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Abstract. This is the first of a series of papers devoted to the study of h-p spec-
tral element methods for solving three dimensional elliptic boundary value problems
on non-smooth domains using parallel computers. In three dimensions there are three
different types of singularities namely; the vertex, the edge and the vertex-edge sin-
gularities. In addition, the solution is anisotropic in the neighbourhoods of the edges
and vertex-edges. To overcome the singularities which arise in the neighbourhoods
of vertices, vertex-edges and edges, we use local systems of coordinates. These local
coordinates are modified versions of spherical and cylindrical coordinate systems in
their respective neighbourhoods. Away from these neighbourhoods standard Cartesian
coordinates are used. In each of these neighbourhoods we use a geometrical mesh
which becomes finer near the corners and edges. The geometrical mesh becomes a
quasi-uniform mesh in the new system of coordinates. We then derive differentiability
estimates in these new set of variables and state our main stability estimate theorem
using a non-conforming h-p spectral element method whose proof is given in a separate
paper.
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1. Introduction

Finite element methods (FEM) are one of the most widely used techniques for solving

problems in structural mechanics. There are three versions of the FEM namely; the h
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version, the p version and the h-p version. The h version uses polynomials of a fixed

degree and the mesh size h is reduced to increase accuracy. In the p version, a fixed

mesh is used and polynomial degree p is raised to increase accuracy. The h-p version

combines the approaches of the h and p versions. It simultaneously refines the mesh

and increases the polynomial degree to solve problems on non-smooth domains and

achieve optimal convergence. The h-p version of Spectral element method (SEM) employ

global polynomials of higher degree in order to recover the so-called spectral/exponential

convergence.

A method for obtaining a numerical solution to exponential accuracy for elliptic prob-

lems on non-smooth domains in R
2 was first proposed by Babuška and Guo [7, 8] in the

frame work of the finite element method. In [18, 19], an exponentially accurate h-p spec-

tral element method was proposed for two dimensional elliptic problems on non-smooth

domains with analytic coefficients posed on curvilinear polygons with piecewise analytic

boundary. The method is able to resolve the singularities which arise at the corners using

a geometrical mesh as proposed by Babuška and Guo.

In contrast to the two dimensional case, the character of the singularities in three

dimensions is much more complex not only because of higher dimension but also due to

the varied nature of the singularities which are the vertex singularity, the edge singular-

ity and the vertex-edge singularity. Thus, we have to distinguish between the behaviour

of the solution in the neighbourhoods of the vertices, edges and vertex-edges. Unlike

the two dimensional case where weighted isotropic spaces are used, in three dimensions

we have to utilize weighted anisotropic spaces because the solution is smooth along the

edges but singular in the direction perpendicular to the edges [4]. Behaviour of the solu-

tion is even more complex at the vertices where the edges are joined together and the

solution is not smooth along the edges too. Guo [24] introduced the relevant anisotropic

weighted spaces to study elliptic problems on non-smooth polyhedral domains. Since

then the proof that the regularity of solutions of elliptic boundary value problems on

non-smooth domains is described by these sapces remained an open problem for a long

time.

To prove the analytic regularity for these problems, Babuška and Guo [2, 3] started

the study of analytic regularity of elliptic problems on non-smooth domains in R
3 in

the frame work of weighted Sobolev spaces with Cauchy type control of all derivatives

in the so-called countably normed spaces in the neighbourhoods of vertices, edges and

vertex-edges in spherical, cylindrical and Cartesian coordinates. However, proving these

regularity results is quite technical and sometimes difficult to follow as can be seen in

the papers by Babuška and Guo [2–4, 24]. We remark that these regularity estimates on

polyhedral domains were assumed to be true in the error analysis of h-p FEM in [24, 29]

and in the error analysis of h-p SEM in [1].

Recently, Costabel and coworkers settled the proof of the analytic regularity estimates

in [11] by filling the gap which was left over by Babuška and Guo. They combined a priori

basic regularity results of low order for elliptic problems on polyhedral domains [14, 27]

with the regularity shift estimates of Cauchy type to complete the proof using a nested

open set technique and dyadic partition technique near corners [11–14]. The techniques

employed in [11–13] extends to the general elliptic problems having lower order terms and

variable coefficients examined in this paper (see [11] and references therein). It follows

from [11, 12] that the solution to the problem under consideration in this paper belongs to

an analytic class which is defined using anisotropic weighted Sobolev spaces introduced

in [2, 3].
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The h-p version of the finite element method for solving three dimensional elliptic

problems on non-smooth domains with exponential accuracy was proposed by Guo in [21,

24]. To overcome the singularities which arise along vertices and edges they used geo-

metric meshes which are defined in neighbourhoods of vertices, edges and vertex-edges.

We refer to [4–6, 9, 10, 22–24] for a detailed discussion of the h-p FEM and [23] on the

use of auxiliary mappings for the finite element solutions of three dimensional elliptic

problems on non-smooth domains.

An efficient and exponentially accurate h-p spectral element method to solve general

elliptic problems on non-smooth domains in three dimensions is now described. We also

use a geometric mesh in the neighbourhoods of vertices, edges and vertex-edges and in

each of these neighbourhoods we switch to a modified system of local coordinates using

auxiliary mappings and this enables us to obtain the solution with exponential accuracy.

These local coordinates are modified versions of the standard spherical and cylindrical

coordinate systems in vertex and edge neighbourhoods respectively and a hybrid com-

bination of spherical and cylindrical coordinates in vertex-edge neighbourhoods. The

geometric mesh becomes geometrically fine in these neighbourhoods and in the new set

of variables in these neighbourhoods the geometric mesh is mapped to a quasi uniform

mesh. Hence Sobolev’s embedding theorems and the trace theorems apply for spectral

element functions defined on mesh elements in the new system of variables with a uni-

form constant. This new system of coordinates in two dimensions was first proposed by

Kondratiev [25] and we shall refer to them as modified system of coordinates. Away from

the neighbourhoods of vertices, edges and vertex-edges, we retain the standard Cartesian

coordinate system (x1, x2, x3) in the regular region of the polyhedron.

We now seek a solution to elliptic BVP’s as in [18, 19, 30–32] which minimizes the

sum of a weighted squared norm of the residuals in the partial differential equation and a

fractional Sobolev norm of the residuals in the boundary conditions and enforce continuity

across inter element boundaries by adding a term which measures the sum of the squares

of the jump in the function and its derivatives at inter element boundaries in appropriate

Sobolev norms to the functional being minimized. Here we examine the non-conforming

version of the method. The case when the spectral element functions are conforming will

be examined in future work.

This series of papers is devoted to the study of regularity theory and implementation

of the h-p spectral element method for three dimensional elliptic problems on non-

smooth domains with analytic coefficients and piecewise analytic boundary data using

parallel computers. The first paper deals with the regularity of the solution in the neigh-

bourhoods of vertices, edges and vertex-edges and the stability theorem. The second

paper is more technical in nature and addresses proof of the stability theorem [16]. The

numerical scheme, error estimates, construction of preconditioners on regular as well as

singular regions of the polyhedron and the solution techniques are discussed in the third

paper. Theoretical results have been validated by computational experiments indepen-

dently in [17]. We mention here that these papers are based on the thesis work of one of

the authors and we refer to [1] for complete details.

The organization of this paper is as follows. In §2, we introduce the problem under

consideration. We define various neighbourhoods of vertices, edges and vertex-edges and

recall the function spaces in these neighbourhoods, as defined in [2], which will be needed

in the sequel. In §3 we drive differentiability (regularity) estimates in various neighbour-

hoods. In §4, we impose a geometrical mesh on each of these neighbourhoods, define

the spectral element functions on these elements and give construction of the stability
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estimate (without proof) which is the main result of the paper. Section 5 gives concluding

remarks.

2. Preliminaries and notations

Let � denote a polyhedron in R3, as shown in figure 1. We shall denote the boundary of

� by ∂�. Let Ŵi , i ∈ I = {1, 2, . . . , I } be the faces of the polyhedron. Let D be a subset

of I and N = I \ D. We impose Dirichlet boundary conditions on the faces Ŵi , i ∈ D

and Neumann boundary conditions on the faces Ŵj , j ∈ N . Further, let ∂� = Ŵ[0] ∪Ŵ[1],

Ŵ[0] =
⋃

i∈D Ŵ̄i and Ŵ[1] =
⋃

i∈N Ŵ̄i .

We consider an elliptic boundary value problem posed on � with mixed Neumann and

Dirichlet boundary conditions:

Lw = F in �,

w = g[0] for x ∈ Ŵ[0],(
∂w

∂n

)

A

= g[1] for x ∈ Ŵ[1] , (2.1)

where n denotes the outward normal and
(

∂w
∂n

)
A

is the usual conormal derivative.

It is assumed that the differential operator

Lw(x) =

3∑

i,j=1

−(aijwxj
)xi

+

3∑

i=1

biwxi
+ cw (2.2)

is a strongly elliptic differential operator which satisfies the Lax–Milgram conditions.

Moreover, A = aij = aj i for all i, j and the coefficients of the differential operator are

analytic. The data F , g[0] and g[1] are analytic on each open face and g[0] is continuous

on
⋃

i∈DŴ̄i .

2.1 The neighbourhoods of vertices, edges and vertex-edges

Let Ŵi , i ∈ I = {1, 2, . . . , I } be the faces (open), Sj , j ∈ J = {1, 2, . . . , J } be the edges

and Ak , k ∈ K = {1, 2, . . . , K} be the vertices of the polyhedron. We shall also denote

an edge by e, where e ∈ E = {S1, S2, . . . , SJ }, the set of edges, and a vertex by v where

Figure 1. Polyhedral domain �.
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v ∈ V = {A1, A2, . . . , AK }, the set of vertices. Let Bρv (v) = {x : dist (x, v) < ρv}. For

every vertex v, ρv is chosen so small that Bρv (v) ∩ Bρv′ (v
′) = ∅ if the vertices v and v′

are distinct.

Now consider a vertex v which has nv edges passing through it (figure 2). We shall let

x3 axis denote one of these edges. Consider first the edge e which coincides with the x3

axis. Let φ denote the angle which x = (x1, x2, x3) makes with the x3 axis.

Let

Vρv,φv (v, e) = {x ∈ � : 0 < dist(x, v) < ρv, 0 < φ < φv},

where φv is a constant. Let us choose φv sufficiently small so that

Vρv,φv (v, e′)
⋂

Vρv,φv (v, e′′) = ∅,

where e′ and e′′ are distinct edges which have v as a common vertex. Now we define �v ,

the vertex neighbourhood of the vertex v. Let Ev denote the subset of E , the set of edges,

such that Ev = {e ∈ E : v is a vertex of e}. Then

�v =

(
Bρv (v)

∖⋃

e∈Ev

Vρv,φv (v, e)

)⋂
� .

Here, ρv and φv are chosen so that ρv sin(φv) = Z, a constant for all v ∈ V , the set of

vertices. Let

ρ =
√

x1
2 + x2

2 + x3
2,

φ = cos−1(x3/ρ),

θ = tan−1(x2/x1),

Figure 2. Vertex neighbourhood �v .
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denote the usual spherical coordinates in �v . We now introduce a set of modified

coordinates in the vertex neighbourhood �v by

xv
1 = φ,

xv
2 = θ,

xv
3 = χ = ln ρ . (2.3)

Let e denote an edge, which for convenience we assume to coincide with the x3 axis as

before, whose end points are the vertices v and v′ as shown in figure 3.

Assume that the vertex v coincides with the origin. Let the length of the edge e be

le, δv = ρv cos(φv) and δv′ = ρv′ cos(φv′). Let (r, θ, x3) denote the usual cylindrical

coordinates

r =
√

x1
2 + x2

2,

θ = tan−1(x2/x1)

and �e the edge neighbourhood (figure 3)

�e = {x ∈ � : δv < x3 < le − δv′, 0 < r < Z} .

We introduce a set of modified system of coordinates in the edge neighbourhood �e by

xe
1 = τ = ln r,

xe
2 = θ,

xe
3 = x3. (2.4)

Figure 3. Edge neighbourhood �e.
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Figure 4. Vertex-edge neighbourhood �v−e.

Next, we define the vertex-edge neighbourhood �v−e, shown in figure 4, as follows

�v−e = {x ∈ � : 0 < φ < φv, 0 < x3 < δv = ρv cos φv} .

We thus obtain a set of vertex-edge neighbourhoods �v−e, where v − e ∈ V − E , the set

of vertex-edge neighbourhoods.

Let us introduce a set of modified coordinates in the vertex-edge neighbourhood �v−e,

xv−e
1 = ψ = ln(tan φ),

xv−e
2 = θ,

xv−e
3 = ζ = ln x3. (2.5)

2.2 Function spaces and dynamical weights associated with various neighbourhoods

We need to review a set of function spaces and weight functions as described in [2, 21].

By Hm(�), we denote the usual Sobolev space of integer order m ≥ 0 furnished with the

norm

||w||2Hm(�) =
∑

|α|≤m

||Dαw||2
L2(�)

,

where α = (α1, α2, α3), |α| = α1 + α2 + α3,D
αw = D

α1
x1

D
α2
x2

D
α3
x3

w = w
x

α1
1 x

α2
2 x

α3
3

is the distributional (weak) derivative of w. As usual H 0(�) = L2(�),H 1
0 (�) =
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{w ∈ L2(�) : Dw ∈ L2(�),w = 0 on ∂�}. A seminorm on Hm(�) is given

by

|w|2Hm(�) =
∑

|α|=m

||Dαw||2
L2(�)

.

Let ρ = ρ(x) = dist(x, v) for x ∈ �v and βv ∈ (0, 1/2). We introduce a weight

function

�
α,2
βv

(x) =

{
ρβv+|α|−2, for |α| ≥ 2

1, for |α| < 2

in the neighbourhood �v as in (2.3) of [2]. Let

H
k,2
βv

(�v) =

{
w| ‖w‖2

H
k,2
βv

(�v)
=
∑

|α|≤k

‖�
α,2
βv

Dαw‖2
L2(�v)

< ∞

}

and

B2
βv

(�v) = {w|w∈H
k,2
βv

(�v) for all k≥2 and ‖�
α,2
βv

Dαw‖L2(�v) ≤C dα α!}

respectively, denote the weighted Sobolev space and countably normed space defined on

�v as in [2].

Let r = r(x) = dist(x, e) for x ∈ �e and βe ∈ (0, 1). Define a weight function

�
α,2
βe

(x) =

{
rβe+|α′|−2, for |α′| = α1 + α2 ≥ 2

1, for |α| < 2

in the neighbourhood �e as in (2.1) of [2]. Let

H
k,2
βe

(�e) =

{
w| ‖w‖2

H
k,2
βe

(�e)
=
∑

|α|≤k

‖�
α,2
βe

Dαw‖2
L2(�e)

< ∞

}

and

B2
βe

(�e) = {w|w∈H
k,2
βe

(�e) for all k≥2 and‖�
α,2
βe

Dαw‖L2(�e) ≤ C dα α!}

respectively, denote the weighted Sobolev space and countably normed space defined on

�e as in [2].

Let ρ = ρ(x) and φ = φ(x) for x ∈ �v−e and βv−e = (βv, βe), βv ∈ (0, 1/2),

βe ∈ (0, 1). We introduce a weight function

�
α,2
βv−e

(x) =

⎧
⎨
⎩

ρβv+|α|−2(sin(φ))βe+|α′|−2, for |α′| = α1 + α2 ≥ 2

ρβv+|α|−2, for |α′| < 2 ≤ |α|

1, for |α| < 2

in the neighbourhood �v−e as in (2.2) of [2]. Let

H
k,2
βv−e

(�v−e) =

{
w| ‖w‖2

H
k,2
βv−e

(�v−e)
=
∑

|α|≤k

‖�
α,2
βv−e

Dαw‖2
L2(�v−e)

< ∞

}
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and

B2
βv−e

(�v−e) =
{
w| w ∈ H

k,2
βe

(�v−e) for all k ≥ 2 and

‖�
α,2
βv−e

Dαw ‖L2(�v−e) ≤ C dα α!
}

respectively, denote the weighted Sobolev space and countably normed space defined on

�v−e as in [2].

Let us recall that by C2
βv

(�v) we denote a countably normed space as described in [2,

21] which is the set of functions w(x) ∈ C0(�̄v) such that for all α, |α| ≥ 0,

|Dα
x (w(x) − w(v))| ≤ C dα α! ρ−(βv+|α|−1/2)(x). (2.6)

Here, �̄v denotes the closure of �v and w(v) denotes the value of w at the vertex v.

Next, we recall that by C2
βe

(�e), βe ∈ (0, 1) is denoted a countably normed space as

described in [2, 21] which is the set of functions w ∈ C0(�̄e) such that for |α| ≥ 0,

‖rβe+α1+α2−1Dα
x (w(x) − w(0, 0, x3))‖C0(�̄e) ≤ C dα α! (2.7)

and for k ≥ 0

∥∥∥∥
dk

(dx3)k
w(0, 0, x3)

∥∥∥∥
C0(�̄e∩{x: x1=x2=0})

≤ C dk k!, (2.8)

where �̄e denotes the closure of �e.

Finally, by C2
βv−e

(�v−e) is denoted a countably normed space which is the set of

functions w(x) ∈ C0(�̄v−e) such that

‖ρβv+|α|−1/2 (sin φ)βe+α1+α2−1 Dα
x (w(x)−w(0, 0, x3))‖C0(�̄v−e) ≤C dαα!

(2.9)

and
∣∣∣∣∣ |x3|

βv+k−1/2 dk

dxk
3

(w(0, 0, x3) − w(v))

∣∣∣∣∣
C0(�̄v−e∩{x:x1=x2=0})

≤ C dk k!

(2.10)

as described in [2, 21]. Here �̄v−e denotes the closure of �v−e.

Unless otherwise stated, as in Babuška and Guo [2, 3], we let w(xv), w(xv−e), w(xe)

denote w(x(xv)), w(x(xv−e)), w(x(xe)) respectively. The same notation is used for the

spectral element functions u(xv), u(xv−e), u(xe) etc. in the ensuing sections.

3. Differentiability estimates in modified coordinates

3.1 Differentiability estimates in modified coordinates in vertex neighbourhoods

Let wv = w(v), denote the value of w at the vertex v and let �̃v denote the image of

�v in xv coordinates. We can now state the differentiability estimates in these modified

coordinates in vertex neighbourhoods. The proof is based on the regularity results proved

by Babuška and Guo in [2]. These estimates are obtained when the differential operator
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is the Laplacian. However they are valid for the more general situation examined in this

paper.

PROPOSITION 3.1

There exists a constant βv ∈ (0, 1/2) such that for all 0 < ν ≤ ρv the estimate

∫

�̃v∩{xv : xv
3 ≤ ln(ν)}

∑

|α|≤m

exv
3 |Dα

xv
(w(xv) − wv)|

2 dxv ≤ C(dm m!)2 ν(1−2βv)

(3.1)

holds for all integers m ≥ 1. Here, C and d denote positive constants and dxv denotes a

volume element in xv coordinates.

Proof. By Theorem 3.19 of [2], for βv ∈ (0, 1/2), H
2,2
βv

(�v) is embedded in C0(�̄v)

and

‖w‖
C0(�̄v) ≤ C‖w‖

H
2,2
βv

(�v)
.

Here, C denotes the positive constant and �̄v the closure of �v . Hence, we can define

wv = w(v), the value of w at the vertex v and

|wv| ≤ C‖w‖
H

2,2
βv

(�v)
.

Let Dαw = wφα1θα2ρα3 . Here, α = (α1, α2, α3) and α′ = (α1, α2). Let

H
k,2
βv

(�v) =

{
w| ‖w‖2

H
k,2
βv

(�v)
=
∑

|α|≤k

‖�
α,2
βv

ρ−|α′|Dαw ‖2

L2(�̃v)
< ∞

}

and

B2
βv

(�v)={w|w∈H
k,2
βv

(�v) for all k≥2,‖�
α,2
βv

ρ−|α′|Dαw‖L2(�̃v) ≤Cdαα!}.

Then from Theorem 4.13 of [2], we have that w ∈ B2
βv

(�v) if and only if w ∈ B2
βv

(�v).

Hence,

∑

2≤|α|≤m

∫

�̃v

|ρβv−2ρα3wφα1θα2ρα3 |
2ρ2 sin φ dρ dφ dθ ≤ (Cdmm!)2. (3.2)

Define χ = ln ρ . Then

∂

∂χ
= ρ

∂

∂ρ
and

dρ

ρ
= dχ .

Now using (3.2) it can be shown that

∑

2≤|α|≤m

∫

�̃v

e(2βv−1)χ
∣∣wφα1θα2χα3

∣∣2 dχ dφ dθ ≤ (Cdmm!)2.
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Here, C and d denote generic constants. Hence,

∑

2≤|α|≤m

∫

�̃v∩{xv : χ≤ln ν}

|Dα
xvw|2dxv ≤ (Cdmm!)2 ν1−2βv . (3.3)

We now obtain estimates for 0 ≤ |α| ≤ 1. By Lemma 5.5 of [2], since w ∈ H
2,2
βv

(�v),

the estimate
∫

�v

ρ2(βv−2) |w − w(v)|2dx ≤ C‖u‖2

H
2,2
βv

(�v)

holds. Hence,
∫

�̃v

e(2βv−1)χ |w − wv|
2dχdφdθ ≤ (Cdmm!)2.

Thus, we conclude that
∫

�̃v∩{xv : χ≤ln ν}

|w − wv|
2dxv ≤ C(dmm!)2ν1−2βv . (3.4)

We know by Theorem 5.6 of [2] that B2
βv

(�v) ⊆ C2
βv

(�v). Now,

ρ∇xw = Qv∇xvw, where Qv = OvP v. (3.5)

Here, Ov is the orthogonal matrix

Ov =

⎡
⎣

cos φ cos θ − sin θ sin φ cos θ

cos φ sin θ cos θ sin φ sin θ

− sin φ 0 cos φ

⎤
⎦

and

P v =

⎡
⎣

1 0 0

0 1
sin φ

0

0 0 1

⎤
⎦ .

Now, in �v

φv < φ < π − φv.

Hence, from (2.6) and (3.5) we can conclude that

|∇xvw| ≤ Cρ−βv+1/2. (3.6)

Using (3.6), the estimate

∫

�̃v∩{xv : χ≤ln ν}

∑

|α|=1

|Dα
xvw|2dxv ≤ C

∫ ln ν

−∞

e(−2βv+1)χdχ ≤ Cν1−2βv (3.7)

follows. Combining (3.3), (3.4) and (3.7) we obtain the result. �
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3.2 Differentiability estimates in modified coordinates in edge neighbourhoods

Let �̃e denote the image of �e in xe coordinates. The differentiability estimates for the

solution w in edge neighbourhoods in these modified coordinates can now be stated.

PROPOSITION 3.2

Let s(x3) = w (x1, x2, x3) |(x1=0,x2=0). Then

∫ le−δv′

δv

∑

k≤m

|Dk
xe

3
s(xe

3)|
2dxe

3 ≤ C(dmm!)2 (3.8)

for all integers m ≥ 1.

Moreover, there exists a constant βe ∈ (0, 1) such that for μ ≤ Z,
∫

�̃e∩{xe: xe
1<ln μ}

∑

|α|≤m

|Dα
xe(w(xe) − s(xe

3))|
2dxe ≤ C(dmm!)2μ2(1−βe) (3.9)

for all integers m ≥ 1. Here, C and d denote positive constants and dxe denotes a volume

element in xe coordinates.

Proof. By Theorem 5.3 of [2], B2
βe

(�e) ⊆ C2
βe

(�e). Define s(x3) = w(x1, x2,

x3)|(x1=0,x2=0). Then (3.8) follows immediately from (2.8) since w ∈ B2
βe

(�e) and hence

w ∈ C2
βe

(�e). Let

p(x) = w(x) − s(x3).

Then from (2.7), we have that

‖rβe+α1+α2−1Dα
x p(x)‖C0(�̄e) ≤ Cdαα! . (3.10)

Now we can show just as in Theorem 4.1 of [2] that

‖rβe−1Dα
xep(xe)‖C0(�̃e) ≤ Cdαα! (3.11)

using the estimate (3.10). Hence,

∣∣Dα
xep(xe)

∣∣ ≤ Cdα α! e(1−βe)x
e
1

for xe ∈ �̃e. Using the above we conclude that

∫

�̃e∩{xe:xe
1≤ln μ}

∑

|α|≤m

∣∣Dα
xep(xe)

∣∣2 dxe ≤ C (dm m!)2

∫ ln μ

−∞

e2(1−βe)τ dτ �

and this gives the required estimate (3.9).

3.3 Differentiability estimates in modified coordinates in vertex-edge neighbourhoods

Let �̃v−e denote the image of �v−e in xv−e coordinates. We can now state the

differentiability estimates in modified coordinates in vertex-edge neighbourhoods.
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PROPOSITION 3.3

Let wv = w(v), the value of w evaluated at the vertex v, and s(x3) = w(x1, x2,

x3)|(x1=0,x2=0). Then there exists a constant βv ∈ (0, 1/2) such that for any 0 < ν ≤ δv ,

∫

−∞

ln ν

exv−e
3

∑

k≤m

|Dk

xv−e
3

(s(xv−e
3 )−wv)|

2dxv−e
3 ≤ C(dm m!)2 ν(1−2βv). (3.12)

Moreover, there exists a constant βe ∈ (0, 1) such that for any 0 < α ≤ tan φv and

0 < ν ≤ δv ,
∫

�̃v−e∩{xv−e: xv−e
1 <ln α, xv−e

3 <ln ν}

exv−e
3

∑

|γ |≤m

∣∣Dγ

xv−e (w(xv−e)−s(xv−e
3 ))

∣∣2 dxv−e

≤ C(dm m!)2 α2(1−βe) ν(1−2βv) (3.13)

for all integers m ≥ 1. Here, C and d denote positive constants and dxv−e denotes a

volume element in xv−e coordinates.

Proof. By Theorem 5.9 of [2], B2
βv−e

(�v−e) ⊆ C2
βv−e

(�v−e). Since w ∈ B2
βv−e

(�v−e),

we conclude that w ∈ C2
βv−e

(�v−e). Let s(x3) = w(0, 0, x3) and wv = w(v). Then

∣∣∣∣∣ |x3|
βv+k−1/2 dk

dxk
3

(s(x3) − wv)

∣∣∣∣∣ ≤ Cdkk!.

Now xv−e
3 = ln x3. Hence, it can be shown as before that

∫ ln ν

−∞

∑

k≤m

|Dk

xv−e
3

(s(xv−e
3 ) − wv)|

2 dxv−e
3 ≤ C(dm m!)2 ν(1−2βv).

Let p(x) = w(x) − s(x3). Then by (2.9) we have that

‖ρβv+|α|−1/2(sin φ)βe+α1+α2−1Dα
x p(x)‖C0(�̄v−e) ≤ Cdα α! .

It can be shown as in Theorem 4.8 of [2] that

‖(ρβv−1/2(sin φ)βe−1) ρα3(sin φ)α1pφα1θα2ρα3 ‖C0(�̆v−e) ≤ Cdαα! .

Here, �̆v−e is the image of �̄v−e in (φ, θ, ρ) coordinates. From the above, the estimate

‖e(βv−1/2)χ (sin φ)βe−1 (sin φ)α1pφα1 θα2χα3 ‖C0(�̂v−e) ≤ Cdαα! (3.14)

follows. Here, �̂v−e is the image of �̄v−e in xv coordinates, xv = (φ, θ, χ) and χ = ln ρ.

Now

∇xvw = J v−e∇xv−ew,

where

J v−e =

⎡
⎣

sec2 φ cot φ 0 − tan φ

0 1 0

0 0 1

⎤
⎦ .



252 P Dutt et al.

Therefore,

∇xv−eu = (J v−e)−1∇xvu.

Here,

(J v−e)−1 =

⎡
⎣

cos φ sin φ 0 sin2 φ

0 1 0

0 0 1

⎤
⎦ .

Hence,

∂u

∂ψ
= cos φ sin φ

∂u

∂φ
+ sin2 φ

∂u

∂χ
,

∂u

∂ζ
=

∂u

∂χ
.

From the above, we obtain

∂mu

∂ψm
=

m∑

k=1

∑

α1+α2=k

⎛
⎝ ∑

j1+j2=2m−α1

am
α1,α2,j1,j2

(cos φ)j1(sin φ)j2((sin φ)α1)uφα1 χα2

⎞
⎠ . (3.15)

It can be shown that the coefficients am
α1,α2,j1,j2

satisfy the recurrence relation

am+1
α1,α2,j1,j2

= am
α1−1,α2,j1−1,j2

+ (α1 + j2)a
m
α1,α2,j1−2,j2

−j1a
m
α1,α2,j1,j2−2 + am

α1,α2−1,j1,j2−2 (3.16)

for |α| ≤ m. For |α| = m + 1,

am+1
α1,α2,j1,j2

=

{
1, if j1 = α1, j2 = 2m + 2 − α1

0, otherwise .
(3.17)

Since 0 ≤ φ ≤ φv , where φv < π/2, we can conclude from (3.14) that

‖e(βv−1/2)ζ e(βe−1)ψ (sin φ)α1 pφα1θα2 χα3 ‖C0
(�̃v−e)

≤ C dα α!. (3.18)

Here, �̃v−e denotes the image of �̄v−e in xv−e coordinates. From (3.18), the estimate

‖e(βv−1/2)xv−e
3 e(βe−1)xv−e

1 Dα
xv−e p‖C0

(�̃v−e)

≤ C dα α! (3.19)

follows.

As in [2], we show (3.19) for the cases α = (m, 0, 0), α = (0,m, 0) and α = (0, 0,m)

since the general case can be shown in the same way. It is enough to prove (3.19) for

α = (m, 0, 0) since the other two cases are trivial. Let

Am
k =

∑

α1+α2=k

∑

j1+j2=2m−α1

|am
α1,α2,j1,j2

|. (3.20)

Then

Am
m ≤ 4m. (3.21)
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Moreover, for k < m,

Am
k ≤ 4m m!

k!
. (3.22)

The proof is by induction. Using the recurrence relation (3.16), we obtain

Am+1
k ≤ 2mAm

k + 2Am
k−1

≤ 2m

(
4mm!

k!

)
+ 2

(
4mm!

(k − 1)!

)

≤
4m+1

k!
(m + 1)!. (3.23)

Now using (3.14), (3.15), (3.21) and (3.22) it can be shown that

∥∥∥∥ e(βv−1/2)xv−e
3 e(βe−1)xv−e

1
∂mp

∂ψm

∥∥∥∥
C0(�̃v−e)

≤

m∑

k=1

∑

α1+α2=k

∑

j1+j2=2m−α1

|am
α1,α2,j1,j2

| Cdα1+α2 α1!α2!

≤

m∑

k=1

Am
k (Cdk k!)

≤ Cdmm!,

here C and d denote generic constants. The inequality (3.19) is obtained in the same way.

Now the estimate (3.13) follows immediately from (3.19). �

3.4 Differentiability estimates in standard coordinates in the regular region

of the polyhedron

Let �r denote the portion of the polyhedron � obtained after the closure of the vertex-

neighbourhoods, edge neighbourhoods and vertex-edge neighbourhoods that have been

removed from it. Thus, let

� =

{⋃

v∈V

�̄v

}⋃{⋃

e∈E

�̄e

}⋃
⎧
⎨
⎩

⋃

v−e∈V−E

�̄v−e

⎫
⎬
⎭ .

Then

�r = � \ △.

The solution w is analytic in �r and we denote it as the regular region of the polyhedron.

In �r , the standard coordinate system x = (x1, x2, x3) is retained. The differentia-

bility estimates in these coordinates in the regular region of the polyhedron are now

stated.
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PROPOSITION 3.4

The estimate
∫

�r

∑

|α|≤m

|Dα
x w(x)|2dx ≤ C(dm m!)2 (3.24)

holds for all integers m ≥ 1. Here, C and d denote positive constants and dx denotes a

volume element in x coordinates.

Proof. Now w(x) is analytic in an open neighbourhood of �̄r . Hence, (3.24) follows. �

4. The stability theorem

In §2, we had partitioned the domain � into a regular region �r , a set of vertex neigh-

bourhoods �v , where v ∈ V , a set of edge neighbourhoods �e, where e ∈ E and a set

of vertex-edge neighbourhoods �v−e, where v − e ∈ V − E . In the regular region �r

standard coordinates x = (x1, x2, x3) are used and in the remaining regions modified

coordinates are used (which are introduced in Section 2). We now divide �r into a set

of curvilinear hexahedrons, tetrahedrons and prisms. We impose a geometrically graded

mesh in the remaining regions consisting of hexahedrons and prisms which is described

in this section. We remark that a tetrahedron (figure 5) can always be divided into four

hexahedrons (see [28, 29]), in the same way that a triangle can be divided into three rect-

angles by joining the centre of the triangle to the midpoints of the sides. Moreover a prism

can be divided into three hexahedral elements. Hence we can choose all our elements to

be hexahedrons.

A set of spectral element functions are defined on the elements. In edge neighbour-

hoods and vertex-edge neighbourhoods these spectral element functions are a sum of

Figure 5. Decomposition of a tetrahedron into four hexahedrons.



Regularity estimates and stability theorem 255

tensor products of polynomials in the modified coordinates. Let {Fu} denote the spec-

tral element representation of the function u. We shall examine two cases. The first case

is when the spectral element functions are nonconforming. The second case is when the

spectral element functions are conforming on the wirebasket WB of the elements, i.e. the

union of the edges and vertices of the elements. In both these cases the spectral element

functions are nonconforming on the faces (open) of the elements.

To state the stability theorem we need to define some quadratic forms. Let N denote

the number of refinements in the geometrical mesh and W denote an upper bound on the

degree of the polynomial representation of the spectral element functions. We shall define

two quadratic forms VN,W ({Fu}) and UN,W ({Fu}).

Now

VN,W ({Fu}) = V
N,W
regular ({Fu}) + V

N,W
vertices ({Fu}) + V

N,W
vertex-edges ({Fu})

+V
N,W
edges ({Fu}) . (4.1)

In the same way,

UN,W ({Fu}) = U
N,W
regular ({Fu}) + U

N,W
vertices ({Fu}) + U

N,W
vertex-edges ({Fu})

+U
N,W
edges ({Fu}) . (4.2)

Let us first consider the regular region �r of � and define the two quadratic forms

V
N,W
regular ({Fu}) and U

N,W
regular ({Fu}). The regular region �r is divided into Nr curvilinear

hexahedrons, tetrahedrons and prisms. Let �r
l be one of the elements into which �r is

divided, which we shall assume is a curvilinear hexahedron to keep the exposition simple.

Let Q denote the standard cube Q = (−1, 1)3. Then there is an analytic map Mr
l from Q

to �r
l which has an analytic inverse. Let �r

l be as shown in figure 6 and let {Ŵr
l,i}1≤i≤nr

l

denote its faces.

Now the map Mr
l is of the form

x = Mr
l (λ1, λ2, λ3),

Figure 6. Elements in �r .
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where (λ1, λ2, λ3) ∈ Q, the master cube. Define the spectral element function ur
l on �r

l

by

ur
l (λ) =

W∑

i=0

W∑

j=0

W∑

k=0

αi,j,k λi
1λ

j

2λ
k
3.

Now the spectral element functions are nonconforming in the general case. Let [u]|Ŵr
l,i

denote the jump in u across the face Ŵr
l,i . Let the face Ŵr

l,i = Ŵr
m,j where Ŵr

m,j is a face

of the element �r
m. We may assume that the face Ŵr

l,i corresponds to λ3 = 1 and Ŵr
m,j

corresponds to λ3 = −1. Then [u]|Ŵr
l,i

is a function of only λ1 and λ2.

We now define

V
N,W
regular ({Fu}) =

Nr∑

l=1

∫

�r
l

|Lur
l (x)|2 dx

+
∑

Ŵr
l,i⊆�̄r\∂�

(
‖[u]‖2

0,Ŵr
l,i

+

3∑

k=1

‖[uxk
]‖2

1/2,Ŵr
l,i

)

+
∑

Ŵr
l,i⊆Ŵ[0]

‖ur
l ‖

2
3/2,Ŵr

l,i
+

∑

Ŵr
l,i⊆Ŵ[1]

∥∥∥∥
(

∂ur
l

∂ν

)

A

∥∥∥∥
2

1/2,Ŵr
l,i

. (4.3)

The fractional Sobolev norms used above are as defined in [20].

Since Ŵr
l,i , corresponding to λ3 = 1, is the image of S = (−1, 1)2, or T the master

triangle, in λ1, λ2 coordinates,

‖w‖2
σ,Ŵr

l,i
= ‖w‖2

0,E +

∫

E

∫

E

(
w(λ1, λ2) − w(λ′

1, λ
′
2)
)2

(
(λ1 − λ′

1)
2 + (λ2 − λ′

2)
2
)1+σ

dλ1 dλ2 dλ′
1 dλ′

2

(4.4a)

for 0 < σ < 1. Here, E denote either S or T . However, if E is S, then we prefer to use

the equivalent norm [26]

‖w‖2
σ,Ŵr

l,i
= ‖w‖2

0,E +

∫ 1

−1

∫ 1

−1

∫ 1

−1

(w(λ1, λ2) − w(λ′
1, λ2))

2

(λ1 − λ′
1)

1+2σ
dλ1dλ′

1dλ2

+

∫ 1

−1

∫ 1

−1

∫ 1

−1

(w(λ1, λ2) − w(λ1, λ
′
2))

2

(λ2 − λ′
2)

1+2σ
dλ2dλ′

2dλ1. (4.4b)

Moreover,

‖w‖2
1+σ,Ŵr

l,i
= ‖w‖2

0,E +

2∑

i=1

∥∥∥∥
∂w

∂λi

∥∥∥∥
2

σ,E

. (4.5)

Next, we define

U
N,W
regular({Fu}) =

Nr∑

l=1

∫

Q=(Mr
l )−1(�r

l )

∑

|α|≤2

∣∣Dα
λur

l

∣∣2 dλ. (4.6)
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Let v be one of the vertices of �. In figure 7, the vertex neighbourhood, described in §2,

is shown. Let Sv denote the intersection of the surface of the sphere Bρv (v) with �̄v , i.e.

Sv =
{
x ∈ �̄v : dist(x, v) = ρv

}
.

We divide the surface Sv into a set of triangular and quadrilateral elements. Let Sv
j

denote these elements, where 1 ≤ j ≤ Iv . Here, Iv denotes a fixed constant. Let μv

be a positive constant less than one which shall be used to define a geometric mesh (as

in figure 8) in the vertex neighbourhood �v of the vertex v. We now divide �v into

Nv = Iv(N + 1) curvilinear hexahedrons and prisms {�v
l }1≤l≤Nv , where �v

l is of the

form

�v
l = {x : (φ, θ) ∈ Sv

j , ρv
k < ρ < ρv

k+1}

for 1 ≤ j ≤ Iv and 0 ≤ k ≤ N . Here, ρv
k = ρv(μv)

N+1−k and 0 < μv < 1 for

1 ≤ k ≤ N + 1. Moreover, ρv
0 = 0.

Let �̃v denote the image of �v in xv coordinates (introduced in §2) and �̃v
l denote the

image of the element �v
l . Then the geometric mesh {�v

l }1≤l≤Nv which has been defined

on �v , is mapped to a quasi-uniform mesh {�̃v
l }1≤l≤Nv on �̃v , except that the corner

elements

�v
l = {x : (φ, θ) ∈ Sv

j , 0 < ρ < ρv
1 }

are mapped to semi-infinite elements

�̃v
l = {xv : (φ, θ) ∈ Sv

j , −∞ < χ < ln ρv
1 }.

Figure 7. Mesh imposed on the spherical boundary Sv .
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Figure 8. Geometrical mesh imposed on �v .

We now specify the form of the spectral element functions uv
l (x

v) on the elements.

Consider first the case when �̃v
l is a corner element of the form

�̃v
l = {xv : (φ, θ) ∈ Sv

j , −∞ < χ < ln ρv
1 }.

In this case, we define uv
l (x

v) = hv , where hv is a constant. Thus, at all corner elements

the spectral element functions assume the same constant value for that corner.

Now there is an analytic map Mv
l from Q, the master cube to �̃v

l , which has an analytic

inverse. Here, the map Mv
l is of the form

xv = Mv
l (λ1, λ2, λ3).

We define the spectral element function uv
l on �̃v

l by

uv
l (λ) =

Wl∑

t=0

Wl∑

s=0

Wl∑

r=0

βr,s,t λr
1λ

s
2λ

t
3.

Here, 1 ≤ Wl ≤ W . Moreover, as in [21], Wl = [μ1i] for 1 ≤ i ≤ N , where μ1 > 0 is a

degree factor. Hereafter [a] denotes the greatest positive integer ≤ a.

Let v ∈ V denote the vertices of �. Define

V
N,W
vertices({Fu}) =

∑

v∈V

VN,W
v ({Fu}) (4.7)

and

U
N,W
vertices({Fu}) =

∑

v∈V

UN,W
v ({Fu}). (4.8)

We now fix a vertex v and define the quadratic forms VN,W
v ({Fu}) and UN,W

v ({Fu}).

Consider the vertex neighbourhood �v and let �v
l be one of the elements into which it

is divided. Now �v
l has nv

l faces {Ŵv
l,i}1≤i≤nv

l
. Let �̃v

l be the image of �v
l and Ŵ̃v

l,i be the

image of Ŵv
l,i in xv coordinates.
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Define Lvu(xv) so that
∫

�̃v
l

|Lvu(xv)|2dxv =

∫

�v
l

ρ2 |Lu(x)|2dx. (4.9)

Here, dxv denote a volume element in xv coordinates and dx a volume element in x

coordinates. In Chapter 3 of [1], it is shown that

Lvu(xv) = −divxv (eχ/2
√

sin φAv∇xvu) +

3∑

i=1

b̂v
i uxv

i
+ ĉvu. (4.10)

In the above, Av is a symmetric, positive definite matrix.

Let Ŵv
l,i be one of the faces of �v

l and Ŵ̃v
l,i denote its image in xv coordinates. Let P̃ be

a point belonging to Ŵ̃v
l,i and νv be the unit normal to Ŵ̃v

l,i at the point P̃ . Then define

(
∂u

∂νv

)

Av

(P̃ ) = (νv)T Av∇xvu. (4.11)

Here, the matrix Av is as in (4.10). Let

Rv
l,i = sup

xv∈Ŵ̃v
l,i

(exv
3 ).

We now define

VN,W
v ({Fu}) =

Nv∑

l=1,μ(�̃v
l )<∞

∫

�̃v
l

|Lvuv
l (x

v)|2 dxv

+
∑

Ŵv
l,i⊆�̄v\∂�,

μ(Ŵ̃v
l,i )<∞

(∥∥∥
√

Rv
l,i[u]

∥∥∥
2

0,Ŵ̃v
l,i

+

3∑

k=1

∥∥∥
√

Rv
l,i[uxv

k
]
∥∥∥

2

1/2,Ŵ̃v
l,i

)

+
∑

Ŵv
l,i⊆Ŵ[0],

μ(Ŵ̃v
l,i )<∞

∥∥∥
√

Rv
l,iu

v
l

∥∥∥
2

3/2,Ŵ̃v
l,i

+
∑

Ŵv
l,i⊆Ŵ[1],

μ(Ŵ̃v
l,i )<∞

∥∥∥∥
√

Rv
l,i

(
∂uv

l

∂νv

)

Av

∥∥∥∥
2

1/2,Ŵ̃v
l,i

. (4.12)

The fractional Sobolev norms used above are as in (4.4) and (4.5). Moreover, μ denotes

measure. Finally, the quadratic form UN,W
v ({Fu}) is given by

UN,W
v ({Fu}) =

Nv∑

l=1

∫

�̃v
l

exv
3

∑

|α|≤2

|Dα
xvu

v
l (x

v)|2 dxv. (4.13)

We now define V
N,W
vertex-edges({Fu}) and U

N,W
vertex-edges({Fu}). Let v − e denote one of the

vertex-edges of �. Here, v − e ∈ V − E , the set of vertex-edges of �. Let �v−e denote
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the vertex-edge neighbourhood corresponding to the vertex-edge v − e. We divide �v−e

into Nv−e elements �v−e
l , l = 1, 2, . . . , Nv−e, using a geometric mesh.

Figure 9 shows the vertex-edge neighbourhood �v−e of the vertex v and the edge e.

Now

�v−e = {x ∈ � : 0 < x3 < δv, 0 < φ < φv } .

Here, δv = ρv cos φv . We impose a geometrical mesh on �v−e as shown in figure 9 by

defining

(x3)0 = 0 and (x3)i = δv(μv)
N+1−i

for 1 ≤ i ≤ N + 1. Let

ζ v−e
i = ln ((x3)i)

for 0 ≤ i ≤ N + 1.

Let us introduce points φv−e
0 , . . . , φv−e

N+1 such that φv−e
0 = 0 and tan φv−e

i =

μN+1−i
e tan(φv), for 1 ≤ i ≤ N + 1. Here μe is a positive constant less than one. Thus,

we impose a geometrical mesh on φ with mesh ratio μe. Finally, θv−e
l < θ < θv−e

u . A

quasi-uniform mesh

θv−e
l = θv−e

0 < θv−e
1 < · · · < θv−e

Iv−e
= θv−e

u

is imposed in θ . Let �̃v−e be the image of �v−e in xv−e coordinates (introduced in §2).

Thus, �̃v−e is divided into Nv−e = Iv−e(N + 1)2 hexahedrons {�̃v−e
n }n=1,...,Nv−e , where

�̃v−e
n {xv−e : ψv−e

i <ψ <ψv−e
i+1 , θv−e

j < θ < θv−e
j+1 , ζ v−e

k < ζ < ζ v−e
k+1 }.

Figure 9. Geometrical mesh imposed on �v−e.
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We now define the spectral element functions on the elements in �̃v−e. Consider an

element

�̃v−e
n = {xv−e : ψv−e

i < ψ < ψv−e
i+1 , θv−e

j < θ < θv−e
j+1 , −∞ < ζ < ζ v−e

1 }.

Then on �̃v−e
n , we define

uv−e
n = hv−e = hv,

where hv is the same constant as for the spectral element function uv
n defined on the corner

element

�̃v
n = {xv : (φ, θ) ∈ Sv

j , −∞ < χ < ln(ρv
1 )}.

Next, we consider the element

�̃v−e
p = {xv−e : −∞ < ψ < ψv−e

1 , θv−e
j < θ < θv−e

j+1 , ζ v−e
k < ζ < ζ v−e

k+1 }.

Here, k ≥ 1. Then on �̃v−e
p , we define

uv−e
p (xv−e) =

Wp∑

l=0

βl ζ l .

Here, 1 ≤ Wp ≤ W . Moreover, Wp = [μ2k] for 1 ≤ k ≤ N , where μ2 > 0 is a degree

factor [21]. Now consider

�̃v−e
q =

{
xv−e : ψv−e

i < ψ < ψv−e
i+1 , θv−e

j < θ < θv−e
j+1 , ζ v−e

k < ζ < ζ v−e
k+1

}

for 1 ≤ i ≤ N , 1 ≤ k ≤ N . Then on �̃v−e
q , we define

uv−e
q (xv−e) =

Wq∑

r=0

Wq∑

s=0

Vq∑

t=0

γr,s,t ψ rθ sζ t .

Here, 1 ≤ Wq ≤ W and 1 ≤ Vq ≤ W . Moreover, Wq = [μ1i], Vq = [μ2k] for

1 ≤ i, k ≤ N , where μ1, μ2 > 0 are degree factors [21].

Let Ŵ̃v−e
n,i be one of the faces of �̃v−e

n such that μ(Ŵ̃v−e
n,i ) < ∞, where μ denotes

measure. We introduce a norm ||| u |||2
Ŵ̃v−e

n,i

as follows:

Let Ev−e
n,i = sup

xv−e∈Ŵ̃v−e
n,i

(sin φ) and F v−e
n,i = sup

xv−e∈Ŵ̃v−e
n,i

(exv−e
3 ). We also define Gv−e

n,i which

is used in (4.16).

(1) If Ŵ̃v−e
n,i = {xv−e : α0 < xv−e

1 < α1, β0 < xv−e
2 < β1, xv−e

3 = γ0}, then define

Gv−e
n,i = Ev−e

n,i and

||| u |||2
Ŵ̃v−e

n,i

= Ev−e
n,i F v−e

n,i

(∫ β1

β0

∫ α1

α0

u2(ψ, θ, γ0) dψ dθ

+

∫ β1

β0

dθ

∫ α1

α0

∫ α1

α0

(
u(ψ, θ, γ0) − u(ψ ′, θ, γ0)

)2

(ψ − ψ ′)2
dψ dψ ′
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+

∫ α1

α0

dψ

∫ β1

β0

∫ β1

β0

(u(ψ, θ, γ0) − u(ψ, θ ′, γ0))
2

(θ − θ ′)2
dθ dθ ′

)
.

(4.14a)

(2) If Ŵ̃v−e
n,i = {xv−e : xv−e

1 = α0, β0 < xv−e
2 < β1, γ0 < xv−e

3 < γ1}, then define

Gv−e
n,i = 1 and

||| u |||2
Ŵ̃v−e

n,i

= F v−e
n,i

(∫ γ1

γ0

∫ β1

β0

u2(α0, θ, ζ ) dθ dζ

+

∫ γ1

γ0

dζ

∫ β1

β0

∫ β1

β0

(u(α0, θ, ζ ) − u(α0, θ
′, ζ ))2

(θ − θ ′)2
dθ dθ ′

+ Ev−e
n,i

∫ β1

β0

dθ

∫ γ1

γ0

∫ γ1

γ0

(u(α0, θ, ζ )−u(α0, θ, ζ ′))2

(ζ − ζ ′)2
dζ dζ ′

)
.

(4.14b)

(3) If Ŵ̃v−e
n,i = {xv−e : α0 < xv−e

1 < α1, xv−e
2 = β0, γ0 < xv−e

3 < γ1}, then define

Gv−e
n,i = 1 and

||| u |||2
Ŵ̃v−e

n,i

= F v−e
n,i

(∫ γ1

γ0

∫ α1

α0

u2(ψ, β0, ζ ) dψ dζ

+

∫ γ1

γ0

dζ

∫ α1

α0

∫ α1

α0

(u(ψ, β0, ζ ) − u(ψ ′, β0, ζ ))2

(ψ − ψ ′)2
dψ dψ ′

+ Ev−e
n,i

∫ α1

α0

dψ

∫ γ1

γ0

∫ γ1

γ0

(u(ψ, β0, ζ )−u(ψ, β0, ζ
′))2

(ζ − ζ ′)2
dζ dζ ′

)
.

(4.14c)

Let Lv−e be a differential operator such that
∫

�̃v−e
n

∣∣Lv−eu(xv−e)
∣∣2 dxv−e =

∫

�v
n

ρ2 sin2 φ |Lu(x)|2 dx.

Here, dxv−e denotes a volume element in xv−e coordinates and dx a volume element in x

coordinates. In Chapter 3 of [1], it is shown that

Lv−eu(xv−e) = −divxv−e (eζ/2Av−e∇xv−eu)+

3∑

i=1

b̂v−e
i uxv−e

i
+ ĉv−eu. (4.15)

Here, Av−e is a symmetric, positive definite matrix. We now define the quadratic form

V
N,W
v−e ({Fu}) =

Nv−e∑

l=1,μ(�̃v−e
l )<∞

∫

�̃v−e
l

∣∣Lv−euv−e
l (xv−e)

∣∣2 dxv−e

+
∑

Ŵv−e
n,i ⊆�̄v−e\∂�,

μ(Ŵ̃v−e
n,i )<∞

(∥∥∥∥
√

F v−e
n,i Gv−e

n,i [u]

∥∥∥∥
2

0,Ŵ̃v−e
n,i

+ ||| [uxv−e
1

] |||2
Ŵ̃v−e

n,i
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+||| [uxv−e
2

] |||2
Ŵ̃v−e

n,i

+ ||| Ev−e
n,i [uxv−e

3
] |||2

Ŵ̃v−e
n,i

)

+
∑

Ŵv−e
n,i ⊆Ŵ[0],

μ(Ŵ̃v−e
n,i )<∞

(∥∥∥∥
√

F v−e
n,i uv−e

n

∥∥∥∥
2

0,Ŵ̃v−e
n,i

+||| uxv−e
1

|||2
Ŵ̃v−e

n,i

+ ||| Ev−e
n,i uxv−e

3
|||2

Ŵ̃v−e
n,i

)

+
∑

Ŵv−e
n,i ⊆Ŵ[1],

μ(Ŵ̃v−e
n,i )<∞

∣∣∣
∣∣∣
∣∣∣
(

∂u

∂ν

v−e)

Av−e

∣∣∣
∣∣∣
∣∣∣
2

Ŵ̃v−e
n,i

. (4.16)

Here, μ denotes measure and the term
(

∂u
∂νv−e

)
Av−e is defined as follows: Let Ŵ̃v−e

n,i be a

face of �̃v−e
n,i , P̃ be a point belonging to Ŵ̃v−e

n,i and νv−e denote the unit normal to Ŵ̃v−e
n,i at

the point P̃ . Then
(

∂u

∂νv−e

)

Av−e

(P̃ ) = (νv−e)T Av−e∇xv−eu. (4.17)

Now the quadratic form V
N,W
vertex-edges({Fu}) is given by

V
N,W
vertex-edges({Fu}) =

∑

v−e∈V−E

V
N,W
v−e ({Fu}). (4.18)

Next, we define the quadratic form U
N,W
v−e ({Fu}). Let wv−e(xv−e

1 ) be a weight function

such that

wv−e(xv−e
1 ) = 1 for xv−e

1 ≥ ζ v−e
1 = ln(tan φv−e

1 )

and which satisfies

∫ ζ v−e
1

−∞

wv−e(xv−e
1 ) dxv−e

1 = 1.

We shall choose

wv−e(xv−e
1 ) = 1 for xv−e

1 ≥ ζ v−e
1 − 1

and

wv−e(xv−e
1 ) = 0 for xv−e

1 < ζ v−e
1 − 1 .

Then

U
N,W
v−e ({Fu}) =

Nv−e∑

l=1,μ(�̃v−e
l )<∞

∫

�̃v−e
l

exv−e
3

⎛
⎝ ∑

i,j=1,2

(
∂2uv−e

l

∂xv−e
i ∂xv−e

j

)2

+

2∑

i=1

sin2 φ

(
∂2uv−e

l

∂xv−e
i ∂xv−e

3

)2

+ sin4 φ

(
∂2uv−e

l(
∂xv−e

3

)2

)2

+

2∑

i=1

(
∂uv−e

l

∂xv−e
i

)2

+ sin2 φ

(
∂uv−e

l

∂xv−e
3

)2

+ (uv−e
l )2

⎞
⎠ dxv−e
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+

Nv−e∑

l=1,μ(�̃v−e
l )=∞

∫

�̃v−e
l

(uv−e
l )2exv−e

3 wv−e(xv−e
1 ) dxv−e.

(4.19)

The quadratic form U
N,W
vertex-edges({Fu}) is then given by

U
N,W
vertex-edges({Fu}) =

∑

v−e∈V−E

U
N,W
v−e ({Fu}). (4.20)

Finally, we define the quadratic forms V
N,W
edges ({Fu}) and U

N,W
edges ({Fu}). Consider the edge

e whose end points are v and v′. The edge e coincides with the x3 axis and the vertex v

with the origin. Let the length of the edge e be le. Now the edge neighbourhood �e is

defined as

�e =
{
x ∈ � : 0 < r < Z = ρv sin φv, θe

l < θ < θe
u, δv < x3 < le − δ′

v

}
.

Here, (r, θ, x3) denote cylindrical coordinates with origin at v, δv = ρv cos φv and

δ′
v = ρ′

v cos φ′
v are as shown in figure 10.

A geometrical mesh is imposed in r by defining re
0 = 0 and re

j = Z(μe)
N+1−j for

j = 1, 2, . . . , N + 1. We impose the same quasi-uniform mesh on θ as we did in the

vertex-edge neighbourhood, viz.

θe
l = θe

0 < θe
1 < · · · < θe

I e = θe
u .

Figure 10. Geometrical mesh imposed on �e.
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Here, Ie = Iv−e and θe
k = θv−e

k for 0 ≤ k ≤ Ie. A quasi-uniform mesh is defined in

x3, by choosing

δv = Ze
0 < Ze

1 < · · · < Ze
Je

= le − δ′
v.

Thus, �e is divided into Ne = Ie Je (N + 1) elements. Let �̃e be the image of �e in xe

coordinates (introduced in §2). Thus, �̃e is divided into Ne hexahedrons {�̃e
m}m=1,...,Ne ,

where

�̃e
m = {xe : ln(re

i ) < xe
1 < ln(re

i+1), θe
j < xe

2 < θe
j+1, Ze

k < xe
3 < Ze

k+1}.

We now define the spectral element functions on the elements in �̃e. Consider an element

�̃e
p = {xe : −∞ < xe

1 < ln(re
1), θe

j < xe
2 < θe

j+1, Ze
n < xe

3 < Ze
n+1}.

Then, we define

ue
p(xe) =

W∑

t=1

αr(x
e
3)

t .

This representation is valid for all j for fixed n. Next, consider the element

�̃e
q = {xe : ln(re

i ) < xe
1 < ln(re

i+1), θe
j < xe

2 < θe
j+1, Ze

n < xe
3 < Ze

n+1}

for 1 ≤ i ≤ N . Then, we define

ue
q(xe) =

Wq∑

r=1

Wq∑

s=1

W∑

t=1

αr,s,t (xe
1)

r(xe
2)

s(xe
3)

t .

Here, 1 ≤ Wq ≤ W . Moreover, as in [21], Wq = [μ1i] for all 1 ≤ i ≤ N , where μ1 > 0

is a degree factor.

Let Ŵ̃e
m,i be one of the faces of �̃e

m such that μ(Ŵ̃e
m,i) < ∞, where μ denotes measure.

We define a norm ||| u |||2
Ŵ̃e

m,i

as follows:

Let Ge
m,i = sup

xe∈Ŵ̃e
m,i

(eτ ). We also define H e
m,i which is needed in (4.25).

(1) If Ŵ̃e
m,i = {xe : α0 < xe

1 < α1, β0 < xe
2 < β1, xe

3 = γ0}, then define H e
m,i = Ge

m,i

and

||| u |||2
Ŵ̃e

m,i

= Ge
m,i

(∫ β1

β0

∫ α1

α0

u2(τ, θ, γ0) dτdθ

+

∫ β1

β0

dθ

∫ α1

α0

∫ α1

α0

(u(τ, θ, γ0) − u(τ ′, θ, γ0))
2

(τ − τ ′)2
dτdτ ′

+

∫ α1

α0

dτ

∫ β1

β0

∫ β1

β0

(u(τ, θ, γ0)−u(τ, θ ′,γ0))
2

(θ − θ ′)2
dθdθ ′

)
.

(4.21a)
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(2) If Ŵ̃e
m,i = {xe : xe

1 = α0, β0 < xe
2 < β1, γ0 < xe

3 < γ1}, then define H e
m,i = 1 and

||| u |||2
Ŵ̃e

m,i

=

(∫ γ1

γ0

∫ β1

β0

u2(α0, θ, x3) dθdx3

+

∫ γ1

γ0

dx3

∫ β1

β0

∫ β1

β0

(
u(α0, θ, x3) − u(α0, θ

′, x3)
)2

(θ − θ ′)2
dθdθ ′

+Ge
m,i

∫ β1

β0

dθ

∫ γ1

γ0

∫ γ1

γ0

(u(α0,θ,x3)−u(α0,θ,x′
3))

2

(x3 − x′
3)

2
dx3 dx′

3

)
.

(4.21b)

(3) If Ŵ̃e
m,i = {xe : α0 < xe

1 < α1, xe
2 = β0, γ0 < xe

3 < γ1}, then define H e
m,i = 1 and

||| u |||2
Ŵ̃e

m,i

=

(∫ γ1

γ0

∫ α1

α0

u2(τ, β0, x3) dτdx3

+

∫ γ1

γ0

dx3

∫ α1

α0

∫ α1

α0

(u(τ, β0, x3) − u(τ ′, β0, x3))
2

(τ − τ ′)2
dτdτ ′

+Ge
m,i

∫ α1

α0

dτ

∫ γ1

γ0

∫ γ1

γ0

(u(τ, β0, x3) − u(τ, β0, x
′
3))

2

(x3 − x′
3)

2
dx3dx′

3

)
.

(4.21c)

Let Le be a differential operator such that

∫

�̃e
m

|Leu(xe)|2dxe =

∫

�e
m

r2|Lu(x)|2dx. (4.22)

Here, dxe denotes a volume element in xe coordinates and dx a volume element in x

coordinates. In Chapter 3 of [1], it is shown that

Leu(xe) = −divxe

(
Ae∇xeu

)
+

3∑

i=1

b̂e
i uxe

i
+ ĉeu, (4.23)

where Ae is a symmetric, positive definite matrix. Let Ŵ̃e
m,i be one of the sides of �̃e

m and

P̃ a point belonging to Ŵ̃e
m,i . Let νe be the normal to Ŵ̃e

m,i at P̃ . Then

(
∂u

∂νe

)

Ae

(P̃ ) = (νe)T Ae∇xeu(P̃ ) . (4.24)

We now define the quadratic form

VN,W
e ({Fu}) =

Ne∑

l=1,μ(�̃e
l )<∞

∫

�̃e
l

|Leue
l (x

e)|2 dxe

+
∑

Ŵe
l,i⊆�̄e\∂�,

μ(Ŵ̃e
l,i )<∞

(∥∥∥
√

H e
l,i [u]

∥∥∥
2

0,Ŵ̃e
l,i

+ ||| [uxe
1
] |||2

Ŵ̃e
l,i
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+||| [uxe
2
] |||2

Ŵ̃e
l,i

+ ||| Ge
l,i[uxe

3
] |||2

Ŵ̃e
l,i

)

+
∑

Ŵe
l,i⊆Ŵ[0],

μ(Ŵ̃e
l,i )<∞

(‖ue
l ‖

2

0,Ŵ̃e
l,i

+ |||uxe
1
|||2

Ŵ̃e
l,i

+
∣∣∣∣∣∣Ge

l,i uxe
3
|||2

Ŵ̃e
l,i

)

+
∑

Ŵe
l,i⊆Ŵ[1],

μ(Ŵ̃e
l,i )<∞

∣∣∣
∣∣∣
∣∣∣
(

∂u

∂νe

)

Ae

∣∣∣
∣∣∣
∣∣∣
2

Ŵ̃e
l,i

. (4.25)

The quadratic form V
N,W
edges({Fu}) is given by

V
N,W
edges({Fu}) =

∑

e∈E

VN,W
e ({Fu}). (4.26)

Next, let us define the quadratic form U
N,W
e ({Fu}). Let we(xe

1) be a weight function such

that

we(xe
1) = 1 for xe

1 ≥ ln(re
1)

and

∫ ln(re
1 )

−∞

we(xe
1) dxe

1 = 1.

We shall choose

we(xe
1) = 1 for xe

1 ≥ ln(re
1) − 1

and

we(xe
1) = 0 for xe

1 < ln(re
1) − 1.

Then

UN,W
e ({Fu}) =

Ne∑

l=1,μ(�̃e
l )<∞

∫

�̃e
l

( ∑

i,j=1,2

(
∂2ue

l

∂xe
i ∂xe

j

)2

+e2τ

2∑

i=1

(
∂2ue

l

∂xe
i ∂xe

3

)2

+e4τ

(
∂2ue

l

(∂xe
3)

2

)2

+

2∑

i=1

(
∂ue

l

∂xe
i

)2

+e2τ

(
∂ue

l

∂xe
3

)2

+(ue
l )

2

)
dxe

+

Ne∑

l=1,μ(�̃e
l )=∞

∫

�̃e
l

(ue
l )

2we(xe
1)dxe. (4.27)

Here, μ denotes measure. The quadratic form U
N,W
edges({Fu}) is then given by

U
N,W
edges({Fu}) =

∑

e∈E

UN,W
e ({Fu}). (4.28)

Finally, using (4.1) and (4.2) we can define the quadratic forms VN,W ({Fu}) and

UN,W ({Fu}).
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We now state the stability results whose proof can be found in [16]. It is assumed that

N is proportional to W .

Theorem 4.1. Consider the elliptic boundary value problem (2.1). Suppose the boundary

conditions are Dirichlet. Then

UN,W ({Fu}) ≤ C(ln W)2VN,W ({Fu}) (4.29)

provided W = O(eNα
) for α < 1/2. Since we choose N proportional to W this condition

is satisfied.

Next, we state the corresponding result for general boundary conditions.

Theorem 4.2. If the boundary conditions for the elliptic boundary value problem (2.1)

are mixed, then

UN,W ({Fu}) ≤ CN4VN,W ({Fu}) (4.30)

provided W = O(eNα
) for α < 1/2.

The rapid growth of the factor CN4 with N creates difficulties in parallelizing the numer-

ical scheme. To overcome this problem, we state a version of Theorem 4.2 when the

spectral element functions vanish on the wirebasket. Let WB denote the wirebasket along

which the spectral element functions that need to be conforming. Here the wirebasket

denotes the union of the vertices and edges of the elements.

Theorem 4.3. If the boundary conditions are mixed and the spectral element functions

({Fu}) are conforming on the wirebasket WB and vanish on WB, then

UN,W ({Fu}) ≤ C(ln W)2VN,W ({Fu}) (4.31)

provided W = O(eNα
) for α < 1/2.

5. Conclusions

We will use the stability theorems 4.1 and 4.2 in the forthcoming papers to formulate

a numerical scheme and a parallel preconditioner (similar to that described in [15] for

two dimensional problems) to obtain an exponentially accurate solution to the elliptic

boundary value problem on non-smooth domains considered in this paper.

Another version of the method can be defined by choosing the spectral element func-

tions to be conforming on the wirebasket of the elements (Theorem 4.3). An efficient

preconditioner can be obtained for the Schur complement of the common boundary

values. We intend to examine this in future work.
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