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Abstract.  This is the first of a series of papers devoted to the study of h-p spec-
tral element methods for solving three dimensional elliptic boundary value problems
on non-smooth domains using parallel computers. In three dimensions there are three
different types of singularities namely; the vertex, the edge and the vertex-edge sin-
gularities. In addition, the solution is anisotropic in the neighbourhoods of the edges
and vertex-edges. To overcome the singularities which arise in the neighbourhoods
of vertices, vertex-edges and edges, we use local systems of coordinates. These local
coordinates are modified versions of spherical and cylindrical coordinate systems in
their respective neighbourhoods. Away from these neighbourhoods standard Cartesian
coordinates are used. In each of these neighbourhoods we use a geometrical mesh
which becomes finer near the corners and edges. The geometrical mesh becomes a
quasi-uniform mesh in the new system of coordinates. We then derive differentiability
estimates in these new set of variables and state our main stability estimate theorem
using a non-conforming /- p spectral element method whose proof is given in a separate

paper.
Keywords.  Spectral element method; non-smooth domains; geometric mesh; vertex
singularity; edge singularity; vertex-edge singularity; differentiability estimates; stabil-

ity estimates; exponential accuracy.

Mathematics Subject Classification.  65N35, 35J25.

1. Introduction

Finite element methods (FEM) are one of the most widely used techniques for solving
problems in structural mechanics. There are three versions of the FEM namely; the &
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version, the p version and the h-p version. The & version uses polynomials of a fixed
degree and the mesh size h is reduced to increase accuracy. In the p version, a fixed
mesh is used and polynomial degree p is raised to increase accuracy. The h-p version
combines the approaches of the 4 and p versions. It simultaneously refines the mesh
and increases the polynomial degree to solve problems on non-smooth domains and
achieve optimal convergence. The /- p version of Spectral element method (SEM) employ
global polynomials of higher degree in order to recover the so-called spectral/exponential
convergence.

A method for obtaining a numerical solution to exponential accuracy for elliptic prob-
lems on non-smooth domains in R? was first proposed by Babuska and Guo [7, 8] in the
frame work of the finite element method. In [18, 19], an exponentially accurate /- p spec-
tral element method was proposed for two dimensional elliptic problems on non-smooth
domains with analytic coefficients posed on curvilinear polygons with piecewise analytic
boundary. The method is able to resolve the singularities which arise at the corners using
a geometrical mesh as proposed by Babuska and Guo.

In contrast to the two dimensional case, the character of the singularities in three
dimensions is much more complex not only because of higher dimension but also due to
the varied nature of the singularities which are the vertex singularity, the edge singular-
ity and the vertex-edge singularity. Thus, we have to distinguish between the behaviour
of the solution in the neighbourhoods of the vertices, edges and vertex-edges. Unlike
the two dimensional case where weighted isotropic spaces are used, in three dimensions
we have to utilize weighted anisotropic spaces because the solution is smooth along the
edges but singular in the direction perpendicular to the edges [4]. Behaviour of the solu-
tion is even more complex at the vertices where the edges are joined together and the
solution is not smooth along the edges too. Guo [24] introduced the relevant anisotropic
weighted spaces to study elliptic problems on non-smooth polyhedral domains. Since
then the proof that the regularity of solutions of elliptic boundary value problems on
non-smooth domains is described by these sapces remained an open problem for a long
time.

To prove the analytic regularity for these problems, Babuska and Guo [2, 3] started
the study of analytic regularity of elliptic problems on non-smooth domains in R? in
the frame work of weighted Sobolev spaces with Cauchy type control of all derivatives
in the so-called countably normed spaces in the neighbourhoods of vertices, edges and
vertex-edges in spherical, cylindrical and Cartesian coordinates. However, proving these
regularity results is quite technical and sometimes difficult to follow as can be seen in
the papers by Babuska and Guo [2-4, 24]. We remark that these regularity estimates on
polyhedral domains were assumed to be true in the error analysis of #-p FEM in [24, 29]
and in the error analysis of #-p SEM in [1].

Recently, Costabel and coworkers settled the proof of the analytic regularity estimates
in [11] by filling the gap which was left over by BabuSka and Guo. They combined a priori
basic regularity results of low order for elliptic problems on polyhedral domains [14, 27]
with the regularity shift estimates of Cauchy type to complete the proof using a nested
open set technique and dyadic partition technique near corners [11-14]. The techniques
employed in [11-13] extends to the general elliptic problems having lower order terms and
variable coefficients examined in this paper (see [11] and references therein). It follows
from [11, 12] that the solution to the problem under consideration in this paper belongs to
an analytic class which is defined using anisotropic weighted Sobolev spaces introduced
in [2, 3].
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The h-p version of the finite element method for solving three dimensional elliptic
problems on non-smooth domains with exponential accuracy was proposed by Guo in [21,
24]. To overcome the singularities which arise along vertices and edges they used geo-
metric meshes which are defined in neighbourhoods of vertices, edges and vertex-edges.
We refer to [4-6, 9, 10, 22-24] for a detailed discussion of the &-p FEM and [23] on the
use of auxiliary mappings for the finite element solutions of three dimensional elliptic
problems on non-smooth domains.

An efficient and exponentially accurate /-p spectral element method to solve general
elliptic problems on non-smooth domains in three dimensions is now described. We also
use a geometric mesh in the neighbourhoods of vertices, edges and vertex-edges and in
each of these neighbourhoods we switch to a modified system of local coordinates using
auxiliary mappings and this enables us to obtain the solution with exponential accuracy.
These local coordinates are modified versions of the standard spherical and cylindrical
coordinate systems in vertex and edge neighbourhoods respectively and a hybrid com-
bination of spherical and cylindrical coordinates in vertex-edge neighbourhoods. The
geometric mesh becomes geometrically fine in these neighbourhoods and in the new set
of variables in these neighbourhoods the geometric mesh is mapped to a quasi uniform
mesh. Hence Sobolev’s embedding theorems and the trace theorems apply for spectral
element functions defined on mesh elements in the new system of variables with a uni-
form constant. This new system of coordinates in two dimensions was first proposed by
Kondratiev [25] and we shall refer to them as modified system of coordinates. Away from
the neighbourhoods of vertices, edges and vertex-edges, we retain the standard Cartesian
coordinate system (x1, x2, x3) in the regular region of the polyhedron.

We now seek a solution to elliptic BVP’s as in [18, 19, 30-32] which minimizes the
sum of a weighted squared norm of the residuals in the partial differential equation and a
fractional Sobolev norm of the residuals in the boundary conditions and enforce continuity
across inter element boundaries by adding a term which measures the sum of the squares
of the jump in the function and its derivatives at inter element boundaries in appropriate
Sobolev norms to the functional being minimized. Here we examine the non-conforming
version of the method. The case when the spectral element functions are conforming will
be examined in future work.

This series of papers is devoted to the study of regularity theory and implementation
of the h-p spectral element method for three dimensional elliptic problems on non-
smooth domains with analytic coefficients and piecewise analytic boundary data using
parallel computers. The first paper deals with the regularity of the solution in the neigh-
bourhoods of vertices, edges and vertex-edges and the stability theorem. The second
paper is more technical in nature and addresses proof of the stability theorem [16]. The
numerical scheme, error estimates, construction of preconditioners on regular as well as
singular regions of the polyhedron and the solution techniques are discussed in the third
paper. Theoretical results have been validated by computational experiments indepen-
dently in [17]. We mention here that these papers are based on the thesis work of one of
the authors and we refer to [1] for complete details.

The organization of this paper is as follows. In §2, we introduce the problem under
consideration. We define various neighbourhoods of vertices, edges and vertex-edges and
recall the function spaces in these neighbourhoods, as defined in [2], which will be needed
in the sequel. In §3 we drive differentiability (regularity) estimates in various neighbour-
hoods. In §4, we impose a geometrical mesh on each of these neighbourhoods, define
the spectral element functions on these elements and give construction of the stability
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estimate (without proof) which is the main result of the paper. Section 5 gives concluding
remarks.

2. Preliminaries and notations

Let 2 denote a polyhedron in R3, as shown in figure 1. We shall denote the boundary of
QbydQ.Letl';,i e Z={1,2,...,1}be the faces of the polyhedron. Let D be a subset
of Z and N' = Z \ D. We impose Dirichlet boundary conditions on the faces I';, i € D
and Neumann boundary conditions on the faces I'j, j € N. Further, let 32 = 'Yyt
M = Ujep Ti and T = (J; o T

We consider an elliptic boundary value problem posed on 2 with mixed Neumann and
Dirichlet boundary conditions:

Lw = F inQ,

w = g[o] for x el"[o],

d
(_w) = g forx ertl, (2.1)
on A

where n denotes the outward normal and (%_1:) A is the usual conormal derivative.
It is assumed that the differential operator

3 3
Lw@) = ) —(@ijws)y, + Y bjwy, +cw 22)
i,j=1 i=1
is a strongly elliptic differential operator which satisfies the Lax—Milgram conditions.

Moreover, A = a;; = aj; for all i, j and the coefficients of the differential operator are
analytic. The data F, g% and g!" are analytic on each open face and gl is continuous

on J;pli.

2.1 The neighbourhoods of vertices, edges and vertex-edges

Letl';,i e Z={1,2,...,1}bethe faces (open), S;, j € J = {1,2,..., J} be the edges
and Ay, k € K = {1,2,..., K} be the vertices of the polyhedron. We shall also denote
an edge by e, where e € £ = {S1, S2, ..., Sy}, the set of edges, and a vertex by v where

v’

B, (v)NQ
Q p?,(“)

B, (v)NQ

v

Figure 1. Polyhedral domain 2.
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veV={Ay, Ay, ..., Ak}, the set of vertices. Let B, (v) = {x : dist (x, v) < p,}. For
every vertex v, py is chosen so small that B, (v) N B, , (v') = @ if the vertices v and v’
are distinct.

Now consider a vertex v which has n, edges passing through it (figure 2). We shall let
x3 axis denote one of these edges. Consider first the edge e which coincides with the x3
axis. Let ¢ denote the angle which x = (x1, x2, x3) makes with the x3 axis.

Let

Voo.d,(V,0) ={x € Q: 0 <dist(x,v) < py, 0 <@ < ¢y},

where ¢, is a constant. Let us choose ¢, sufficiently small so that

VPUv‘Pv (U, e/) ﬂ vaﬂpv (U, e//) = @,

where ¢’ and ¢” are distinct edges which have v as a common vertex. Now we define QY,
the vertex neighbourhood of the vertex v. Let £ denote the subset of &£, the set of edges,
such that £¥ = {e € £ : v is a vertex of e}. Then

QU= (pr(v) \ U Vous 0. e)) e

eV

Here, p, and ¢, are chosen so that p, sin(¢,) = Z, a constant for all v € V, the set of
vertices. Let

P Va2 4+ x0% +x3?,
¢ = cos™'(x3/p),
0 = tan'(x2/x1),

Z3

Vertex Neighbourhood

Do
=

Po

Ty

Figure 2. Vertex neighbourhood QY.
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denote the usual spherical coordinates in Q. We now introduce a set of modified
coordinates in the vertex neighbourhood 2V by

x{ = ¢
x; =0,
x3 = x=lnp. (2.3)

Let e denote an edge, which for convenience we assume to coincide with the x3 axis as
before, whose end points are the vertices v and v’ as shown in figure 3.

Assume that the vertex v coincides with the origin. Let the length of the edge e be
le, §y = pycos(¢y) and 6y = py cos(¢py). Let (r, 8, x3) denote the usual cylindrical
coordinates

ro= vxi?+x?

6 = tan"'(xz/x1)
and Q¢ the edge neighbourhood (figure 3)
Q=kxeQ: sy <x3<l.—8y, 0<r <Z}.

We introduce a set of modified system of coordinates in the edge neighbourhood Q¢ by

x{ = tv=Inr,

e _

x; =0,

X5 = x3. (2.4)
€3

/
(,‘5 v P’
‘ |~ i(sv’ = Py COS Py

le — Edge Neighbourhood
Z
@U / 6“ = P COS ¢1)
i)

v

Xy

Figure 3. Edge neighbourhood ¢.
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T3
Z = Po sin ¢v
=
51) = Pv COS ¢1}
Po
e
bu
T2
v

€

Figure 4. Vertex-edge neighbourhood QV~¢.

Next, we define the vertex-edge neighbourhood 2V~¢, shown in figure 4, as follows
QU ={xeQ:0<¢ <y, 0<x3 <8, =pycosey}.

We thus obtain a set of vertex-edge neighbourhoods V=, where v — e € V — &, the set
of vertex-edge neighbourhoods.
Let us introduce a set of modified coordinates in the vertex-edge neighbourhood V¢,

x/7¢ = ¢ = In(tan ¢),
xy ¢ =0,

x37¢ = ¢ = Inxs. (2.5)

2.2 Function spaces and dynamical weights associated with various neighbourhoods

We need to review a set of function spaces and weight functions as described in [2, 21].
By H™(S2), we denote the usual Sobolev space of integer order m > 0 furnished with the
norm

2 2
wllgmey = Y 1D wll2 g

lee]<m

where @ = (a1, 00,03), |@| = a; + a2 + a3, D°w = D{! DY Diw = w o o e
- 1 2 73

is the distributional (weak) derivative of w. As usual H%(Q) = L%(), HO1 () =
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{(w e L*(Q) : Dw € L*(Q),w = 0on dQ}. A seminorm on H" () is given
by

2 2
Wity = Y 1D“wll}s g
lo|=m

Let p = p(x) = dist(x,v) for x € QV and B, € (0, 1/2). We introduce a weight
function

Butlal-2 4,
a2 0 , for |a| > 2
®p ()_{ 1, for |a| < 2

in the neighbourhood 2V as in (2.3) of [2]. Let
H (@) = { wl wlge g = Z 1952 D w2, ) < 00 }
ler| <k
and
B}, (") = {w|w e H*(Q) for all k>2 and [|®%°Dw| 2(gr) < C d* o}

respectively, denote the weighted Sobolev space and countably normed space defined on
QY as in [2].
Let r = r(x) = dist(x, e) for x € Q¢ and B, € (0, 1). Define a weight function

we200 = | 7 forlel| = e 22
1, for |o| <2

in the neighbourhood Q¢ as in (2.1) of [2]. Let
k,2 2
H? (@) = { wl Nl g0 = D2 1957 D Wiz g < o0 }
lrl<k
and
B (2°) = (wlwe H’;f(sze) for all k> 2 and)|| <I>ng°‘w 20 < Cd® al}

respectively, denote the weighted Sobolev space and countably normed space defined on
Q¢ asin [2].

Let p = p(x) and ¢ = ¢(x) for x € Q"7 and By = (v, Be), v € (0,1/2),
Be € (0, 1). We introduce a weight function

) pPrH1=2 (sin(@)) Pt 122 for |o'| = &y +ap > 2
(I,%U (@) =] phrtlal2 for || <2 < |a|
1, for |a| < 2

in the neighbourhood ©2V~¢ as in (2.2) of [2]. Let

k,2 v—ey __ _ 0(2 0{ 2
Hp? (@' = {w| ||w||sz o = D 1957, D wljagur <oo}

| <k
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and
B}, (') = {w| w e HI;;Z(QU_E) forall k > 2 and
”(I)(;;z,g D*w ”LZ(Qv—e) <C d Ol'}

respectively, denote the weighted Sobolev space and countably normed space defined on
QV~¢asin [2].

Let us recall that by C/ZSU (2¥) we denote a countably normed space as described in [2,
21] which is the set of functions w(x) € C°(QY) such that for all «, la| >0,

IDY(w(x) —w®))| < Cd¥al p~ Prtlel=1/2 ), (2.6)

Here, U denotes the closure of Q¥ and w(v) denotes the value of w at the vertex v.
Next, we recall that by C/ZSe (R°9), B € (0, 1) is denoted a countably normed space as

described in [2, 21] which is the set of functions w € CO(Qe) such that for || > 0,

[[rPeterte=t D (w(x) — w(0, 0, x3)llcogey < € d® ! (2.7)
and fork >0
dk
” ~w(0,0, x3) <cd*k, (2.8)
(dx3) CO(QeN{x: x1=x2=0})

where Q¢ denotes the closure of Q¢.
Finally, by C%Uie(Q"_e) is denoted a countably normed space which is the set of

functions w(x) € C%($2V¢) such that

P12 (sin g)Perertea™h DY (w(x) —w(0, 0. x3)) [0 go-e) = C d*a!
2.9)

and

dk
s P2 2 (0, 0, %) —w() < Cd"k!
x3 0 (S_Z"*eﬂ{x:xl :xz:()})
(2.10)

as described in [2, 21]. Here V¢ denotes the closure of V7.

Unless otherwise stated, as in Babuska and Guo [2, 3], we let w(x?), w(x?™¢), w(x®)
denote w(x(x")), w(x(x"~¢)), w(x(x¢)) respectively. The same notation is used for the
spectral element functions u(x?), u(x'~¢), u(x¢) etc. in the ensuing sections.

3. Differentiability estimates in modified coordinates
3.1 Differentiability estimates in modified coordinates in vertex neighbourhoods

Let w, = w(v), denote the value of w at the vertex v and let QY denote the image of
QY in x¥ coordinates. We can now state the differentiability estimates in these modified
coordinates in vertex neighbourhoods. The proof is based on the regularity results proved
by Babuska and Guo in [2]. These estimates are obtained when the differential operator
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is the Laplacian. However they are valid for the more general situation examined in this
paper.

PROPOSITION 3.1

There exists a constant By € (0, 1/2) such that for all 0 < v < p, the estimate

/ > eSIDY (w(x?) — wy)[* dx’ < C(d" m)* v 2P
QUN{xv: x3<In(v)} lor|<m

3.1)

holds for all integers m > 1. Here, C and d denote positive constants and dx® denotes a
volume element in xV coordinates.

Proof. By Theorem 3.19 of [2], for B, € (0.1/2), Hg*(Q") is embedded in C*(Q2")
and

lwllcogey = Cllwlig22
Q) H

g, (V) °

Here, C denotes the positive constant and QU the closure of QV. Hence, we can define
w, = w(v), the value of w at the vertex v and

ol < Cllwlgzz g

Let D*w = wge g pe3 . Here, o = (a1, a2, @3) and o’ = (g, ar2). Let

k2, vy _ 2 _ § : a2 —|d| o 2
al=

and

B}, (@")={wlw e Hy>(Q) for all k> 2,]| @4 01D w| 5 g < Cd*al).

Then from Theorem 4.13 of [2], we have that w € Béu (V) if and only if w € B%}v (Q2Y).
Hence,

Z |pP 72 B wget gor pes |2 p? sing dp dp d6 < (Cd™m!)>. (3.2)
25""|5va
Define x = Inp . Then
i:,oi and d—pzdx.
ax ap p
Now using (3.2) it can be shown that

[P DX wgen gar g > dx dgdo < (Cd"m)>.

2=laf=ma,
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Here, C and d denote generic constants. Hence,

Z f |D%w|?dx? < (Cd™m!)? v!=2Pr, (3.3)

< < ~
2_|a|_m§2”ﬂ{x”: x<Inv}

We now obtain estimates for 0 < |a| < 1. By Lemma 5.5 of [2], since w € les’Uz(Q”),
the estimate

/pz(ﬁt)_z) |w — w(u)|2dx < C||u||12_122(§2v)

Pv
Qv

holds. Hence,
/e@ﬂv*l)X lw — wy|2dxdpdo < (Cd"'m!)>.
fzu
Thus, we conclude that
/ lw — wy|2dx? < C(d"m!)>v' 2P, (3.4)
fl"ﬁ{x”: x<Inv}
We know by Theorem 5.6 of [2] that B} (Q") € C} (Q). Now,
pViw = Q'V, w, where Q¥ = O"P". (3.5)

Here, OV is the orthogonal matrix

[ cos¢pcos® —sind sing cosH
O' = | cos¢sind cosf singsind
—sin¢ 0 cos ¢
and
1 0 O
1
P'=1|0 Sne 0
L0 0 1
Now, in QY
o' <p <7 —@".

Hence, from (2.6) and (3.5) we can conclude that
[Vow| < CpPtl/2, (3.6)
Using (3.6), the estimate

Inv
/ > ID%wdxt < Cf et x gy < cv!=2h (37)

— —0
QUN{xY: x<In v}lal_l

follows. Combining (3.3), (3.4) and (3.7) we obtain the result. U
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3.2 Differentiability estimates in modified coordinates in edge neighbourhoods

Let Q¢ denote the image of Q¢ in x¢ coordinates. The differentiability estimates for the
solution w in edge neighbourhoods in these modified coordinates can now be stated.

PROPOSITION 3.2

Let s(x3) = w (x1, X2, X3) | (x,=0,x,=0)- Then
lo—8,
/ > Dk s Pdx < Cd"m)? (3.8)
v k<m ’

for all integers m > 1.
Moreover, there exists a constant B, € (0, 1) such that for u < Z,

f Z |D% (w(x®) — s(x$))[*dx® < C@"m)>u>1=F) (3.9)
fl"ﬁ{x":xf<lnu} lee|<m

for all integers m > 1. Here, C and d denote positive constants and dx® denotes a volume
element in x¢ coordinates.

Proof. By Theorem 5.3 of [2], B} (Q°) € Cj (Q°). Define s(x3) = w(x,x2,
X3)|(x;=0,x,=0)- Then (3.8) follows immediately from (2.8) since w € B%E(Qe) and hence
w € Cj (). Let

p(x) = w(x) — s(x3).
Then from (2.7), we have that

PPt 2D p ) go ey < Cdal . (3.10)
Now we can show just as in Theorem 4.1 of [2] that

e—1 .

P~ D& p(x) | coggey < Cd™a! (3.11)
using the estimate (3.10). Hence,

IDJ‘fep(xe)| < Cd® a! e(1P)xi
for x¢ € Q€. Using the above we conclude that

In
/ Z |D§ep(x6)|2dx65C(d’"m!)2/ L P

—00
~ al<m
QeN{x¢:x{<In /L}l =

and this gives the required estimate (3.9).

3.3 Differentiability estimates in modified coordinates in vertex-edge neighbourhoods

Let QU=¢ denote the image of ©'~¢ in x"~¢ coordinates. We can now state the
differentiability estimates in modified coordinates in vertex-edge neighbourhoods.
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PROPOSITION 3.3

Let w, = w(v),the value of w evaluated at the vertex v,and s(x3) = w(xy, X2,
X3)|(x,=0,x,=0)- Then there exists a constant B, € (0, 1/2) such that for any 0 < v < §,,

Inv
/ e Y DK, (s —wy)Pdxy T < @ m)* v Y (3.12)
; 3

RPN k<m

Moreover, there exists a constant B, € (0, 1) such that for any 0 < o < tan ¢, and
0<v <6y,

/ e > |D§H(w(xv—E)—s(x;’*‘f))lzdx”—e
Qu-enfxv—e: x] " “<Ina, x3"“<Inv} lyl=m
< C@" m!)? 2P, (1=2B0) (3.13)

for all integers m > 1. Here, C and d denote positive constants and dx’~¢ denotes a
volume element in x'~¢ coordinates.

Proof. By Theorem 5.9 of [2], B} (QV™%) € Cj _(Q"7). Since w € B} (Q'™°),

we conclude that w € C?,M’(Q”_e). Let s(x3) = w(0, 0, x3) and w, = w(v). Then

1y dE
|x3 |tk 1”W(s(m) —wy) | < cd*k!.
3

Now x3 ¢ = Inx3. Hence, it can be shown as before that

Inv
Z|D§§H (G379 — wy) P dx¥ ¢ < C@" m)? 17280,

X k<m
Let p(x) = w(x) — s(x3). Then by (2.9) we have that

<Cd%a!.

P12 (sin ) P +2 1 DY p () | o gumey <

It can be shown as in Theorem 4.8 of [2] that
1CoP> 12 (sin )P 1) p (sin ) pgengea s | o gomey < Cd*ar!

Here, QU= is the image of QV=¢in (¢, 0, p) coordinates. From the above, the estimate
lePr=1/2% (sing)Pe (sin @)% pgeager yes ll o guey < Cd¥al! (3.14)

follows. Here, Q¢ is the image of Q™€ in xV coordinates, x¥ = (¢, 0, x) and x = In p.
Now

vau) = ]vievxufew,
where

secgcotep 0 —tane
JUT = 0 1 0
0 0 1
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Therefore,

vafeu = (Jvie)ilvxvu.
Here,

cospsing 0 sin®¢
o= 0 1 0
0 0 1

Hence,

du ou du ou

sing L 1 sin g
— = COS SINnQY — Sin _—,
Ay 3¢ ax

From the above, we obtain

o ax

m m . .
g =2 2| X o) sin g Aing) g | G.15)

k=1 aj+ar=k\ j1+jr=2m—o;

It can be shown that the coefficients a” satisfy the recurrence relation

1,00, j1, /2
m+1 _ .
Qay o, jijp = ag;l*],otz,jr],jz + (o + Jz)aglllyolzsjlfljz
. m m
I, a5 1, a2 F Gayan—1,j1, o2 3.16)
for |«| < m. For |a| =m + 1,
m+1 L it fi=a, p=2m 42—
oy,az,jij2 = { 0, otherwise . G.17)
Since 0 < ¢ < ¢, where ¢, < /2, we can conclude from (3.14) that
[[ePr=1/D¢ g(Be=DV (i ) Porigrysllco. < Cd¥al. (3.18)
(§@v—e)

Here, V¢ denotes the image of QV~¢ in x?~¢ coordinates. From (3.18), the estimate

[[eBu=1/2x3™¢ g(BemDx]™ D%, p||c(()§ <Cd“a! (3.19)

v—e)

follows.

As in [2], we show (3.19) for the cases « = (m, 0, 0), « = (0, m,0) and « = (0, 0, m)
since the general case can be shown in the same way. It is enough to prove (3.19) for
o = (m, 0, 0) since the other two cases are trivial. Let

Azl = Z Z |al’>71,012»j|,j2|' (3.20)

ajton=k ji+j=2m—a;

Then

A < 4™, (3.21)
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Moreover, for k < m,

|
mm:

Ay =47 (3.22)
The proof is by induction. Using the recurrence relation (3.16), we obtain
AP < 2mAD 4247,
4mm! 4" m!
< 2m +2(—
k! (k—1)!
m+1
< i (m+ 1. (3.23)

Now using (3.14), (3.15), (3.21) and (3.22) it can be shown that

m
Bu—1/2xy ¢ (Be—tixy O

aym

CO(v—e)

m
< m o o +or | |
- Z Z Z |a0l110l271|s12| cd o

k=1 a1+ar=k j1+jr=2m—o

m
< ZAf(Cdkk!)

here C and d denote generic constants. The inequality (3.19) is obtained in the same way.
Now the estimate (3.13) follows immediately from (3.19). ([

3.4 Differentiability estimates in standard coordinates in the regular region
of the polyhedron

Let Q" denote the portion of the polyhedron 2 obtained after the closure of the vertex-
neighbourhoods, edge neighbourhoods and vertex-edge neighbourhoods that have been
removed from it. Thus, let

s-fuelulue]ut U e
veV ecE v—eeV-E
Then
Q" =Q\A.

The solution w is analytic in 2" and we denote it as the regular region of the polyhedron.
In ", the standard coordinate system x = (x1, x3,x3) is retained. The differentia-
bility estimates in these coordinates in the regular region of the polyhedron are now
stated.
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PROPOSITION 3.4

The estimate

Z |D%w(x)|?dx < C(d™ m!)? (3.24)

Qr lal=m

holds for all integers m > 1. Here, C and d denote positive constants and dx denotes a
volume element in x coordinates.

Proof. Now w(x) is analytic in an open neighbourhood of Q”. Hence, (3.24) follows. [

4. The stability theorem

In §2, we had partitioned the domain 2 into a regular region 2", a set of vertex neigh-
bourhoods 2V, where v € V), a set of edge neighbourhoods Q2¢, where ¢ € £ and a set
of vertex-edge neighbourhoods ©2V~¢, where v — ¢ € V — £. In the regular region Q"
standard coordinates x = (x1, x2, x3) are used and in the remaining regions modified
coordinates are used (which are introduced in Section 2). We now divide 2" into a set
of curvilinear hexahedrons, tetrahedrons and prisms. We impose a geometrically graded
mesh in the remaining regions consisting of hexahedrons and prisms which is described
in this section. We remark that a tetrahedron (figure 5) can always be divided into four
hexahedrons (see [28, 29]), in the same way that a triangle can be divided into three rect-
angles by joining the centre of the triangle to the midpoints of the sides. Moreover a prism
can be divided into three hexahedral elements. Hence we can choose all our elements to
be hexahedrons.

A set of spectral element functions are defined on the elements. In edge neighbour-
hoods and vertex-edge neighbourhoods these spectral element functions are a sum of

Figure 5. Decomposition of a tetrahedron into four hexahedrons.
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tensor products of polynomials in the modified coordinates. Let {F,} denote the spec-
tral element representation of the function #. We shall examine two cases. The first case
is when the spectral element functions are nonconforming. The second case is when the
spectral element functions are conforming on the wirebasket WB of the elements, i.e. the
union of the edges and vertices of the elements. In both these cases the spectral element
functions are nonconforming on the faces (open) of the elements.

To state the stability theorem we need to define some quadratic forms. Let N denote
the number of refinements in the geometrical mesh and W denote an upper bound on the
degree of the polynomial representation of the spectral element functions. We shall define
two quadratic forms VNV ({F,}) and UN-W ({F,}).

Now

VAV ((F) = (F) + Vi,

regular vertlces Fu })

Vs (T} - @.1)

({]: }) + Vvertex -edges ({

In the same way,

Z/{N’W ({‘7:'4}) = regular ({‘7: }) + Z/{Vemces ({]: }) + uvertex -edges ({‘F })
Uy (AT} - 4.2)

(&

Let us first consider the regular region Q" of 2 and define the two quadratic forms
Vggl‘gar ({Fu}) and L{regulm ({Fu})- The regular region 2" is divided into N, curvilinear
hexahedrons, tetrahedrons and prisms. Let Ql’ be one of the elements into which Q" is
divided, which we shall assume is a curvilinear hexahedron to keep the exposition simple.
Let Q denote the standard cube Q = (—1, 1)3. Then there is an analytic map M; from Q
to 2 which has an analytic inverse. Let ] be as shown in figure 6 and let {Flr’i}]f,- <nf
denote its faces.

Now the map M is of the form

x = M (A1, A2, A3),

.
I

T3

T2

xy

Figure 6. Elements in ".
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where (A1, A2, A3) € Q, the master cube. Define the spectral element function ul’ on er
by

w w W

uj () =33 ay ju Aagak.

i=0 j=0 k=0

Now the spectral element functions are nonconforming in the general case. Let [M]h"lr_

denote the jump in u across the face I'; ;. Let the face I'; ; = T}, m,j Where 7, . is a face
of the element 2/,. We may assume that the face I'y; corresponds to A3 = 1 and F’
corresponds to A3 = —1. Then [u]|1~r is a function of only A1 and A;.

We now define

reguldr (Fuh) = Z/ |Lul (x)l dx

3
+ Z <||[u]||(2)’rii+Z||[uxk]||%/2,F[i>

r,ﬁig'zr\asz k=1
2
ou’
2 l
SD DR 7 PRI N L (43)
L v ) allijarr
Iy, criol rr,crii /2.1

The fractional Sobolev norms used above are as defined in [20].
Since I‘I’i, corresponding to A3 = 1, is the image of § = (—1, 1)2, or T the master
triangle, in A, A coordinates,

(w(hi, k) — w(i, 1))

iy, —||w||0E+// G, 22) — 2))+ iy diadd) i)
()»1—?»/)2+()»2—)x’2)2)

(4.42)

for 0 < o0 < 1. Here, E denote either S or 7. However, if E is S, then we prefer to use
the equivalent norm [26]

U (wh, k) —w], A2))?
ol = ||w||OE+/ / 2SI st
1

(WA, A2) — w(ky, A5))2 /
/ / / (Ay — Ab)1H20 22 dapdirhdhy. (4.4b)

Moreover,
w |?
2
- . 4.5
||w||1+U,F,J- )\l o, E ( )
Next, we define
2
(F) = / Dru [ - o
regular Z (M;)—I(Q;) Z | A4 |

loe|<2
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Let v be one of the vertices of Q2. In figure 7, the vertex neighbourhood, describe(_i in §2,
is shown. Let SV denote the intersection of the surface of the sphere B, (v) with QV, i.e.

SV ={x e Q": dist(x,v) = p,}.

We divide the surface SV into a set of triangular and quadrilateral elements. Let S}?
denote these elements, where 1 < j < [,. Here, I, denotes a fixed constant. Let 1,
be a positive constant less than one which shall be used to define a geometric mesh (as
in figure 8) in the vertex neighbourhood QY of the vertex v. We now divide QY into
Ny = I,(N + 1) curvilinear hexahedrons and prisms {2]}1</<n,, Where €} is of the
form

Q ={x: (9,0)€S%, pf <p<piyi)

forl1 < j <1, and 0 < k < N. Here, p{ = po() V=% and 0 < p, < 1 for
1 <k < N + 1. Moreover, p; = 0.

Let QY denote the image of Q" in xV coordinates (introduced in §2) and Q}’ denote the
image of the element €2;. Then the geometric mesh {€}'}1</<y, which has been defined

on Y, is mapped to a quasi-uniform mesh {Q})}ISISNU on QV, except that the corner
elements

Qf ={x: (¢,0) €Sy, 0<p<pi}
are mapped to semi-infinite elements

Q}’ ={x": (¢,0)eSY, —oo < x <lnpi}.

T3

v
Sj

o)

T

Figure 7. Mesh imposed on the spherical boundary S”.
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Figure 8. Geometrical mesh imposed on QV.

We now specify the form of the spectral element functions u;(x") on the elements.
Consider first the case when Qf is a corner element of the form

Q) ={x": (¢,0) € S, —00 < x <Inp}).

In this case, we define u} (x") = h", where h" is a constant. Thus, at all corner elements
the spectral element functions assume the same constant value for that corner.

Now there is an analytic map M}’ from Q, the master cube to QV, which has an analytic
inverse. Here, the map M l” is of the form

x’ = M} (A1, A2, A3).
We define the spectral element function u; on Q}’ by

Wi Wi W

uf ) =333 Brsu AL

t=0 s=0 r=0

Here, 1 < W; < W. Moreover, as in [21], W; = [ui] for 1 <i < N, where u; > Oisa
degree factor. Hereafter [a] denotes the greatest positive integer < a.
Let v € V denote the vertices of 2. Define

LAIR(TA I SR AR T A) @7
veV
and
U GFD = YUYV (FD. “8)
veV

We now fix a vertex v and define the quadratic forms VI{V’W({]-',,}) and UI{V’W({]-'M}).
Consider the vertex neighbourhood 2V and let ] be one of the elements into which it

is divided. Now €2} has n} faces {F;)i}lsisnf~ Let fl}’ be the image of ;" and f‘l”i be the
image of I'/; in x¥ coordinates.
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Define L%u(x?) so that

/~|L”u(x”)|2dx”=/ 02 |Lu(x)|?dx. (4.9)
QY o

/

Here, dx? denote a volume element in x¥ coordinates and dx a volume element in x
coordinates. In Chapter 3 of [1], it is shown that

3
L'u(x") = —divyeo(e?/2/sin g A"Vywou) + Y bluye +¢u. (4.10)
i=l
In the above, A” is a symmetric, positive~deﬁnite matrix. y
LetI'/; be one of the faces of €2} and I'}’; denote its image in x" coordinates. Let P be
a point belonging to f‘ﬁ ; and v" be the unit normal to f‘ﬁ ; at the point P. Then define

<8u > v\T sv
(P) = )T A V,ou. (4.11)

av?
Here, the matrix AY is as in (4.10). Let

R}, = sup (e%).

VT
X erl,i

We now define
Ny
VIVAED =Y ﬁvlL”u7<x”>|2dx”

- Q
I=1,u(Q}) <00 =

- x o (lyml,

Fz”,-gszv\asz,u(fh)m
2
Rl
Z pilisg] 172,17,
v v 2
R} .u
+ UZ” Vit 328,
Iy, cer ([ <oo
ouy 2
v
+ > mli(avv) o (4.12)
o vl
Li=2 () ) <oo

The fractional Sobolev norms used above are as in (4.4) and (4.5). Moreover, u denotes
measure. Finally, the quadratic form Z/{N W ({(F.)) is given by

U W({ﬂ})-Z/ S Y ID%uf ()2 . (4.13)

l|<2

We now define VV: ({Fu}) and u-" ({Fu}). Let v — e denote one of the

vertex -edges vertex-edges

vertex-edges of 2. Here, v — e € V — &, the set of vertex-edges of 2. Let QV~¢ denote
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the vertex-edge neighbourhood corresponding to the vertex-edge v — e. We divide QV~¢
into N,_,. elements Q;’fe,l =1,2,..., Ny_¢,using a geometric mesh.

Figure 9 shows the vertex-edge neighbourhood 2'~¢ of the vertex v and the edge e.
Now

QU ={xeQ:0<x3<68,,0<¢p <y}
Here, §, = py cos ¢,. We impose a geometrical mesh on QV~¢ as shown in figure 9 by
defining

(x3)0 =0 and (x3); = &y (o) ¥+

forl <i <N +1.Let

¢’ =In((x3)i)

forO<i <N +1.

Let us introduce points ¢y “, ..., ¢y 5 such that ;¢ = 0 and tang; * =
uN+1=tan(¢,), for | <i < N + 1. Here s, is a positive constant less than one. Thus,
we impose a geometrical mesh on ¢ with mesh ratio u.. Finally, 6/"° < 6 < 6)7¢. A
quasi-uniform mesh

07 =0"°“<0/"<-- < G}Uij =6,"°¢
is imposed in 6. Let V¢ be the image of QV~¢ in x?~¢ coordinates (introduced in §2).
Thus, QV~¢ is divided into Ny_, = I,_.(N + 1)? hexahedrons {0 °}u=1,...N,_.» Where

.....

Q;’_e{x”_e <y <1,Di”+_f, 9;_6 <0< 9}:;’, G <t < {,:’J:f}.

T3

T

Ty

Figure 9. Geometrical mesh imposed on QV¢.
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We now define the spectral element functions on the elements in QV~¢. Consider an
element

Q=" Y <y <Y 9}’7"< 0 < 9;;13, —o0 < ¢< ¢

Then on QZ‘E, we define

v—e v—e v
u, “=h =h",

where A" is the same constant as for the spectral element function u;, defined on the corner
element

Q={x": (¢,0) € S, —oo < x < In(p])}.

n

Next, we consider the element

AV—e __ v—e . v—e v—e v—e v—e v—e
Qp ={x 00 <Y < Yy ,Oj <9<9j+1,§k << k+1}'

Here, k > 1. Then on fZ:,’,_e, we define

Wy

W) =Y gt
=0

Here, 1 < W, < W. Moreover, W, = [uzk] for 1 < k < N, where 1 > 0 is a degree
factor [21]. Now consider

v—e __ v—e . v—e v—e v—e v—e v—e v—e
Q, —{x Yy <¢<1//l.+1,9j <9<6j+1,§k <§<§k+l}

forl1 <i <N,1 <k < N.Thenon Qg_e,wedeﬁne

Wg Wy Vg

W)=Y NNy YO

r=0s=0 t=0

Here, 1 < W, < Wand 1 < V, < W. Moreover, W, = [uii],V, = [n2k] for
1 <1, k~§ N, where w1, iy > 0 are d~egree factors [21]. B
Let I',7¢ be one of the faces of €2)7¢ such that (I';;¢) < oo, where u denotes

measure. We introduce a norm ||| u |||2,_, as follows:
l_‘n,i
— . — v—e — .
Let E)° = sup (sing)and F,7° = sup (e3 ). We also define G, ;* which
x”*gel:}j;‘) x”*fel:};;"
is used in (4.16).
(1) If f}'ﬁe ={x": ag <x]° <ar, fo<x, ¢ < pB1. x5 © = ), then define

G, *=E,.“and

n,i

B o
Mulllfoe = ELCF TS (/ / W (Y. 60, yo) dyr do
Bo Jag

Bi a e (u(y, 0, y0) — u(@', 0, y0)) '
do dvr d
i /ﬁ / / W 7 e
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N / ! /ﬂl W@, 0, v0) —u(y, 0, ))?
Bo

oo do d@/) .

(4.14a)

2) If f‘,‘l’je ={x": X7  =a0, fo <x; © < PB1. Yo <x; ° < yi}, then define
G, .*=1land

2 A,
ullBe = FY (/ /,3 W2 (@0, 0, ¢) dO de
n,i Y0

+/ 1 /ﬂl (u(wo, 0, ¢) — u(ao, 0, ¢))? 10 46’
Y Bo (9 _9/)2
v—e " (u(ag, 0, §)—ulag, 0, ¢))? ;
4+ E! /ﬁ dQ/y/y e dg“d;).
(4.14b)

3) If f‘,'j;e ={x"": ap < x{7¢ < a1, x5 °=po. yo <xj ¢ < yi}, then define
G, .“=1land

2 v—e " al 2
MullZ-. = F; ([ / > (¥, Bo. §) dr d¢
mwt Y0
o] o _ / 2
+/ dg/ /‘(u(wﬂo;“) u(y’, Bo. ¢)) Ay dy’

(W —y)?
v—e [ ", Bo, &) —u(, Po, ¢))? )
EY". dcd .
e[ o] ] =P o
(4.14¢)

Let LV~¢ be a differential operator such that

/Q,Ll'e

Here, dxV~¢ denotes a volume element in x¥~¢ coordinates and dx a volume element in x
coordinates. In Chapter 3 of [1], it is shown that

L”_eu(x”_e)|2 dx""¢ = / p?sin? ¢ |Lu(x)|? dx.
Qp

3
L' u(x""%) = —divyoe (/2 AV Vo) + Y b u e+ "Cu. (4.15)
i=1

Here, AV~¢ is a symmetric, positive definite matrix. We now define the quadratic form

Nvfe
VAR = Y]

I=1,u(Q) ") <00

> (|

[ cQr=e\oQ,

— — —en |2 —e
LY eulv e(xv L)i dxV ¢

(fw—e) O’Frll];e
n,i <00

1 g
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I Dt g e+ 1137 L] |||%v_e)

5 (e

v—e 0
r‘n,i QF[ ]’

0.0
(79 <00

2 v
I v o |||f~3;e U E, ;e |||r” e)

au v—e 2
+ ‘H | @l
v—EZ [ av—e TGS (10
Fn.z gr ’,u(l:‘::;e)<00
Here, u denotes measure and the term ( 3 O ,_,) Av—e 15 defined as follows: Let f;’ ¢ bea

face of QZ A P be a point belonging to F; ¢ and v"~¢ denote the unit normal to f‘;?e at
the point P. Then

ad -
<8v:—f) (P) = (") A"V u-cu. (4.17)
AU*E

Now the quadratic form Vvemx edges({]-",4}) is given by

V\]/\ért‘q):vx edges({‘F }) - Z VN W({]: }) (418)
v—eeV—-E

Next, we define the quadratic form N, W({]—" . Let w’~ e(x” ¢) be a weight function
such that

w(x{ 7 =1 forx; ¢ =>¢/7¢ =In(tang] ™)

and which satisfies

v—e

1
/ w' T (x] ) dx{ T = 1.
—00

We shall choose
w'(x{ 7)) =1 forx] “=¢/ -1
and
w'(x{T) =0 forx; ¢ <¢/ T —1.

Then

o Ny—e azuv—e 2
s e [
i,j=1,2 i
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Ny_e
+Z o (ulv—e)Zex;_e wv—e(xf—e) dxV¢.
lZl’lL(fllvie):OO 2
(4.19)
The quadratic form Mxég-edges({fu}) is then given by
Upiedges (FD = Y U AFLD. (4.20)

v—eeV-E

Finally, we define the quadratic forms Ve[\(lige‘; ({Fu}) and L{eﬁ;gg; ({Fu}). Consider the edge

e whose end points are v and v’. The edge e coincides with the x3 axis and the vertex v
with the origin. Let the length of the edge ¢ be [,. Now the edge neighbourhood Q€ is
defined as

Q={xeQ:0<r<Z=pysing,, 0f <0 <6, 8 <x3<lo—6,}.

Here, (r, 6, x3) denote cylindrical coordinates with origin at v, §, = p, cos¢, and
8!, = p; cos ¢, are as shown in figure 10.

A geometrical mesh is imposed in r by defining r§ = 0 and ¢ = Z(u,)N !~/ for
j=12,..., N+ 1. We impose the same quasi-uniform mesh on 6 as we did in the
vertex-edge neighbourhood, viz.

0 =65 <0) <--- <0 =6.

Iav’ = Po’ COS Our

Z = pysin ¢,

V
[y

$ 61) = Po COS ¢1)

T2

I

Figure 10. Geometrical mesh imposed on .



Regularity estimates and stability theorem 265

Here, I, = I, and 0] = kafe for 0 < k < I,. A quasi-uniform mesh is defined in
X3, by choosing

5U=Z8<ZT<---<Z§e:le—8;

Thus, ¢ is divided into N, = I, J, (ZY + 1) elements. Let Q¢ be the imag~e of Q¢ in x°
coordinates (introduced in §2). Thus, 2¢ is divided into N, hexahedrons {Q2¢ },,=1,.. N,
where

Q= {x: In(ry) < x{ <In(ry, ), 9 < x5 < 9/“, Zp < x5 < Zi )
We now define the spectral element functions on the elements in $2¢. Consider an element
Q; ={x: —o0 < x{ < In(ry), Qe < x5 < 9/“, Z, <x3<Zy .}

Then, we define

w
U (x%) = Z a (x$)".

t=1

This representation is valid for all j for fixed n. Next, consider the element

Qg ={x: In(r{) < x{ <In@r/,)), 9; < x5 < 9;+1, Z, <x3<Zy.,}

for 1 <i < N. Then, we define

Wy Wy W

CESEDBPIPBLENCHECICD

r=1s=1 =1

Here, 1 < W, < W. Moreover, as in [21], W, = [ui] forall 1 <i < N, where u; > 0
isa degree factor. ~ ~
Let Ff;”. be one of the faces of 2, such that “(Fﬁz, ;) < 0o, where u denotes measure.

We define a norm ||| u |||12:€, as follows:

m,i

Let an,i = sup (e"). We also define H,, . which is needed in (4.25).

e
X el"mvi

(1) Ifl:li” ={x: ap < x{ <oy, fo < x5 < P1, x5 = ), then define H; . = G¢ ;

and
5 B po 5
Ml = Gf,,,i(/ / W2z, 6, yo) dedd

+/ d@/ /“‘ (u(, 0, VO)—M/(TZ 0, v0))? Jede’
o (t —1))

+/ dr/ fﬂl (u(t, 0, y0)— ufrz 0'v0))? dgdg,)_
@ Bo Jpo ©® -0
(4.21a)
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2) If f‘fn,i ={x°: x{ = a0, Po < x5 < P1, Yo < x5 < 1}, then define Hn‘;’i =1 and

) v B )
|||u|||1:~e X = </ / u (C{O,Q,X?,)ded.X?,
mi v YBo

Y1 ﬂ] ,0, — 0,
n / dxs / / (0.6, x) ”/(020 x2)° d6do’
¥ o /b0 0 —0)

Bi Vi 0 0 2
e i/ d@/ /' (u(ap,0,x3) — u(ag X3)) dx deé)
“JBo Y0 (x3 — x3)

(4.21b)

3) IfF,‘j” ={x°: ap < x{ < a1, x5 = Po, Yo < x5 < y1}, then define Hn‘;J = 1and

Y1 23] 2
I3, (f / u*(t, Po, x3) drdxs
I71l )/0 CfO
/ / / (u(z, Bo, x3) — u(r’, o, x3))* Jede’
a0 (t —7)?

_ 2
+Ge, i/ dr/ /V‘ (u(z, Bo, x3) M(T2 Bo. x5)) dxad, > '
" Jag w Jw (x3 — x3)

(4.21¢)
Let L€ be a differential operator such that
/~ [Lu(x)|?dx® = / r2|Lu(x)|dx. (4.22)
§25, §25,

Here, dx¢ denotes a volume element in x¢ coordinates and dx a volume element in x
coordinates. In Chapter 3 of [1], it is shown that

3
Lu(x®) = —divye (A°Vyeu) + Y bfuye + éu, (4.23)
i=1

where A€ is a symmetric, positive definite matrix. Let f"‘; ; be one of the sides of an and

P a point belonging to 1:‘5“ Let v¢ be the normal to f‘s“. at P. Then

< du > enT pe D
(P) ()" A°Vyeu(P) . 4.24)

ave
We now define the quadratic form

Ne
WVEN= Y [ rweopar
I1=1,p(82f) <00 2

> (/s

r,ﬁ[gs‘ze\ag,

i g, 0

(Y )<oo
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Hll g I, + 11 GF LI )

e2 2 e 2
+re ;{O] e, e + |||uxf|||f],:i+||]G,)i uglllF, )
Li= ’u(l:f,i)<oo
+ I ( ) 45
re %2[1] ave 1 ( )
LI=2 (Y <o
The quadratic form edgeg({]-" }) is given by
Vi (D =D VIV (FD. (4.26)
ecE

Next, let us define the quadratic form Z/Iév W ({Fu}). Let wé(x}) be a weight function such
that

wé(x{) =1 forx{ > In(r})

and

In(r{)
/ w(x}) dx{ = 1.

—00

We shall choose

wé(x{) =1 forx{>In@}{)—1
and

wé(x{) =0 forx{ <In(ry) — 1.

Then

NW & 0%uf ’ 2 N ’
, _ T
UvaEn = /Q< > (ax;ax;> e §<ax;ax§)

I=1,u(S)<o0 1 Nij=12
32ue aue aue
4 1 / 2 ] )
+e T ((ax;:)z) +Z <8x€> +e T <_8x3€> +(u16‘) )dxe
i=1 i

Ne
+> /Q (u§)?we (x§)dx®. (4.27)
=Lu(@f)=c0 "

Here, & denotes measure. The quadratic form Ué\égve‘;({]-"u}) is then given by
Ul (FD) = Y UMY (Fu. (4.28)
ecE

Finally, using (4.1) and (4.2) we can define the quadratic forms VV-W ({F,}) and
UNW{Fu)).
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We now state the stability results whose proof can be found in [16]. It is assumed that
N is proportional to W.

Theorem 4.1. Consider the elliptic boundary value problem (2.1). Suppose the boundary
conditions are Dirichlet. Then

UMY (FD < Cn WV FD (4.29)

provided W = 0 (eN") for a < 1/2. Since we choose N proportional to W this condition
is satisfied.

Next, we state the corresponding result for general boundary conditions.

Theorem 4.2. If the boundary conditions for the elliptic boundary value problem (2.1)
are mixed, then

UMV (Fy < NV AFY (4.30)
provided W = 0eN") fora < 1/2.

The rapid growth of the factor CN* with N creates difficulties in parallelizing the numer-
ical scheme. To overcome this problem, we state a version of Theorem 4.2 when the
spectral element functions vanish on the wirebasket. Let WB denote the wirebasket along
which the spectral element functions that need to be conforming. Here the wirebasket
denotes the union of the vertices and edges of the elements.

Theorem 4.3. If the boundary conditions are mixed and the spectral element functions
({Fu}) are conforming on the wirebasket WB and vanish on WB, then

UMY (FD < Cln WV FD (4.31)
provided W = 0(eN%) fora < 1/2.

5. Conclusions

We will use the stability theorems 4.1 and 4.2 in the forthcoming papers to formulate
a numerical scheme and a parallel preconditioner (similar to that described in [15] for
two dimensional problems) to obtain an exponentially accurate solution to the elliptic
boundary value problem on non-smooth domains considered in this paper.

Another version of the method can be defined by choosing the spectral element func-
tions to be conforming on the wirebasket of the elements (Theorem 4.3). An efficient
preconditioner can be obtained for the Schur complement of the common boundary
values. We intend to examine this in future work.
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