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1. Introduction

Let x1, x2, . . . , xn denote n real numbers. Their arithmetic mean is the number

x̄ =
1

n

n
∑

i=1

xi (1.1)

and the r-th central moment is

mr =
1

n

n
∑

i=1

(xi − x̄)r . (1.2)

Then, s = √
m2 is the standard deviation of xi (i = 1, 2, . . . , n). The Samuelson

inequality [10] says that

s2 ≥
1

n − 1

(

xj − x̄
)2

, (1.3)

or equivalently

x̄ −
√

n − 1 s ≤ xj ≤ x̄ +
√

n − 1s. (1.4)

The Samuelson inequality also provides an upper bound for the maximum deviation d

from the mean

d ≤
√

n − 1 s, (1.5)
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where

d = max
i

|xi − x̄| . (1.6)

Refinements, extensions and applications of such inequalities have been studied exten-

sively in the literature (see [2, 4, 8, 11, 14]). One refinement of the Samuelson inequality

(1.5) gives an upper bound for the maximum deviation in a given range r = M − m,

where m ≤ xi ≤ M, i = 1, 2, . . . , n. Thus if ns ≥
√

n − 1r, then

d ≤
r

2
+

√

( r

2

)2

− s2

and if ns ≤
√

n − 1r, then

d ≤
r

2
+

√

n − 2

2

(

s2 −
r2

2n

)

.

(see [11]). Such inequalities are useful in various contexts. Wolkowicz and Styan [14]

have observed that if the eigenvalues of an n × n complex matrix are real, as in the case

of Hermitian matrices, the inequalities (1.4) provide bounds for the extreme eigenvalues.

Let λi be eigenvalues of A, i = 1, 2, . . . , n. Let B = A − trA
n

I, where trA denotes the

trace of A. Then,

tr A

n
−

√

n − 1

n
tr B2 ≤ λi ≤

tr A

n
+

√

n − 1

n
tr B2. (1.7)

In some different context and notations, inequalities related to (1.4) also appeared in

the work of Laguerre [6]. In particular, let x1, x2, . . . , xn denote the roots, all of which we

assume to be real, of the n-th degree monic polynomial equation with n ≥ 2,

f (x) = xn + a1x
n−1 + · · · + an−1x + an = 0. (1.8)

Then [6],

−
a1

n
−

√

(n − 1)2 a2
1

n2
−

2 (n − 1) a2

n
≤ xi

≤ −
a1

n
+

√

(n − 1)2 a2
1

n2
−

2 (n − 1) a2

n
(1.9)

for all xi .

It is natural to consider the genralization of Samuelson’s inequality for higher order

moments and look for related extensions and applications. We obtain a generalization

of the Samuelson inequality that gives a lower bound for the central moment m2r and

bounds for all xi in terms of x̄ and m2r (Theorem 2.1 and Corollary 2.2, below). This

also provides an upper bound for the maximum deviation in terms of central moment m2r

(Corollary 2.3). As an application we find bounds for the eigenvalues of a matrix when

all its eigenvalues are real (Theorem 3.1). An upper bound for the condition number is

given in Corollary 3.2. We give examples and compare our bounds with those given by

Wolkowicz and Styan [14]. Likewise, we give bounds for the largest and smallest roots of

a polynomial equation when all its roots are real (Theorem 4.1).
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2. Main results

Theorem 2.1. If m2r is the central moment of n real numbers x1, x2, . . . , xn, then

m2r ≥
1 + (n − 1)2r−1

n (n − 1)2r−1

(

xj − x̄
)2r

(2.1)

for all j = 1, 2, . . . , n and r = 1, 2, . . . .

Proof. From eq. (1.2), we write

m2r =
(

xj − x̄
)2r

n
+

n − 1

n

1

n − 1

n
∑

i=1,i �=j

(xi − x̄)2r . (2.2)

For m positive real numbers yi , i = 1, 2, . . . , m,

1

m

m
∑

i=1

yk
i ≥

(

1

m

m
∑

i=1

yi

)k

, k = 1, 2, · · · . (2.3)

Applying (2.3) to n − 1 positive real numbers (xi − x̄)2 , i = 1, 2, . . . , n and i �= j, we

get

1

n − 1

n
∑

i=1,i �=j

(

(xi − x̄)2
)r

≥

⎛

⎝

1

n − 1

n
∑

i=1,i �=j

(xi − x̄)2

⎞

⎠

r

. (2.4)

Further, the Cauchy–Schwarz inequality implies that the inequality (2.3) holds good for

all real numbers yi when k = 2. Therefore

1

n − 1

n
∑

i=1,i �=j

(xi − x̄)2 ≥

⎛

⎝

1

n − 1

n
∑

i=1,i �=j

(xi − x̄)

⎞

⎠

2

. (2.5)

On the other hand, the sum of all the deviations from the mean is zero, therefore

n
∑

i=1

(xi − x̄) = 0,

and we get that

n
∑

i=1,i �=j

(xi − x̄) = x̄ − xj . (2.6)

Combining (2.4)–(2.6), we find that

1

n − 1

n
∑

i=1,i �=j

(xi − x̄)2r ≥
(

x̄ − xj

n − 1

)2r

. (2.7)

Inserting (2.7) in (2.2), and by computing leads to (2.1). �
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It is clear from the derivation that inequality (2.1) is strict if xj is different from m or M .

Equality holds in (2.1) when xj = m and xi = M or xj = M and xi = m, i = 1, 2, . . . , n

and i �= j. We now find bounds for xj in terms of mean (x̄) and central moment (m2r) in

the following corollary.

COROLLARY 2.2

With notations as above,

x̄ −

(

n (n − 1)2r−1

1 + (n − 1)2r−1
m2r

)
1
2r

≤ xj ≤ x̄ +

(

n (n − 1)2r−1

1 + (n − 1)2r−1
m2r

)
1
2r

(2.8)

for all j = 1, 2, . . . , n.

Proof. It follows from inequality (2.1) that

(

xj − x̄
)2 ≤

(

n (n − 1)2r−1

1 + (n − 1)2r−1
m2r

)
1
r

. (2.9)

Since, y2 ≤ a2 if and only if −a ≤ y ≤ a, the inequalities (2.8) follow from (2.9). �

Equality holds on the left(right) of (2.8) if and only if n − 1 largest(smallest) xi are

all equal. The upper bound for the maximum deviation d from the mean is given in the

following corollary.

COROLLARY 2.3

If d is a maximum deviation from the mean (x̄) of n real numbers x1, x2, . . . , xn, then

d ≤

(

n (n − 1)2r−1

1 + (n − 1)2r−1
m2r

)
1
2r

. (2.10)

Proof. The inequality (2.9) is evidently equivalent to (2.10). �

Note that Samuelson’s inequalities (1.3), (1.4) and (1.5) are respectively the special

cases of inequalities (2.1), (2.8) and (2.10), r = 1. One of the interests in the special

case r = 2 is that the sample kurtosis is defined in terms of the second and fourth central

moment as

β2 =
m4

m2
2

.

For r = 2, the inequality (2.8) is tighter than (1.4). This follows from the fact that [3]

β2 ≤
n2 − 3n + 3

n − 1
.

For r = 2 and n = 3, the inequalities (1.4) and (2.8) give equal estimates. It also follows

that if the value of the fourth central moment (m4) is prescribed, then (2.10) gives a
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better bound for maximum deviation than the corresponding bound given by Samuelson’s

inequality (1.5).

3. Bounds for eigenvalues using traces

Let A be an n × n complex matrix with real eigenvalues as in case of a Hermitian matrix.

Several inequalities for the eigenvalues in terms of traces of A,A2 and A3 are given in

the literature (see [1, 12–14]). It is costly to calculate the traces of higher powers of A.

However, it is always of interest to know if better estimates can be obtained at the cost of

more calculations. We obtain here a generalization of inequality (1.7) that involves a trace

of B2r , r = 1, 2, . . . and we mention a number of examples to illustrate the utility of these

bounds. The condition number of a positive definite matrix is the ratio of the largest to the

smallest eigenvalue. The bounds for this ratio in terms of the traces are given in [14]. We

show by means of examples that our bounds are also useful in estimating the upper limit

of the condition number.

Theorem 3.1. Let A be a complex n × n matrix with real eigenvalues λi , i = 1, 2, . . . , n

and let B = A − tr A
n

I . Then,

tr A

n
−

(

(n − 1)2r−1

1 + (n − 1)2r−1
tr B2r

)
1
2r

≤ λi ≤
tr A

n
+

(

(n − 1)2r−1

1 + (n − 1)2r−1
tr B2r

)
1
2r

(3.1)

for all i = 1, 2, . . . , n, and r = 1, 2, 3, . . . .

Proof. The arithmetic mean of eigenvalues λ1, λ2, . . . , λn is

x̄ =
1

n

n
∑

i=1

λi =
tr A

n
. (3.2)

The eigenvalues of the matrix B are λi − tr A
n

. Therefore

m2r =
1

n

n
∑

i=1

(

λi −
tr A

n

)2r

=
1

n
tr B2r . (3.3)

The inequality (3.1) follows from (2.8), and substitute the values of x̄ and m2r from (3.2)

and (3.3), respectively. �

Let λi be the eigenvalues of a Hermitian matrix A, and suppose m ≤ λi ≤ M, i = 1,

2, . . . , n. Wolkowicz and Styan [14] have shown that if tr A > 0 and

p =
(tr A)2

tr A2
− (n − 1) > 0 , (3.4)

then A is positive definite and

M

m
≤

1 +
(

1 − p2
)

1
2

p
. (3.5)
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The inequality (3.5) gives an upper bound for the condition number
(

M
m

)

. But, for

example, for the matrix

A =

⎡

⎢

⎢

⎣

5 1 1 1

1 6 1 1

1 1 1 1

1 1 1 8

⎤

⎥

⎥

⎦

, (3.6)

the value of p < 0 and therefore (3.5) is not applicable. The following corollary is
stronger than (3.5).

COROLLARY 3.2

Let A be an n × n Hermitian matrix. If tr A > 0 and

tr A

n
≥

(

(n − 1)2r−1

1 + (n − 1)2r−1
tr B2r

)
1
2r

(3.7)

for some r = 1, 2, 3, . . . , then A is positive definite and

M

m
≤

β

α
, (3.8)

where α and β are respectively the lower and upper bounds in (3.1).

Proof. The assertions of the corollary follow immediately from Theorem 3.1. If (3.7)

holds, the first inequality (3.1) shows that all the eigenvalues of A are positive. �

The matrix A in (3.6) satisfies the condition of Corollary 3.2 for r = 3, therefore
M
m

≤ 55.181. This also shows that (3.7) is more useful than (3.4).

We now mention several examples to illustrate the effectiveness of the bounds in

Theorem 3.1.

Example 1. For the 3 × 3 matrix,

A =

⎡

⎣

5 1 2 − i

1 1 1 + 2i

2 + i 1 − 2i 3

⎤

⎦ ,

the estimates of Wolkowicz and Styan [14] and (3.1) with r = 2 both give −1.4721 ≤
λi ≤ 7.4721. For r = 3, we have from (3.1), −1.325 ≤ λi ≤ 7.325. The eigenvalues of

A are 3, 3 ±
√

15.

We now borrow examples of Wolkowicz and Styan [14] to compare the bounds (3.5)

and (3.8) for the condition number of a positive definite matrix.

Example 2. Let

A =

⎡

⎢

⎢

⎣

4 0 2 3

0 5 0 1

2 0 6 0

3 1 0 7

⎤

⎥

⎥

⎦

.
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The estimate (3.5) gives M
m

≤ 13.928 (see [14]), while from (3.8), M
m

≤ 12.600, r = 2.

Example 3. Let

A =

⎡

⎢

⎢

⎢

⎢

⎣

4 1 1 2 2

1 5 1 1 1

1 1 6 1 1

2 1 1 7 1

2 1 1 1 8

⎤

⎥

⎥

⎥

⎥

⎦

.

From (3.5), M
m

≤ 36.973 (see [14]), while from (3.8), M
m

≤ 18.918, r = 2.

4. Bounds on roots of polynomials

In the theory of polynomial equations, the study of polynomials with real roots is of

special interest (see [7, 9]). It is also of interest to find bounds on the roots in terms of

the coefficients (see [6, 12]). One such bound is the Laguerre inequality (1.9) which gives

an estimate for the roots of the polynomial eq. (1.8) in terms of its first two coefficients

a1 and a2. It is sufficient to consider the polynomial equation in which the coefficient of

xn−1 is zero,

f (x) = xn + b2x
n−2 + b3x

n−3 + · · · + bn−1x + bn = 0. (4.1)

The eq. (4.1) is obtained on diminishing the roots of (1.8) by − a1
n

. Then the Laguerre

inequality says that all the roots of (4.1) lie in the interval [−D1,D1], where D1 =
√

−2 (n−1)b2

n
. We show that better bounds can be given if we involve other coefficients of

the eq. (4.1).

Let x1, x2, . . . , xn be the roots of (4.1). On using the well-known Newton’s identity

αk + b1αk−1 + b2αk−2 + · · · + bk−1α1 + kbk = 0,

where αk =
∑n

i=1 xk
i and k = 1, 2, . . . , n. We have

m1 = 0, m2 =
1

n

n
∑

i=1

x2
i = −

2

n
b2, m4 =

1

n

n
∑

i=1

x4
i =

2

n
(b2

2 − 2b4) (4.2)

and

m6 =
1

n

n
∑

i=1

x6
i =

−2b3
2 + 3b2

3 + 6b2b4 − 6b6

n
. (4.3)

Using such relations in inequality (2.8) we can obtain better estimates for the roots of

eq. (4.1). As an example, we mention here an improvement of Laguerre’s inequality in

the following theorem.

Theorem 4.1. All the roots of the polynomial equation (4.1) with n ≥ 5 lie in the interval

[−D2,D2], where

D2 =

(

2 (n − 1)3

1 + (n − 1)3
(b2

2 − 2b4)

)
1
4

.
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Proof. From (2.8), for m1 = x̄ = 0 and r = 2, we have

−

(

n (n − 1)3

1 + (n − 1)3
m4

)
1
4

≤ xj ≤

(

n (n − 1)3

1 + (n − 1)3
m4

)
1
4

. (4.4)

Substituting the value of m4 from (4.2) in (4.4), we find that
∣

∣xj

∣

∣ ≤ D2. �

Example 4. Let

f(x) = x5 + 25x4 + 112x3 + 96x2 + 14x +
1

4
= 0. (4.5)

If all the coefficients ai’s in the polynomial eq. (1.8) are positive and

a2
n−i − 4an−i+1an−i−1 > 0, i = 1, 2, . . . , n − 1,

then all its roots are real (see [5]). So, all the roots xi of (4.5) are real, i = 1, 2, ... , 5. Let

yi = xi − 5 be the roots of the diminished equation

f(y) = y5 − 138y3 + 916y2 − 1921y +
3321

4
= 0.

The Laguerre inequality (1.9) gives |yi | ≤ 14.859 while from Theorem 4.1, |yi | ≤ 14.57.

Example 5. Let

f(x) = x5 + 80x4 + 1500x3 + 5000x2 + 3750x +
1

5
= 0. (4.6)

The roots of f (x) are real. Let y = x − 16, then (4.6) gives

f(y) = y5 − 1060y3 + 14920y2 + 12710y −
3648479

5
= 0.

From (1.9), |yi | ≤ 41.183 while from Theorem 4.1, |yi | ≤ 38.348.
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