edge neighbourhood of the vertex v and the edge

e shown in figure 1(d) defined by

�v−e = {x ∈ � : 0 < φ < φv, 0 < x3 < δv = ρv cos φv} .

Finally, �r denotes the portion of the polyhedron � obtained after the closure of the

vertex-neighbourhoods, edge neighbourhoods and vertex-edge neighbourhoods have been

removed from it. Thus, let

	 =
{

⋃

v∈V
�̄v

}

∪
{

⋃

e∈E
�̄e

}

∪

⎧

⎨

⎩

⋃

v−e∈V−E

�̄v−e

⎫

⎬

⎭

.

Then

�r = � \ △ .

To overcome the singularities which arise in the neighbourhoods of the vertices, vertex-

edges and edges we use local system of coordinates introduced in [13]. These local

coordinates are modified versions of spherical and cylindrical coordinate systems in their

respective neighbourhoods. Away from these neighbourhoods, standard Cartesian coordi-

nates are used in the regular region of the polyhedron. Table 1 summarizes the system of

coordinates used in various regions of the polyhedron �. For details, we refer to [13].

3. Estimates for the second derivatives of spectral element functions

3.1 Estimates for the second derivatives in the interior

We first obtain estimates for elements in the regular region �r of �. Divide �r into Nr

elements, �r
l for 1 ≤ l ≤ Nr consisting of curvilinear cubes, tetrahedrons and prisms.

Consider an element �r
l . Then �r

l has nl faces {Ŵr
l,i}1≤i≤nl

. Let ∂Ŵr
l,i denote the boundary

of the face Ŵr
l,i .
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(a) (b)

(c) (d)

Figure 1. (a) Polyhedral domain �, (b) vertex neighbourhood �v , (c) edge neigh-

bourhood �e, and (d) vertex-edge neighbourhood �v−e.

Table 1. System of coordinates used in various parts of �.

Region Coordinates Type

Regular x1, x2, x3 Standard cartesian

Vertex neighbourhood xv
1

= φ, xv
2

= θ, xv
3

= χ = ln ρ Modified spherical

Edge neighbourhood xe
1

= τ = ln r, xe
2

= θ, xe
3

= x3 Modified cylindrical

Vertex-edge neighbourhood xv−e
1

= ψ = ln(tan φ), xv−e
2

= θ, Hybrid

xv−e
3

= ζ = ln x3
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To proceed, we need to review some material in [8]. Let O be a bounded open subset of

R3 with a Lipschitz boundary ∂O. Assume in addition that ∂O is piecewise C2. Let P be

a point on ∂O in a neighbourhood of which ∂O is C2. It is possible to find two curves of

class C2 in a neighbourhood of P , passing through P and being orthogonal there. Let us

denote these curves by C1, C2 and by τ1, τ2 the unit tangent vectors to C1, C2 respectively

and by s1, s2 the arc lengths along these curves. We assume that τ1, τ2 has the direct

orientation at P . Let ν be the unit normal at P defined as ν=τ1 × τ2. Then at P , BP ,

the second fundamental form at P is the bilinear form

(ζ,η)| → −
2
∑

j,k=1

∂ν

∂sj
· τkζjηk, (3.1)

where ζ, η are the tangent vectors to ∂O at P and ζ = (ζ1, ζ2) and η = (η1, η2) in the

basis {τ1,τ2}. In other words,

B(ζ,η) = −∂ν

∂ζ
· η, (3.2)

where ∂
∂ζ

denotes differentiation in the ζ direction.

Let w be a vector field defined in a neighbourhood of O. If P is a point on ∂O, then by

wν we shall denote the component of w in the direction of ν, while we shall denote by

wT , the projection of w on the tangent hyperplane to ∂O, i.e.

wν = w · ν, (3.3)

wT = w − wνν = wτ1
τ1 + wτ2

τ2. (3.4)

Here, wτi
= w · τi for i = 1, 2.

We shall denote by ∇T the projection of the gradient vector on the tangent hyperplane

∇T u = ∇u − ∂u

∂ν
ν =

2
∑

j=1

∂u

∂sj
τj . (3.5)

Let h be a vector field defined on ∂O such that h is tangent to O except on a set of zero

measure. Then

divT (h) =
2
∑

j=1

(

∂h

∂sj

)

· τj . (3.6)

We now cite Theorem 3.1.1.2 of [8].

Theorem 3.1. Let O be a bounded open subset of R3 with a Lipschitz boundary ∂O.

Assume, in addition that ∂O is piecewise C2. Then for all w ∈ (H 2(O))3 we have

∫

O

(div(w))2 dx−
3
∑

i,j=1

∫

O

∂wi

∂xj

∂wj

∂xi

dx =
∫

∂O

{divT (wνwT )−2wT ·∇T wν} dσ

−
∫

∂O

{(tr B)w2
ν + B(wT , wT )}dσ.

(3.7)

Here, dx denotes a volume element and dσ an element of surface area.
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Consider an element �r
l which is assumed to be a curvilinear cube as shown in figure 2.

Let Ŵr
l,i denote one of the faces of �r

l . Let Q be a point inside Ŵr
l,i . The unit tangent

vectors τ1,τ2 and the unit normal vector ν at Q are shown in figure 2. Consider a point

P ∈ ∂Ŵr
l,i and assume that P is not a vertex of �r

l . Then we can define the vector n at

P as the vector belonging to the tangent hyperplane which is orthogonal to the tangent

vector to the curve ∂Ŵr
l,i at P . Moreover, n is chosen to point out of Ŵr

l,i . Recall that A is

the matrix (ai,j ). Define

(

∂u

∂X

)

A

(P ) = (X · A∇u) (P ), where X = n,τ1,τ2,ν. (3.8)

Let s1, s2 denote arc lengths along τ1 and τ2 and s denote arc length measured along

∂Ŵr
l,i . Since the differential operator L is strongly elliptic, there exists a positive constant

μ0 such that

3
∑

i,j=1

ai,j ζiζj ≥ μ0|ζ |2 . (3.9)

Let us write

Mu =
3
∑

i,j=1

(ai,juxj
)xi

= div(A∇xu). (3.10)

We can now prove the following result.

Figure 2. The element �r
l
.
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Lemma 3.1. Let u ∈ H 3(�r
l ). Then

μ2
0

2
ρ2

v sin2(φv)

∫

�r
l

3
∑

i,j=1

∣

∣

∣

∣

∂2u

∂xi∂xj

∣

∣

∣

∣

2

dx

≤ρ2
v sin2(φv)

∫

�r
l

|Lu|2dx−ρ2
v sin2(φv)

⎧

⎨

⎩

∑

i

∮

∂Ŵr
l,i

(

∂u

∂n

)

A

(

∂u

∂ν

)

A

ds

−2
∑

i

∫

Ŵr
l,i

2
∑

j=1

(

∂u

∂τj

)

A

∂

∂sj

((

∂u

∂ν

)

A

)

dσ

⎫

⎬

⎭

+C

∫

�r
l

∑

|α|≤1

∣

∣Dα
x u
∣

∣

2
dx.

(3.11)

Here, C denotes a constant. Moreover, dx denotes a volume element, dσ an element of

surface area and ds an element of arc length.

Proof. The proof is similar to the proof of Lemmas 3.1 and 3.4 in [7]. We define the

vector field w by w = A∇xu. Then using (3.8), we get

Mu = div(w),

(

∂u

∂ν

)

A

= wν and

(

∂u

∂τj

)

A

= wτj
. (3.12)

Applying Theorem 3.1,

∫

�r
l

|Mu|2dx −
3
∑

i,j=1

∫

�r
l

∂wi

∂xj

∂wj

∂xi

dx =

⎧

⎨

⎩

∑

i

∫

Ŵr
l,i

divT (wνwT )dσ

−2
∑

i

∫

Ŵr
l,i

2
∑

j=1

(

∂u

∂τj

)

A

∂

∂sj

((

∂u

∂ν

)

A

)

dσ

⎫

⎬

⎭

−
∑

i

∫

Ŵr
l,i

{

(tr B)

(

∂u

∂ν

)2

A

+ B

(

2
∑

j=1

(

∂u
∂τj

)

A
τj ,

2
∑

j=1

(

∂u
∂τj

)

A
τj

)}

dσ. (3.13)

Now by Lemma 3.1.3.4 of [8] the following inequality holds for all u ∈ H 2(�):

μ2
0

3
∑

i,j=1

∣

∣

∣

∣

∂2u

∂xi∂xj

∣

∣

∣

∣

2

≤
3
∑

i,j=1

∂wi

∂xj

∂wj

∂xi

+ 2

3
∑

i,j,k,l=1

∣

∣

∣

∣

ai,k

∂2u

∂xj∂xk

∂aj,l

∂xi

∂u

∂xl

∣

∣

∣

∣

dx

a.e. in �. Integrating we have

μ2
0

3
∑

i,j=1

∫

�r
l

∣

∣

∣

∣

∂2u

∂xi∂xj

∣

∣

∣

∣

2

dx ≤
3
∑

i,j=1

∫

�r
l

∂wi

∂xj

∂wj

∂xi

dx

+ C

∫

�r
l

3
∑

i=1

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

3
∑

i,j=1

∣

∣

∣

∣

∂2u

∂xi∂xj

∣

∣

∣

∣

dx.
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The constant C in the above inequality depends on M, where M is a common bound for

all C1 norms of the ai,j . Hence,

μ2
0

2

3
∑

i,j=1

∫

�r
l

∣

∣

∣

∣

∂2u

∂xi∂xj

∣

∣

∣

∣

2

dx ≤
3
∑

i,j=1

∫

�r
l

∂wi

∂xj

∂wj

∂xi

dx +C

∫

�r
l

∑

|α|=1

|Dα
x u|2dx.

(3.14)

Here, C denotes a generic constant. Now from Lemma 3.2 we have

∑

i

∫

Ŵr
l,i

divT (wνwT )dσ =
∑

i

∫

∂Ŵr
l,i

wνwnds.

Here, wn = w · n and n is the vector depicted in figure 2 lying on the tangent hyperplane

at the point P and orthogonal to the tangent vector to the curve ∂Ŵr
l,i . Now

Mu = Lu −
3
∑

i=1

biuxi
− cu. (3.15)

Combining (3.13) and (3.14) and proceeding as in Lemma 3.4 in [7], we obtain

μ2
0

2
ρ2

v sin2(φv)

∫

�r
l

3
∑

i,j=1

∣

∣

∣

∣

∂2u

∂xi∂xj

∣

∣

∣

∣

2

dx

≤ ρ2
v sin2(φv)

∫

�r
l

|Lu|2dx −ρ2
v sin2(φv)

⎧

⎨

⎩

∑

i

∮

∂Ŵr
l,i

(

∂u

∂n

)

A

(

∂u

∂ν

)

A

ds

−2
∑

i

∫

Ŵr
l,i

2
∑

j=1

(

∂u

∂τj

)

A

∂

∂sj

((

∂u

∂ν

)

A

)

dσ

⎫

⎬

⎭

+C

∫

�r
l

∑

|α|≤1

∣

∣Dα
x u
∣

∣

2
dx + D

∑

i

∫

Ŵr
l,i

∑

|α|=1

∣

∣Dα
x u
∣

∣

2
dσ. (3.16)

Now for any ǫ > 0, there exists a constant Kǫ such that
∫

Ŵr
l,i

∑

|α|=1

∣

∣Dα
x u
∣

∣

2
dσ ≤ ǫ

∫

�r
l

∑

|α|=2

∣

∣Dα
x u
∣

∣

2
dx + Kǫ

∫

�r
l

∑

|α|=1

∣

∣Dα
x u
∣

∣

2
dx.

Using this in (3.16) and choosing ǫ small enough (3.11) follows. �

We now prove the following result which we have used in the proof of Lemma 3.2.

Lemma 3.2. Let w ∈ H 2(�r
l ) and Ŵr

l,k denote one of the faces of �r
l . Then

∫

Ŵr
l,k

divT (wνwT )dσ =
∫

∂Ŵr
l,k

wνwnds. (3.17)

Here, dσ denotes an element of surface area and ds an element of arc length.
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Proof. We shall use geodesic coordinates to prove the result. For any point P ∈
closure(Ŵr

l,k) there is an open subset U of R2 containing (0, 0) such that π : U → R3 is

an allowable surface patch for Ŵr
l,k in a neighbourhood of P . Moreover, the first funda-

mental form of π is dζ 2 + G(ζ, η)dη2, where G is a smooth function on U such that

G(0, η)= 1 and Gζ (0, η)= 0 whenever (0, η)∈ U . Hence, for any ǫ > 0 we can choose

a fine enough triangulation of Ŵr
l,k so that on each triangle there is a set of geodesic coor-

dinates such that |Gζ /G| ≤ ǫ for all (ζ, η)∈ Ui for all i. Here, the curve corresponding

to ζ = 0 is chosen to be a geodesic. All the curves η = constant are geodesics orthogonal

to the curve ζ = 0. This can always be done if the surface patch is small enough. Such a

system of coordinates is called Fermi coordinates [14].

Now integrating over one such triangle we obtain

∫

πi (Ui )

divT (wνwT)dσ =
∫

πi (Ui )

2
∑

j=1

∂

∂sj
(wν(wT ·τj))dσ

−
∫

πi (Ui )

2
∑

j=1

wν

(

wT · ∂τj

∂sj

)

dσ. (3.18)

Clearly,

∫

πi (Ui )

2
∑

j=1

∂

∂sj

(

wν(wT · τj )
)

dσ =
∫

Ui

{

∂

∂ζ
(wν(wT · τ1))

√
G

+ ∂

∂η
(wν(wT · τ2))

}

dζdη.

Hence,

∫

πi (Ui )

2
∑

j=1

∂

∂sj

(

wν(wT · τj )
)

dσ =
∫

∂Ui

(

wν(wT · τ1)
√

Gdη

− wν(wT · τ2)dζ )

−
∫

πi (Ui )

wν(wT · τ1)

(

∂
√

G

∂ζ

/

√
G

)

dσ.

Now

dx

ds
= xζ

dζ

ds
+ xη

dη

ds
= τ1

dζ

ds
+ τ2

√
G

dη

ds
.

Hence, n = τ1

√
G

dη
ds

− τ2
dζ
ds

is the unit outward normal to ∂πi(Ui). And so

∫

πi (Ui )

2
∑

j=1

∂

∂sj
(wν(wT · τj ))dσ =

∫

∂πi (Ui )

wνwn ds

−
∫

πi (Ui )

wν(wT · τ1)

(

∂
√

G

∂ζ

/

√
G

)

dσ.



Proof of stability theorem 423

Summing over all triangular elements of the form πi(Ui), we obtain using (3.18),
∫

Ŵr
l,k

divT (wνwT )dσ =
∫

∂Ŵr
l,k

wνwnds

−
∑

i

∫

πi (Ui )

wν(wT · τ1)

(

∂
√

G

∂ζ
/
√

G

)

dσ

−
∑

i

∫

πi (Ui )

2
∑

j=1

wν

(

wT · ∂τj

∂sj

)

dσ. (3.19)

Now
∣

∣

∣

∣

∣

∑

i

∫

πi (Ui )

wν(wT · τ1)

(

∂
√

G

∂ζ
/
√

G

)

dσ

∣

∣

∣

∣

∣

≤ ǫ

∫

Ŵr
l,k

|w|2 dσ . (3.20a)

Next, at the point P the ζ parameter curves and the η parameter curves are geodesics.

Hence, at P ,
∂τj

∂sj
·T ′ = 0 for any vector T ′ which lies on the tangent plane at P . Thus, for

any ǫ > 0, we can choose a fine enough triangulation so that

∣

∣

∣

∣

∣

∑

i

∫

πi (Ui )

wν(wT · ∂τj

∂sj
)dσ

∣

∣

∣

∣

∣

≤ ǫ

∫

Ŵr
l,i

(w2
ν + |wT |2)dσ ≤ ǫ

∫

Ŵr
l.i

|w|2 dσ.

(3.20b)

Now from (3.19) and (3.20) we obtain the result since ǫ is arbitrary. �

3.2 Estimates for second derivatives in vertex neighbourhoods

In figure 3, the intersection of � with a sphere of radius ρv with center at the vertex v is

shown. On removing the vertex-edge neighbourhoods, which are shaded, we obtain the

vertex neighbourhood �v (figure 1(b)), where v ∈V and V denotes the set of vertices.

Choose ρv and φv so that ρv sin(φv)= Z, a constant, for all v ∈V . Let Sv denote the

intersection of the closure of �v with Bρv (v)= {x : |x − v| ≤ ρv}. Sv is divided into tri-

angular and quadrilateral elements Sv
j for 1 ≤ j ≤ Iv , where Iv is a fixed constant. We

impose a geometric mesh in the vertex neighbourhood �v of the vertex v as shown in

figure 3(b) (see [5, 13] for details).

Thus, �v is divided into Nv curvilinear cubes and prisms {�v
l }1≤l≤Nv . Let (xv

1 , xv
2 , xv

3 )

be the modified system of coordinates in the vertex neighbourhood (see table 1) and let

�̃v
l be the image of �v

l in (xv
1 , xv

2 , xv
3 ) coordinates. Now

∫

�v
l

ρ2|Lu|2dx =
∫

�̃v
l

eX sin φ|e2XLu|2dφdθdX . (3.21)

Define

Lvu(xv) = e
X

2

√

sin φ(e2XLu). (3.22)

We have the relation

ρ∇xu = Qv∇xvu , where Qv = OvP v. (3.23)
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(a) (b)

Figure 3. Mesh imposed (a) on the spherical boundary Sv , and (b) on the vertex

neighbourhood �v .

Here Ov is the orthogonal matrix,

Ov =

⎡

⎣

cos φ cos θ − sin θ sin φ cos θ

cos φ sin θ cos θ sin φ sin θ

− sin φ 0 cos φ

⎤

⎦ and P v =

⎡

⎣

1 0 0

0 1/ sin φ 0

0 0 1

⎤

⎦ .

(3.24a)

Define

Av = (Qv)T AQv. (3.24b)

Since φ0< φ < π −φ0, where φ0 denotes a positive constant, so we have μ0I ≤ Av ≤ μ1I

for some positive constants μ0 and μ1. Let �̃v
l be a curvilinear cube and let its faces be

denoted by {Ŵ̃v
l,i}. We now prove the following result.

Lemma 3.3. There exist positive constants Cv such that

μ2
0

2
sin2(φv)

∫

�̃v
l

exv
3

3
∑

r,s=1

∣

∣

∣

∣

∂2u

∂xv
r ∂xv

s

∣

∣

∣

∣

2

dxv

≤ sin2(φv)

∫

�̃v
l

|Lvu(xv)|2dxv

− sin2(φv)

⎧

⎨

⎩

∑

i

∮

∂Ŵ̃v
l,i

exv
3 sin(xv

1 )

(

∂u

∂nv

)

Av

(

∂u

∂νv

)

Av

dsv

− 2
∑

i

∫

Ŵ̃v
l,i

exv
3 sin(xv

1 )

2
∑

j=1

(

∂u

∂τv
j

)

Av

∂

∂sv
j

((

∂u

∂νv

)

Av

)

dσ v

⎫

⎬

⎭

+ Cv

∫

�̃v
l

∑

|α|≤1

exv
3

∣

∣Dα
xvu
∣

∣

2
dxv (3.25)
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for u ∈ H 3(�̃v
l ). Here, dxv denotes a volume element in xv coordinates, dσ v an element

of surface area and dsv an element of arc length in xv coordinates.

Proof. Let f denote a vector field. Then

ρ divx(f ) = e−2X

sin φ
divxv (e2X sin φ(Qv)T f ).

Take f = A∇xu. Therefore,

∫

�v
l

|ρ divx(A∇xu)|2 dx =
∫

�̃v
l

e−X

sin φ
|divxv (eX sin φ(Qv)T AQv∇xvu)|2dxv.

(3.26)

Define

Mvu(xv) = divxv

(

eX /2
√

sin φAv∇xvu
)

. (3.27)

Then

e−X /2

√
sin φ

divxv (eX sin φAv∇xvu) = Mvu(xv)

+1

2
eX /2

3
∑

j=1

(

√

sin φ av
3,j

∂u

∂xv
j

+ cos φ√
sin φ

av
1,j

∂u

∂xv
j

⎞

⎠ .

Here, Av is as defined in (3.24b). Define the vector field w by

w = eX /2
√

sin φAv∇xvu . (3.28a)

Then

Lvu(xv) = divxv (w) + ηvu(xv),

where

ηvu(xv) = −1

2
eX /2

√

sin φ

3
∑

j=1

av
3,j

∂u

∂xv
j

− 1

2
eX /2 cos φ√

sin φ

3
∑

j=1

av
1,j

∂u

∂xv
j

+
3
∑

i=1

bv
i

∂u

∂xv
i

+ cvu . (3.28b)

Here,

‖bv
i ‖0,∞,�̃v

l
= O(e3X /2), ‖cv‖0,∞,�̃v

l
= O(e5X /2) and

‖eX /2
√

sin φAv‖1,∞,�̃v
l

= O(eX /2). (3.29)

To obtain (3.25) we shall use Theorem 3.1 applied to the vector field w along with Lemma

3.2. Now

2

∫

Ŵ̃v
l,i

wT ·∇T wν dσ v =2

∫

Ŵ̃v
l,i

2
∑

j=1

eX /2
√

sin φ

(

∂u

∂τv
j

)

Av

∂

∂sv
j

(

eX /2
√

sin φ

(

∂u

∂νv

)

Av

)

dσ v
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= 2

∫

Ŵ̃v
l,i

2
∑

j=1

eX sin φ

(

∂u

∂τv
j

)

Av

∂

∂sv
j

((

∂u

∂νv

)

Av

)

dσ v

+2

∫

Ŵ̃v
l,i

2
∑

j=1

eX /2
√

sin φ

(

∂u

∂τv
j

)

Av

(

∂u

∂νv

)

Av

∂

∂sv
j

(

eX /2
√

sin φ
)

dσ v.

(3.30)

And so using (3.28), (3.29) and (3.30) we obtain

μ2
0

2
sin2(φv)

∫

�̃v
l

exv
3

3
∑

r,s=1

∣

∣

∣

∣

∂2u

∂xv
r ∂xv

s

∣

∣

∣

∣

2

dxv

≤ sin2(φv)

∫

�̃v
l

|Lvu(xv)|2dxv

− sin2(φv)

⎧

⎨

⎩

∑

i

∮

∂Ŵ̃v
l,i

exv
3 sin(xv

1 )

(

∂u

∂nv

)

Av

(

∂u

∂νv

)

Av

dsv

− 2
∑

i

∫

Ŵ̃v
l,i

exv
3 sin(xv

1 )

2
∑

j=1

(

∂u

∂τv
j

)

Av

∂

∂sv
j

((

∂u

∂νv

)

Av

)

dσ v

⎫

⎬

⎭

+ Cv

∫

�̃v
l

∑

|α|≤1

exv
3

∣

∣Dα
xvu
∣

∣

2
dxv+Dv

∑

i

∫

Ŵ̃v
l,i

∑

|α|=1

exv
3

∣

∣Dα
xvu
∣

∣

2
dσ v.

Now for any ǫ > 0 there exists a constant Kǫ such that

∫

Ŵ̃v
l,i

∑

|α|=1

exv
3

∣

∣Dα
x u
∣

∣

2
dσ v ≤ ǫ

∫

�̃v
l

∑

|α|=2

exv
3

∣

∣Dα
x u
∣

∣

2
dxv

+ Kǫ

∫

�̃v
l

∑

|α|=1

exv
3

∣

∣Dα
x u
∣

∣

2
dxv.

Choosing ǫ small enough, (3.25) follows from the above equation. �

We now show that the boundary integrals in Lemmas 3.1 and 3.3 coincide when Ŵv
k,i =

Ŵr
l,m is a portion of the sphere Bρv (v) = {x : |x − v| = ρv}, except that they have oppo-

site signs. Let Qv be the matrix defined in (3.23). Now, if dx is a tangent vector to a curve

in x coordinates then its image in xv coordinates is given by dxv , where

dxv = (Qv)T

ρ
dx . (3.31)

Clearly, the first fundamental form ds2 in x coordinates is

ds2 = dxT dx = ρ2(dxv)T [(Qv)−1(Qv)−T ]dxv

= e2X (dφ2 + sin2 φdθ2 + dX 2) . (3.32)
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Moreover, on Ŵr
l,m,

dσ = ρ2
v sin φdφdθ . (3.33)

Choose, τv
1 = (1, 0, 0)T and τv

2 = (0, 1, 0)T . These are then orthogonal unit tangent

vectors on Ŵ̃v
k,i since (dsv)2 = dφ2 + dθ2 + dX 2. Define

τ1 = −(Qv)−T τv
1 = −eφ, τ2 = (Qv)−T

sin φ
τv

2 = eθ . (3.34)

Let νv = (0, 0, 1)T denote the unit normal vector on Ŵ̃v
k,i . Then

ν = −(Qv)−T νv (3.35)

denotes the unit normal to Ŵr
l,m. Finally, let dsv = (dφ, dθ, 0)T denote a tangent vector

field on Ŵ̃v
k,i . Define

dsv =
√

dφ2 + dθ2, ds = ρv(Q
v)−T dsv and ds = ρv

√

dφ2+ sin2(φ)dθ2.

(3.36)

Let nv = (−dθ,dφ,0)T√
dθ2+dφ2

be the unit outward normal to ∂Ŵ̃v
k,i . Define

mv =
(

− sin φdθ,
dφ

sin φ
, 0

)T
/

√

dφ2 + sin2 φdθ2 . (3.37)

Then

n = (Qv)−T mv (3.38)

is the unit normal vector to ∂Ŵr
l,m. We now prove the following result.

Lemma 3.4. Let Ŵv
k,i = Ŵr

l,m. Then the following identities hold:

ρ2
v sin2(φv)

∮

∂Ŵr
l,m

(

∂u

∂n

)

A

(

∂u

∂ν

)

A

ds

= − sin2(φv)

∮

∂Ŵ̃v
k,i

exv
3 sin(xv

1 )

(

∂u

∂nv

)

Av

(

∂u

∂νv

)

Av

dsv (3.39)

and

ρ2
v sin2(φv)

∫

Ŵr
l,m

2
∑

j=1

(

∂u

∂τj

)

A

∂

∂sj

((

∂u

∂ν

)

A

)

dσ

= − sin2(φv)

∫

Ŵ̃v
k,i

exv
3 sin(xv

1 )

2
∑

j=1

(

∂u

∂τv
j

)

Av

∂

∂sv
j

((

∂u

∂νv

)

Av

)

dσ v.

(3.40)
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Proof. We first evaluate ρ2
v sin2(φv)

∮

∂Ŵr
l,m

(

∂u
∂n

)

A

(

∂u
∂ν

)

A
ds. By (3.23) and (3.35)

(

∂u

∂ν

)

A

=
−
(

(νv)T (Qv)−1(Qv)−T
)

ρv

Av∇xvu = −1

ρv

(

∂u

∂νv

)

Av

. (3.41)

Now by (3.38)

(

∂u

∂n

)

A

= nT A∇xu = 1

ρv

((mv)T (Qv)−1(Qv)−T Av∇xvu).

Using (3.35), (3.36), (3.37) and (3.38) we obtain

(

∂u

∂n

)

A

ds = sin φ

(

∂u

∂nv

)

Av

dsv. (3.42)

Thus, from (3.41) and (3.42) we obtain (3.39). Finally, we evaluate the term

ρ2
v sin2(φv)

∫

Ŵr
l,m

2
∑

j=1

(

∂u

∂τj

)

A

∂

∂sj

((

∂u

∂ν

)

A

)

dσ .

Using (3.34) it is easy to show that
(

∂u

∂τ1

)

A

= −1

ρv

(

∂u

∂τv
1

)

Av

and

(

∂u

∂τ2

)

A

= sin φ

ρv

(

∂u

∂τv
2

)

Av

.

(3.43)
Hence,

∂

∂s1

((

∂u

∂ν

)

A

)

= 1

ρ2
v

∂

∂sv
1

((

∂u

∂νv

)

Av

)

and

∂

∂s2

((

∂u

∂ν

)

A

)

= − 1

ρ2
v sin φ

∂

∂sv
2

((

∂u

∂νv

)

Av

)

. (3.44)

Moreover, from (3.33)

dσ = ρ2
v sin φ dσ v. (3.45)

Combining (3.43), (3.44) and (3.45) we obtain (3.40). �

3.3 Estimates for second derivatives in vertex-edge neighbourhoods

Figure 1(d) shows the vertex-edge neighbourhood �v−e of the vertex v and the edge e.

A geometric mesh is imposed on �v−e as shown in figure 4 (see [5, 13] for details).

To proceed further, let (xv−e
1 , xv−e

2 , xv−e
3 ) be the modified coordinates introduced in the

vertex-edge neighbourhood �v−e (see table 1). Let �̃v−e be the image of �v−e in xv−e

coordinates. Thus, �̃v−e is divided into Nv−e = I v−e(N +1)2 hexahedrons �̃v−e
n . Now

∇xvu = J v−e∇xv−eu, (3.46)
where

J v−e =

⎡

⎣

sec2 φ cot φ 0 − tan φ

0 1 0

0 0 1

⎤

⎦ . (3.47)
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Figure 4. Geometric mesh imposed on �v−e.

We now need to evaluate
∫

�v−e
n

ρ2 sin2 φ|Lu(x)|2dx .

Let �̂v−e
n denote the image of �v−e

n in xv coordinates. Then

∫

�v−e
n

ρ2 sin2 φ|Lu(x)|2dx =
∫

�̂v−e
n

sin2 φ|Lvu(xv)|2dxv.

Let f denote a vector field. Then

divxv (f ) = 1

sin φ cos φ
divxv−e (sin φ cos φ(J v−e)T f ). (3.48)

Moreover,
∫

�v−e
n

ρ2 sin2 φ | Lu(x) |2 dx =
∫

�̃v−e
n

sin3 φ cos φ|Lvu(xv)|2 dxv−e.

Define

Lv−eu(xv−e) = (sin φ)3/2(cos φ)1/2Lvu(xv) . (3.49)

Then using (3.27), (3.46) and (3.48) we can write

Lv−eu(xv−e) = (sin φ)1/2(cos φ)−1/2

divxv−e (eX /2(sin φ)3/2 cos φ(J v−e)T AvJ v−e∇xv−eu)

+
2
∑

i=1

bv−e
i uxv−e

i
+ cv−eu . (3.50)
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Define

Mv−eu(xv−e) = divxv−e (eX /2(cos φ)1/2 sin2 φ(J v−e)T AvJ v−e∇xv−eu)

or

Mv−eu(xv−e) = divxv−e (eζ/2Av−e∇xv−eu),

where Av−e = sin2 φ(J v−e)T AvJ v−e. (3.51)

Using (3.25)

Av−e = (Kv−e)T AKv−e, (3.52)

where

Kv−e = OvRv−e and Rv−e =

⎡

⎢

⎣

1
cos φ

0
− sin2 φ

cos φ

0 1 0

0 0 sin φ

⎤

⎥

⎦
.

Now

(tan φ)1/2divxv−e (eX /2(sin φ)3/2 cos φ(J v−e)T AvJ v−e∇xv−eu)

= Mv−eu(xv−e) − 1

2
eζ/2

3
∑

j=1

âv−e
1,j

∂u

∂xv−e
j

.

Hence, using (3.50),

Lv−eu(xv−e) = Mv−eu(xv−e) + ηv−eu(xv−e). (3.53)

Here,

ηv−eu(xv−e) = −1

2
eζ/2

3
∑

j=1

âv−e
1,j

∂u

∂xv−e
j

+ (sin φ)3/2(cos φ)1/2ηvu(xv)

= eζ/2
3
∑

j=1

âv−e
1,j

∂u

∂xv−e
j

+
3
∑

i=1

b̂v−e
i

∂u

∂xv−e
i

+ ĉv−eu.

Moreover, using (3.28b), (3.29) and (3.48), it can be shown that

‖b̂v−e
i ‖0,∞,�̃v−e

n
= O(eζ/2) for i = 1, 2,

‖b̂v−e
3 ‖0,∞,�̃v−e

n
= O(eζ/2 sin φ) and

‖ĉv−e‖0,∞,�̃v−e
n

= O(e3ζ/2 sin
3
2 φ) . (3.54)

Note that the matrix Av−e defined in (3.52) becomes singular as φ → 0. To overcome

this problem, we introduce a new set of local variables y = (y1, y2, y3) in

�v−e
n ={x : φv−e

l <φ<φv−e
l+1 , θv−e

j <θ <θv−e
j+1 , δv(μv)

k < x3 < δv(μv)
k−1}

defined by

y1 = xv−e
1 ,

y2 = xv−e
2 ,

y3 =
xv−e

3

sin
(

φv−e
l+1

) . (3.55)
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In making this transformation �̃v−e
n is mapped to a hexahedron �̂v−e

n such that the length

of the y3 side becomes large as �v−e
n approaches the edge of the domain �. It is important

to note that the trace and embedding theorems in the theory of Sobolev spaces remain

valid with a uniform constant for all the domains �̂v−e
n . Now it is easy to see that

Mv−eu(xv−e) = divy(e
ζ/2Ay∇yu), where Ay = (Ny)T ANy . (3.56)

Here, by (3.51) and (3.52),

Ny = OvQy, Qy =

⎡

⎢

⎢

⎢

⎣

1
cos(φ)

0
− sin2 φ

sin
(

φv−e
l+1

)

cos(φ)

0 1 0

0 0
sin(φ)

sin
(

φv−e
l+1

)

⎤

⎥

⎥

⎥

⎦

.

Clearly, there exist positive constants μ0 and μ1 such that

μ0I ≤ Ay ≤ μ1I (3.57)

for all elements �v−e
n . Moreover, there exists a constant C such that a

y
i,j and its derivatives

with respect to y are uniformly bounded in �̂v−e
n . Here, a

y
i,j denotes the elements of the

matrix Ay . Hence, we obtain the following result.

Lemma 3.5. Letwv−e(xv−e
1 )be a smooth,positive weight function such thatwv−e(xv−e

1 )=1

for all xv−e
1 such that

xv−e
1 ≥ ψv−e

1 = ln(tan(φv−e
1 )) and

∫ ψv−e
1

−∞
wv−e(xv−e

1 ) = 1.

Then there exists a positive constant Cv−e such that the estimate

μ2
0

2

∫

�̃v−e
n

exv−e
3

⎧

⎨

⎩

2
∑

i,j=1

(

∂2u

∂xv−e
i ∂xv−e

j

)2

+
2
∑

i=1

sin2 φ

(

∂2u

∂xv−e
i ∂xv−e

3

)2

+ sin4(φ)

(

∂2u

∂(xv−e
3 )2

)2
⎫

⎬

⎭

dxv−e

≤
∫

�̃v−e
n

∣

∣ Lv−eu(xv−e)
∣

∣

2
dxv−e

−
{

∑

k

∮

∂Ŵ̃v−e
n,k

exv−e
3

(

∂u

∂nv−e

)

Av−e

(

∂u

∂νv−e

)

Av−e

dsv−e

− 2
∑

k

∫

Ŵ̃v−e
n,k

exv−e
3

2
∑

l=1

(

∂u

∂τv−e
l

)

Av−e

∂

∂sv−e
l

(

∂u

∂νv−e

)

Av−e

dσ v−e

}

+ Cv−e

⎧

⎪

⎨

⎪

⎩

∫

�̃v−e
n

exv−e
3

⎛

⎝

2
∑

i=1

(

∂u

∂xv−e
i

)2

+ sin2(φ)

(

∂u

∂xv−e
3

)2
⎞

⎠dxv−e
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+
∫

�̃v−e
n

exv−e
3 u2 wv−e(xv−e

1 )dxv−e

⎫

⎪

⎬

⎪

⎭

(3.58)

holds for all �v−e
n ⊆ �v−e.

Proof. Since the spectral element function u(xv) is a function of only xv−e
3 if �v−e

n ⊆
{

x : 0 < φ < φv−e
1

}

, the result follows. Here, we have used the fact that the second

fundamental form is identically zero. �

We now state the following result and refer to Appendix B of [13] for the proof.

Lemma 3.6. Let Ŵv
k,i = Ŵv−e

q,r . Then the following identity holds.

sin2(φv)

∮

∂Ŵ̃v
k,i

exv
3 sin(xv

1 )

(

∂u

∂nv

)

Av

(

∂u

∂νv

)

Av

dsv

−2 sin2(φv)

∫

Ŵ̃v
k,i

exv
3 sin(xv

1 )

2
∑

j=1

(

∂u

∂τv
j

)

Av

∂

∂sv
j

((

∂u

∂νv

)

Av

)

dσ v

= −
∮

∂Ŵ̃v−e
q,r

exv−e
3

(

∂u

∂nv−e

)

Av−e

(

∂u

∂νv−e

)

Av−e

dsv−e

+2

∫

Ŵ̃v−e
q,r

exv−e
3

2
∑

j=1

(

∂u

∂τv−e
j

)

Av−e

∂

∂sv−e
j

((

∂u

∂νv−e

)

Av−e

)

dσ v−e. (3.59)

3.4 Estimates for second derivatives in edge neighbourhoods

Consider the edge e whose end points are v and v′. Figure 1c shows the edge neighbour-

hood �e of the edge e. We impose a geometrical mesh on �e shown in figure 5 as in [5,

13]. Let �e
u denote an element

�e
u = {x : re

j < r < re
j+1, θe

k < θ < θe
k+1, Ze

m < x3 < Ze
m+1} (3.60)

in the geometrical mesh. Let (xe
1, x

e
2, x

e
3) be the modified coordinates introduced in the

edge neighbourhood �e (see table 1). Let �̃e
u denote the image of �e

u in xe coordinate.

Now

∇xu = Re∇xeu, (3.61)

where

Re =

⎡

⎣

e−τ cos θ −e−τ sin θ 0

e−τ sin θ e−τ cos θ 0

0 0 1

⎤

⎦ . (3.62)

Let f denote a vector field. Then

divx(f ) = e−2τ divxe (e2τ (Re)T f ) . (3.63)
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Figure 5. Geometrical mesh imposed on �e.

We need to evaluate
∫

�e
u

(ρ2 sin2 φ)|Lu(x)|2dx =
∫

�e
u

r2|Lu(x)|2dx =
∫

�̃e
u

|e2τLu(x)|2dxe.

(3.64)

Let Meu(xe) = e2τMu(x). Then

Meu(xe) = divxv (e2τ (Re)T ARe∇xeu) = divxe

(

Ae∇xeu
)

. (3.65)

Here,

Ae = (Se)T ASe and Se =

⎡

⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 eτ

⎤

⎦ . (3.66)

Hence,

e2τLu(x) = divxe

(

Ae∇xeu
)

+
3
∑

i=1

b̂e
i uxe

i
+ ĉeu . (3.67)

Note that

‖b̂e‖0,∞,�̃e = O(eτ ) and ‖ĉe‖0,∞,�̃e = O(e2τ ). (3.68)

Now the matrix Ae becomes singular as the element �e
u approaches the edge e. To over-

come the singular nature of Ae as r → 0, we introduce a set of local coordinates z in �̃e
u

defined by

z1 = xe
1,

z2 = xe
2,

z3 =
xe

3

re
j+1

. (3.69)

Then �̃e
u is mapped onto the hexahedron �̂e

u such that the length of the z3 side becomes

large as �e
u approaches the edge of the domain �. Now it is easy to see that

Meu(xe) = Mzu(z) = divz

(

Az∇zu
)

. (3.70)
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Here,

Az = (T z)T AT z, T z =

⎡

⎢

⎣

cos θ sin θ 0

− sin θ cos θ 0

0 0 eτ

re
j+1

⎤

⎥

⎦
. (3.71)

Clearly, there exist positive constants μ0 and μ1 such that

μ0I ≤ Az ≤ μ1I. (3.72)

Moreover, there exists a constant C such that az
i,j and its derivatives with respect to z are

uniformly bounded in �̂e
u. Here, az

i,j denotes the elements of the matrix Az. Hence, we

obtain

Lemma 3.7. Let we(xe
1) be a smooth,positive weight function such that we(xe

1)= 1 for all

xe
1 ≥ τ e

1 = ln(re
1) and

∫ τ e
1

−∞ we(xe
1) dxe

1 = 1. Then there exists a positive constant Ce such

that

μ2
0

2

∫

�̃e
u

⎧

⎨

⎩

2
∑

i,j=1

(

∂2u

∂xe
i ∂xe

j

)2

+ e2τ

2
∑

i=1

(

∂2u

∂xe
i ∂xe

3

)2

+ e4τ

(

∂2u

∂xe
3

2

)2
⎫

⎬

⎭

dxe

≤
∫

�̃e
u

|Leu(xe)|2 dxe −
{

∑

k

∮

∂Ŵ̃e
u,k

(

∂u

∂ne

)

Ae

(

∂u

∂νe

)

Ae

dse

− 2
∑

k

∫

Ŵ̃e
u,k

2
∑

l=1

(

∂u

∂τe
l

)

Ae

∂

∂se
l

((

∂u

∂νe

)

Ae

}

dσ e

)

+Ce

{

∫

�̃e
u

(

2
∑

i=1

(

∂u

∂xe
i

)2

+ e2τ

(

∂u

∂xe
3

)2
)

dxe

+
∫

�̃e
u

u2we(xe
1)dxe

}

(3.73)

holds for all �e
u ⊆ �e.

Proof. Since the spectral element function u(xe) is a function of only xe
3 if �e

u ⊆ {x :
r < re

1}, the result follows. Here, we have used the fact that the second fundamental form

is zero. �

Finally, we state the following results and refer to Appendix B of [13] for proofs.

Lemma 3.8. Let Ŵe
u,k = Ŵv−e

n,l . Then

∮

∂Ŵ̃v−e
n,l

exv−e
3

(

∂u

∂nv−e

)

Av−e

(

∂u

∂νv−e

)

Av−e

dsv−e

−2

2
∑

j=1

∫

Ŵ̃v−e
n,l

exv−e
3

(

∂u

∂τv−e
j

)

Av−e

∂

∂sv−e
j

((

∂u

∂νv−e

)

Av−e

)

dσ v−e
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= −
∮

∂Ŵ̃e
u,k

(

∂u

∂ne

)

Ae

(

∂u

∂νe

)

Ae

dse

+ 2

2
∑

j=1

∫

Ŵ̃e
u,k

(

∂u

∂τe
j

)

Ae

∂

∂se
j

((

∂u

∂νe

)

Ae

)

dσ e. (3.74)

Lemma 3.9. Let Ŵe
u,k = Ŵr

l,j . Then
∮

∂Ŵ̃e
u,k

(

∂u

∂νe

)

Ae

(

∂u

∂ne

)

Ae

se = −ρ2
v sin2(φv)

∮

∂Ŵr
l,j

(

∂u

∂n

)

A

(

∂u

∂ν

)

A

ds

(3.75)

and

2
∑

m=1

∫

Ŵ̃e
u,k

(

∂u

∂τe
m

)

Ae

∂

∂se
m

(

∂u

∂νe

)

Ae

dσ e

= −ρ2
v sin2(φv)

2
∑

m=1

∫

Ŵr
l,j

(

∂u

∂τm

)

A

∂

∂sm

(

∂u

∂ν

)

A

dσ. (3.76)

4. Estimates for lower order derivatives

The estimates for the lower order derivatives are obtained as in [2].

Lemma 4.1. We can define a set of corrections {ηr
l }l=1,...,Nr , {ηv

l }l=1,...,Nv for v ∈ V,

{ηv−e
l }l=1,...,Nv−e for v − e ∈ V − E and {ηe

l }l=1,...,Ne for e ∈ E such that the corrected

spectral element function p defined as

pr
l = ur

l + ηr
l , f or l = 1, . . . , Nr ,

pv
l = uv

l + ηv
l , f or l = 1, . . . , Nv and v ∈ V,

pv−e
l = uv−e

l + ηv−e
l , f or l = 1, . . . , Nv−e and v − e ∈ V − E,

pe
l = ue

l + ηe
l , f or l = 1, . . . , Ne and e ∈ E,

is conforming and p ∈ H 1
0 (�) i.e. p ∈ H 1(�) and p vanishes on Ŵ[0]. Define

U
N,W
(1) ({Fs}) =

Nr
∑

l=1

∥

∥sr
l (x1, x2, x3)

∥

∥

2

1,�r
l
+
∑

v∈V

Nv
∑

l=1

∥

∥

∥
sv
l (xv

1 , xv
2 , xv

3 )exv
3 /2
∥

∥

∥

2

1,�̃v
l

+
∑

v−e∈V−E

⎛

⎜

⎜

⎜

⎝

Nv−e
∑

l=1

μ(�̃v−e
l )<∞

∫

�̃v−e
l

exv−e
3

⎛

⎝

2
∑

i=1

(

∂sv−e
l

∂xv−e
i

)2

+ sin2 φ

(

∂sv−e
l

∂xv−e
3

)2

+ (sv−e
l )2

⎞

⎠ dxv−e
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+
Nv−e
∑

l=1

μ(�̃v−e
l )=∞

∫

�̃v−e
l

exv−e
3 (sv−e

l )2 wv−e(xv−e) dxv−e

⎞

⎟

⎟

⎟

⎠

+
∑

e∈E

⎛

⎜

⎜

⎜

⎝

Ne
∑

l=1

μ(�̃e
l )<∞

∫

�̃e
l

(

2
∑

i=1

(

∂se
l

∂xe
i

)2

+e2τ

(

∂se
l

∂xe
3

)2

+(se
l )

2

)

dxe

+
Ne
∑

l=1

μ(�̃e
l )=∞

∫

�̃e
l

(se
l )

2 we(xe
1) dxe

⎞

⎟

⎟

⎟

⎠

. (4.1)

Then the estimate

U
N,W
(1) ({Fη}) ≤ CWVN,W ({Fu}) (4.2)

holds. Here, CW is a constant, if the spectral element functions are conforming on the

wirebasket WB of the elements, otherwise CW = C(ln W), where C is a constant.

Proof. The proof is provided in Appendix C of [13]. �

Using Lemma 4.1 we obtain the following result.

Theorem 4.1. The following estimate for the spectral element functions holds:

U
N,W
(1) ({Fu}) ≤ KN,WVN,W ({Fu}). (4.3)

Here, KN,W = CN4, when the boundary conditions are mixed and KN,W = C(ln W)2

when the boundary conditions are Dirichlet. If the spectral element functions vanish on

the wirebasket WB of the elements then KN,W = C(ln W)2, where C is a constant.

Proof. The proof is provided in Appendix C of [13]. �

5. Estimates for terms in the interior

5.1 Estimates for terms in the interior of �r

Lemma 5.1. Let �r
m and �r

p be elements in the regular region �r of � and Ŵr
m,i be a face

of �r
m and Ŵr

p,j be a face of �r
p such that Ŵr

m,i = Ŵr
p,j . Then for any ǫ > 0 there exists a

constant Cǫ such that for W large enough,
∣

∣

∣

∣

∣

∫

∂Ŵr
m,i

((

∂ur
m

∂ν

)

A

(

∂ur
m

∂n

)

A

−
(

∂ur
p

∂ν

)

A

(

∂ur
p

∂n

)

A

)

ds

∣

∣

∣

∣

∣

≤ Cǫ(lnW)2
3
∑

k=1

∥

∥[uxk
]
∥

∥

2

1/2,Ŵr
m,i

+ǫ
∑

1≤|α|≤2

(‖Dα
x ur

m‖2
0,�r

m
+‖Dα

x ur
p‖2

0,�r
p
). (5.1)
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Proof. The proof is similar to the proof of Lemma 3.3 in [7] and we refer to Appendix D

of [13] for details.

Lemma 5.2. Let �r
m and �r

p be elements in the regular region �r of � and Ŵr
m,i be a face

of �r
m and Ŵr

p,j be a face of �r
p such that Ŵr

m,i = Ŵr
p,j . Then for any ǫ > 0, there exists

a constant Cǫ such that for W large enough,
∣

∣

∣

∣

∣

∣

2
∑

j=1

(

∫

Ŵr
m,i

(

∂ur
m

∂τj

)

A

∂

∂sj

(

∂ur
m

∂ν

)

A

dσ−
∫

Ŵr
p,j

(

∂ur
p

∂τj

)

A

∂

∂sj

(

∂ur
p

∂ν

)

A

dσ

)

∣

∣

∣

∣

∣

∣

≤Cǫ(lnW)2
3
∑

k=1

∥

∥[uxk
]
∥

∥

2

1/2,Ŵr
p,j

+ǫ
∑

1≤|α|≤2

(‖Dα
x ur

m‖2
0,�r

m
+‖Dα

x ur
p‖2

0,�r
p
). (5.2)

Proof. The proof is similar to the proof of Lemma 3.3 in [7] and we refer to Appendix D

of [13]. �

5.2 Estimates for terms in the interior of �e

Lemma 5.3. Let �e
m and �e

p be elements in the edge neighbourhood �e of � and Ŵe
m,i be

a face of �e
m and Ŵe

p,j be a face of �e
p such that Ŵe

m,i = Ŵe
p,j and μ(Ŵ̃e

m,i) < ∞. Then

for any ǫ > 0, there exists a constant Cǫ such that for W large enough
∣

∣

∣

∣

∣

∮

∂Ŵ̃e
m,i

((

∂ue
m

∂ne

)

Ae

(

∂ue
m

∂νe
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Ae

−
(

∂ue
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∂ne
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Ae

(

∂ue
p

∂νe

)

Ae

)

dse

∣

∣

∣

∣

∣

≤ Cǫ(ln W)2(|||[uxe
1
]|||2

Ŵ̃e
m,i

+ |||[uxe
2
]|||2

Ŵ̃e
m,i

+|||Ge
m,i[uxe

3
]|||2

Ŵ̃e
m,i

) + ǫ
∑

k=m,p

⎛

⎝

∫

�̃e
k

⎛

⎝

∑

i,j=1,2

(

∂2ue
k

∂xe
i ∂xe

j

)2

+e2τ

2
∑

i=1

(

∂2ue
k

∂xe
k∂xe

3

)2

+ e4τ

(

∂2ue
k

(

∂xe
3

)2

)2

+
2
∑

i=1

(

∂ue
k

∂xe
i

)2

+e2τ

(

∂ue
k

∂xe
3

)2
⎞

⎠dxe

⎞

⎠ . (5.3a)

Here, Cǫ is a constant which depend on ǫ but is uniform for all Ŵ̃e
m,i ⊆ �̃e and Ge

m,i =
supxe∈Ŵ̃e

m,i
(eτ ). If μ(Ŵ̃e

m,i) = ∞, then for any ǫ > 0, for W,N large enough,

∣

∣

∣

∣

∣

∮

∂Ŵ̃e
m,i

((

∂ue
m

∂ne

)

Ae

(

∂ue
m

∂νe

)

Ae

−
(

∂ue
p

∂ne

)

Ae

(

∂ue
p

∂νe

)

Ae

)

dse

∣

∣

∣

∣

∣

≤ ǫ

(

∫

�̃e
m

(ue
m)2we(xe

1)dxe +
∫

�̃e
m

(ue
m)2we(xe

1)dxe

)

(5.3b)

provided W = O(eNα
) with α < 1/2.
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The proof is provided in Appendix D of [13].

Lemma 5.4. Let �e
m and �e

p be elements in the edge neighbourhood �e of � and Ŵe
m,i be

a face of �e
m and Ŵe

p,j be a face of �e
p such that Ŵe

m,i = Ŵe
p,j and μ(Ŵ̃e

m,i) < ∞. Then

for any ǫ > 0, there exists a constant Cǫ such that for W large enough,
∣

∣

∣

∣

∣

∫

Ŵ̃e
m,i

2
∑
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(

∂ue
m

∂τe
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∂

∂se
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∂ue
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∂νe
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Ae
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−
(

∂ue
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∂τe
l

)

Ae

∂

∂se
l

((

∂ue
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∂νe

)

Ae

)

)

dσ e

∣

∣

∣

∣

∣

≤Cǫ(ln W)2

(

|||[uxe
1
]|||2

Ŵ̃e
m,i

+ |||[uxe
2
]|||2

Ŵ̃e
m,i

+ |||Ge
m,i[uxe

3
]|||2

Ŵ̃e
m,i

)

+ǫ
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k=m,p

⎛

⎝

∫

�̃e
k

⎛

⎝
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i,j=1,2

(

∂2ue
k

∂xe
i ∂xe

j

)2

+ e2τ

2
∑

i=1

(

∂2ue
k

∂xe
i ∂xe

3

)2

+e4τ

(

∂2ue
k

(

∂xe
3

)2

)2

+
2
∑

i=1

(

∂ue
k

∂xe
i

)2

+ e2τ

(

∂ue
k

∂xe
3

)2
⎞

⎠ dxe

⎞

⎠ . (5.4a)

If μ(Ŵ̃e
m,i) = ∞, then for any ǫ > 0, for W,N large enough,

∣

∣

∣

∣

∣

∫

Ŵ̃e
m,i

2
∑

l=1

(

(

∂ue
m

∂τe
l

)

Ae

∂

∂se
l

((

∂ue
m

∂νe

)

Ae

)

−
(

∂ue
p

∂τe
l

)

Ae

∂

∂se
l

((

∂ue
p

∂νe

)

Ae

)

)

dσ e

∣

∣

∣

∣

∣

≤ ǫ

(

∫

�̃e
m

(ue
m)2we(xe

1) dxe +
∫

�̃e
m

(ue
m)2we(xe

1)dxe

)

(5.4b)

provided W = O(eNα
) with α < 1/2.

The proof is provided in Appendix D of [13].

We now state estimates for terms in the interior of vertex neighbourhoods and vertex-

edge neighbourhoods, the proofs of which are similar to those for Lemmas 5.1 to 5.4.

5.3 Estimates for terms in the interior of �v

Lemma 5.5. Let �v
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Here, Rv
m,i = supxv∈Ŵ̃v

m,i
(exv

3 ). If μ(Ŵ̃v
m,i) = ∞, then the integral in the right-hand side

of (5.5) is zero.

Lemma 5.6. Let �v
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If μ(Ŵ̃v
m,i) = ∞, then the integral in the right-hand side of (5.6) is zero.

5.4 Estimates for terms in the interior of �v−e

Lemma 5.7. Let �v−e
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Here, Cǫ is a constant which depend on ǫ but is uniform for all Ŵ̃v−e
m,i ⊆ �̃v−e, and

Ev−e
m,i = supxv−e∈Ŵ̃v−e

m,i
(sin φ).
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If μ(Ŵ̃e
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for W,N large enough provided W = O(eNα
) with α < 1/2.

Lemma 5.8. Let �v−e
m and �v−e
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If μ(Ŵ̃e
m,i) = ∞, then for any ǫ > 0,
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for W,N large enough, provided W = O(eNα
) with α < 1/2.

6. Estimates for terms on the boundary

6.1 Estimates for terms on the boundary of �r

To simplify the presentation we assume the face constituting part of the boundary of � lies

on the x2−x3 plane. The contributions from the boundary which have to be estimated will

then consist of terms from the regular region, the vertex region, the vertex-edge region and

the edge region as shown in figure 6. We first examine how to estimate the terms on the

boundary of � for the regular region, and terms from the other regions can be estimated

similarly.

Lemma 6.1. Let Ŵr
m,j be part of the boundary of the element �r

m which lies on the x2 −x3

axis. Define the contributions from Ŵr
m,j by
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Figure 6. Boundary terms.
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If Dirichlet boundary conditions are imposed on Ŵr
m,j , then for any ǫ > 0, there exist

constants Cǫ and Kǫ such that
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If Neumann boundary conditions are imposed on Ŵr
m,j , then for any ǫ > 0 there exists a

constant Cǫ such that

|(BT )rm,j | ≤ Cǫ(ln W)2
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Proof. The proof is provided in Appendix D of [13]. �

6.2 Estimates for terms on the boundary of �e

Lemma 6.2. Let Ŵe
m,j be part of the boundary of the element �e
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axis. Define the contributions from Ŵe
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If Dirichlet boundary conditions are imposed on Ŵe
m,j and μ(Ŵ̃e

m,j ) < ∞, then for any

ǫ > 0, there exists constants Cǫ,Kǫ such that for W large enough,
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If Neumann boundary conditions are imposed on Ŵe
m,j and μ(Ŵ̃e

m,j ) < ∞, then for any

ǫ > 0 there exists a constant Cǫ such that

|(BT )em,j |≤ Cǫ(ln W)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∂u

∂νe

)

Ae

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Ŵ̃e
m,j

+ ǫ

⎛

⎝

∫

�̃e
m

⎛

⎝

2
∑

i,j=1

(

∂2ue
m

∂xe
i ∂xe

j

)2

+e2τ

2
∑

i=1

(

∂2ue
m

∂xe
i ∂xe

3

)2

+ e4τ

(

∂2ue
m

(∂xe
3)

2

)2

+
2
∑

i=1

(

∂ue
m

∂xe
i

)2

+e2τ

(

∂ue
m

∂xe
3

)2
)

dxe

)

. (6.6)

If μ(Ŵ̃e
m,j ) = ∞, then for any ǫ > 0 for N,W large enough,

|(BT )em,j | ≤ ǫ
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provided W = O(eNα
) for α < 1/2.

Proof. The proof is provided in Appendix D of [13]. �

We now state estimates for terms on the boundary of vertex neighbourhoods and vertex-

edge neighbourhoods, the proofs of which are similar to those for Lemmas 6.1 and 6.2.

6.3 Estimates for terms on the boundary of �v

Lemma 6.3. Let Ŵv
m,j be part of the boundary of the element �v
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If Dirichlet boundary conditions are imposed on Ŵv
m,j and μ(Ŵ̃v
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If Neumann boundary conditions are imposed on Ŵv
m,j , then
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If μ(Ŵ̃v
m,j ) = ∞, then (BT )vm,j = 0.
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6.4 Estimates for terms on the boundary of �v−e

Lemma 6.4. Let Ŵv−e
m,j be part of the boundary of the element �v−e
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If Dirichlet boundary conditions are imposed on Ŵv−e
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If Neumann boundary conditions are imposed on Ŵv−e
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m,j | ≤ Cǫ(ln W)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∂u

∂νv−e

)

Av−e

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Ŵ̃v−e
m,j

+ǫ

⎛

⎝

∫

�̃v−e
m

⎛

⎝

2
∑

i,j=1

(

∂2uv−e
m

∂xv−e
i ∂xv−e

j

)2

(6.12)

+ sin2 φ

2
∑

i=1

(

∂2uv−e
m

∂xv−e
i ∂xv−e

3

)2

+ sin4 φ

(

∂2uv−e
m

(∂xv−e
3 )2

)2

+
2
∑

i=1

(

∂uv−e
m

∂xv−e
i

)2

(6.13)

+ sin2 φ

(

∂uv−e
m

∂xv−e
3

)2
⎞

⎠ dxv−e

⎞

⎠ . (6.14)
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If μ(Ŵ̃v−e
m,j ) = ∞, then for any ǫ > 0, for N,W large enough,

|(BT )v−e
m,j | ≤ ǫ

∫

�̃v−e
m

(uv−e
m )2wv−e(xv−e

1 )dxv−e

provided W = O(eNα
) for α < 1/2.

7. Proof of the stability theorem

We are now in a position to prove the stability estimates of [5]. We cite these again.

Theorem 7.1 (Theorem 4.1 of [5]). Consider the elliptic boundary value problem (2.1).

Suppose the boundary conditions are Dirichlet. Then

UN,W ({Fu}) ≤ C(ln W)2VN,W ({Fu})

provided W = O(eNα
) for α < 1/2.

Theorem 7.2 (Theorem 4.2 of [5]). If the boundary conditions for the elliptic boundary

value problem (2.1) are mixed, then

UN,W ({Fu}) ≤ CN4VN,W ({Fu})

provided W = O(eNα
) for α < 1/2.

Theorem 7.3 (Theorem 4.3 of [5]). If the spectral element functions ({Fu}) are con-

forming on the wire basket WB and vanish on WB, then

UN,W ({Fu}) ≤ C(ln W)2VN,W ({Fu}) (7.1)

provided W = O(eNα
) for α < 1/2.

Proof. Define

U
N,W
(2) ({Fu}) =

Nr
∑

l=1

∫

�r
l

3
∑

i,j=1

(

∂2ur
l

∂xi∂xj

)2

dx

+
∑

v∈V

Nv
∑

l=1,

μ(�̃v
l )<∞

∫

�̃v
l

exv
3

3
∑

i,j=1

(

∂2uv
l

∂xv
i ∂xv

j

)2

dxv

+
∑

v−e∈V−E

Nv−e
∑

l=1,

μ(�̃v−e
l )<∞

∫

�̃v−e
l

exv−e
3

⎛

⎝

∑

i,j=1,2

(

∂2uv−e
l

∂xv−e
i ∂xv−e

j

)2

+ sin2 φ

2
∑

i=1

(

∂2uv−e
l

∂xv−e
i ∂xv−e

3

)2

+ sin4 φ

(

∂2uv−e
l

(∂xv−e
3 )2

)2
⎞

⎠ dxv−e
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+
∑

e∈E

Ne
∑

l=1,

μ(�̃e
l )<∞

∫

�̃e
l

⎛

⎝

∑

i,j=1,2

(

∂2ue
l

∂xe
i ∂xe

j

)2

+e2τ

2
∑

i=1

(

∂2ue
l

∂xe
i ∂xe

3

)2

+e4τ

(

∂2ue
l

(

∂xe
3

)2

)2
⎞

⎠ dxe.

Then combining the results in sections 3, 4, 5 and 6, we obtain that for any ǫ > 0, there

exist constants Cǫ and Kǫ such that

U
N,W
(2) ({Fu}) ≤ Cǫ(ln W)2VN,W ({Fu}) + ǫ U

N,W
(2) ({Fu})

+Kǫ U
N,W
(1) ({Fu}. (7.2)

Here, U
N,W
(1) ({Fu}) is as defined in (4.1). Hence, choosing ǫ small enough, we obtain

U
N,W
(2) ({Fu}) ≤ 2(Cǫ(ln W)2VN,W ({Fu}) + Kǫ U

N,W
(1) ({Fu})). (7.3)

At the same time using Theorem 4.1, we have

U
N,W
(1) ({Fu}) ≤ KN,WVN,W ({Fu}). (7.4)

Moreover,

UN,W ({Fu}) = U
N,W
(1) ({Fu}) + U

N,W
(2) ({Fu}). (7.5)

Combining (7.3), (7.4) and (7.5) the result follows. �

We have now established our main stability estimate theorem which will be the foundation

stone for designing an efficient and exponentially accurate numerical scheme, parallel

preconditioner and error estimates for elliptic boundary value problems on polyhedral

domains containing singularities in the framework of the h-p spectral element method in

the forthcoming work.
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