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Abstract. Let G be a group and A = Aut(G) be the group of automorphisms of

G. Then, the element [g, o] = g_la(g) is an autocommutator of g € G and @ € A.
Hence, for any natural number m the m-th autocommutator subgroup of G is defined as

Km(G) =([g, a1, ..., amllg € G,ay, ..., am € A),

where [g, a1, o2, ..., o] = [[g, o1, ..., 1], & ]. In this paper, we introduce the
new notion of A-nilpotent groups and classify all abelian groups which are A-nilpotent
groups.
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1. Introduction

Let G be a group and A = Aut(G) denote the group of automorphisms of G. As in [3], if
g € Gand o € A, then the element [g, «] = g~ 'a(g) is an autocommutator of g and
a. Hence, following [5] one may define the autocommutator of weight m + 1 (m > 2)
inductively as

[ga a15 (XQ.’ ey am] == [[ga C{15 LR ] C(}’l’l—l]a am]5
forall oy, ap, ...,y € A.
Now for any natural number m,
Km(G) = [Gvévsé] = ([gaalonm-wam]lg € Gsa17-~-sam € A)v
m-times
which is called the m-th autocommutator subgroup of G. Hence, we obtain a descending
chain of autocommutator subgroups of G as follows:

G2K1(G)2K(G)2 -2 Kn(G)2 -+,

which is called the lower autocentral series of G.

Throughout this paper if p is a prime, then a p-group is a group in which every element
has order a power of p. Also we adopt additive notation for all abelian groups. To be brief,
([aln, [@'1m) of group Z,, & Z,, will be indicated as (a, a’), wherea € {0,1,2,...,n—1}
anda’ € {0,1,2,...,m — 1}.
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In [5, 6] some properties of autocommutator subgroups of a finite abelian group are
studied. The below example shows the m-th autcommutator subgroup of a finite abelian
group was incorrectly concluded in Theorem 2.5 of [5].

Example 1.1. Let G = Zg @ Za. Then, by Theorem 2.5 of [5], K2(G) = Zy & Zo.
But if we define the automorphisms « and B of G, given by «(a, b) = (a,a + b) and
B(a,b) = (a + 2b, b) for all (a, b) € G, then we have [(1,0), «, 8] = (2, 0) and hence,
K»>(G) has an element of order 4. So K2(G) # Zo & Z,.

In §3, we obtain the Km(eaf»‘:lZzni) with n; > ny > --- > ny using a function which is
recursively defined in terms of ny, ..., ng’s. In particular, we prove

Kon -1 (®5_, Zoni) = (0),

for all natural numbers ny > ny > --- > ng.
Now, we introduce the new notion of A-nilpotent groups.

DEFINITION 1.2

A group G is called A-nilpotent, if the lower autocentral series ends in the identity
subgroup after a finite number of steps.

If a group G is A-nilpotent, then Aut(G) is the stability group of the lower autocentral
series of G. In [2], Hall proved that the stability group is nilpotent. Hence, a group with
non-nilpotent automorphism group can not be A-nilpotent.

Example 1.3. Let n be a natural number and G = Zj». Then, K,,,(G) = 2™ G, for any
natural number m. Hence, G is an A-nilpotent group.

Example 1.4. Let G = Dy, be a dihedral group of order 2n. Then, one can check that
K,.(G)= om=ly.  for any natural number m. Hence, G = Dj,, is A-nilpotent if and only
if n has no odd factors.

The A-nilpotent groups are nilpotent, but the converse is not true in general. For exam-
ple, the generalized quaternion group of order 8, (g, is a nilpotent group, but is not
A-nilpotent.

Remark 1.5. The set of elements L(G) = {g € G | [g,a] = 1,Va € A} is called the
autocentre of G. Clearly, it is a characteristic subgroup of G. Following [6], we define the
upper autocentral series of G as follows:

(1) = Lo(G) € L1(G) = L(G) € Ly(G) € - € Ly(G) € --- ,
L (G)
Lin—1 (G)
upper autocentral series ends in the group G after a finite number of steps. It is easy to
check that any autonilpotent group is A-nilpotent, but the converse is not true in general.
The dihedral group of order 8, Dg, is A-nilpotent, but is not autonilpotent.

where = L( mel; (G)). In [6], a group G is said to be autonilpotent group, if the

In §4, we classify all abelian groups which are A-nilpotent groups.
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2. Preliminary results
We begin with some useful results that will be used in the proof of our main results.
Lemma 2.1

(i) Let H and T be two arbitrary groups. Then, for any natural number m, K,,(H) X
Kn(T) € K (H x T).

(i1) Let H and T be finite groups such that (|H|, |T|) = 1. Then, for any natural number
m, Ky(H) x Ky,(T) = K;y(H x T).

Proof.

(i) For « € Aut(H) and B € Aut(T), we define the automorphism o x g of group
H x T, given by (@ x B)((h,t)) = (x(h),B(t)) forall h € H andt € T.
Now by induction on m, it is easy to check that ([#, 1, ..., an], [t, B1, ..., Bm]) =
[(h,t),01 X B1,y..yy X Byl forallh € Hyt € T, ay,...,a, € Aut(H) and
Bi, ..., Bm € Aut(T). This implies the result.

(ii) Itis sufficient to prove that K,,(H x T) € K;,(H) x K,,,(T). Itis easy to check that
vlg € Aut(H) and y|r € Aut(T), for all y € Aut(H x T). Now by induction on
m, we have [(h, 1), yi, ..., Ym] = (h, vilE, -« YmlE]L 8 V1T, - - V| T]), TOr 2ll

heH,teTandy,...,Yn € Aut(H x T). This implies the result. O
The following corollary is an immediate result of the above lemma.
COROLLARY 2.2

If H or T is not A-nilpotent group, then H x T is not A-nilpotent.

Lemma 2.3 (Lemma 2.2 of [5]). If G is a finite cyclic group, then K,,(G) = 2" G, for any
natural number m.

COROLLARY 2.4

If G is a finite abelian group of odd order, then K,,(G) = G, for any natural number m.

Proof. 1tis obvious by Lemma 2.1(i) and 2.3. ]
Lemma 2.5 Suppose that G is an abelian group, G = (X) and A = (T"). Then, [G, A] =
([x,a]llx € X,«a € ). In particular, if G is an abelian group and K,,(G) = (Y), then

Knt1(G) = ([y,elly e Y,a €T).

Proof. Letx € G,a, B € I' and suppose that x = Y ";_; nix; and f(x) = Y\, mjx’
withfori =1,...,s,j =1, ...,tandx,-,x;. € X. Then,

s 13
[x, 0] =[x, Bl + [B(x), o] = Y _nmilxi, B1+ Y _mjlx}, el
i=1 j=1

The result follows by induction. (]
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Remark 2.6. Recall for any natural number n, if G = Zj», then Aut(G) consists of all
automorphisms «; : g — ig, where 1 < i < 2" and i is an odd number. We know that
the automorphism groups of finitely generated abelian groups are well-understood (see,
for example [4]).

Now we need to describe the automorphisms of G = Zle Zoni withny > ny > -+ >

ng. Let e, = (1,0,...,0), &2 = (0,1,0,...,0), ..., &« = (0,0,...,1). Now
{e1, ..., €k} 1s a generating set for G. Thus, an automorphism of G is completely deter-
mined by its action on this generating set. Using the fact that fori = 1, ..., k, we have

|e;| = 2™ and that the height of ¢; in G is O for all @ € Aut(G), we must have

aler) = (ai,aiz,...,aik)

ale) = 2" ™ay,an, ..., ax)

ae3) = (2" az1,2" Baz, a3, ..., a3p)

aler) = Q" M ar, 2" agg, . 2" T R ag gy, ag),

where a;; € Z for all i, j and for all i, we must have a;; is odd. It is also easy to see that
the automorphisms of G must arise in this manner for appropriate choices of a;;’s.

3. Autocommutator subgroups of finite abelian groups

Let G be a finite abelian group and m be a natural number. Then G = H & T, where T
is a finite abelian group of odd order and H is trivial group or a finite abelian 2-group.
Hence, K,,(G) = K,,(H) & T, by Lemma 2.1(ii) and Corollary 2.4. Therefore in this
section, without loss of generality, we restrict attention to the case where G is a finite
abelian 2-group.

Lemma 3.1 [1]. For all natural numbers k,ny,no, ..., n; such thatny > np > --- > ng,

K\(Zony @ Zyma @ -+ - @ Ly ) = 2Zyny @ Zigny @ -+ - @ Zoyn .

Lemma 3.2 [7]. Suppose that G = ea{.;lzzni withk > landny =ny > n3 > --- > ng.
Then,

Kn(G) =G, for any natural number m.
COROLLARY 3.3

Suppose that G = @lezzn,- withk > landny > ny > -+ > n; = ng41 > -+ > ng,
for some natural number 1 <t < k. Then,

K, (@lezzni) #(0), for any natural number m.

That is, G is not A-nilpotent.

Proof. 1tis obvious by Lemmas 3.2 and 2.1(i). (]
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DEFINITION 3.4

We define fori = 1,2,...,k, Tp, = Oand form = 1,2, ..., that 7, 0 = 0o. Now for
m>0andi =1,2,...,k, wehave

Tong1,i =min{ Ty i1, Toi + 1,0 — i1 + Toigt, - oo ni — ni 4+ T}

With this notation, we can determine the structure of K, (EB;‘: 1Zoni) with ny > np
> - > .

Theorem 3.5. Suppose that G = Gaf?zllzni withny > ny > -+ > ng. Then,
Kn(G) = @ _ 2T Zy;,

for any natural number m.

Proof. We prove the result by induction on m. First we note that 711 = land T7,; = 0
for j =2,3,...,k, as required.
Now suppose we have determined that

Km (G) = @IjzlszJ Zznj s

the induction hypothesis. Considering the automorphisms of G, as described earlier, it is
easy to see that

Ty =min{Ty 1+ 1,ny —np+ Tyo, ... 0y — ng + Ty i,
andif j =2,...,k, then
Topv1,j =min{Ty j—1, T j+ 1,0 —nj1 + T jgts ooy nj — g+ T i)

Note that there is an automorphism « of G so that a(e;) = €; + €;41. It follows that
since K, (G) is a characteristic subgroup of G, Ty, j4+1 < Tp,j for j =1, ..., k—1. This
completes the proof. ]

In order to simplify the statements of the following corollaries, we introduce the
following notations:

The ceiling function of x, also called the smallest integer function, gives the smallest
integer not less than to x. The ceiling function is written in a number of different notations.
In this paper, we use of the symbol [x7]. Also for each real number x, we define

[ xifx =0,
1o ifx<o0.

COROLLARY 3.6
Suppose that G = ea{.;lzzni withny — 1 =ny > --- > ny. Then,

m—i+1-1
Kn(G) =213 Zow,

for any natural number m.
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Proof. We use mathematical induction to prove that form =1, 2, .. .,

_ g 1 +
Tm,/={m 2J+ W , for j=1,2,... k.

First we note that 71,y = 1l and 71 ; = 0, for j = 2,3, ..., k, as required.

Case 1. Here we assume that m < k. Now by Theorem 3.5 and the induction hypothesis,
we have

Ty, = min{T 1+ 1, ny —no+ T, nt —n3 + T3, ...

n1 —mtt + Tumtts oo, 01 — ik + Ty i}
i [MW+11+ m—1 LM
= min , Ny —n e,
2 2 = 2
ny—nmt1 +0,...,01 —ng+0

o m+1] [ m+D—-1+1

o2 2 ’
as required. Note that the last equality uses the fact that for j > 3, sincen; —n; > j — 1,
we have thatn) —n; + (m_fll > (m+5_1] > ["]1]. Next we assume that j > 2. We

have

Tny1,j = min{Ty, j 1, T j+1,nj—nj1+Ty 11, ..., nj—ng+Ty i}

. m—j+21" [m—j+177" m—j
mln”r ) —‘,’7 ’ ~|—1,nj—nj+1—|— ) ey

nj—nm+1~|—0,...,nj—nk~|—0}

[m—j427" [m+D—j+17"
=[N

as required. Here again we are using the fact thatn; —n; > 1 — j forl > j.

Case 2. Here we assume that m > k. Now we have

T, = min{T, 1+ 1L, ni—no+Tp2,n1—n3+Tn3, ..., 01 — ng+ Tk}

= min {m—‘+l 14+ m—1 + m—2
= 1 ) S ) , N n3 ) sy

”m—k—i—l‘”
ny —ng+ )

| m+1

= ) ,
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as required. Here again we need to use the fact that for j > 3, we haven; —n; > j — 1.
Now for j > 2, we have

Ty1,j = min{Ty j 1, T j+1Lnj—nj1+Tnjrt, ... onj —ng+ Ty}

. m—j+2 m—j+1 m—j
mln”r ) —‘,’7 ’ —‘~|—1,nj—nj+1+’7 ) —‘,...,
m—k+1
nj—ng+ ’

_[m—j+2k_Pm+D—j+11
- 2 - 2 ’

as required. Again we use the fact that n; —n; > [ — j for l > j. This completes the
proof. O

With a similar proof one can prove as follows:

COROLLARY 3.7
Suppose that G = Galelgn,- with ny > ny > --- > ng. Further, suppose that for all
s=1,2,...,k—1,we have ngy — ng+1 > 2. Then,

a1t
Kn(G) = @;,-{:12("1 i+1) Loni
for any natural number m.

Finally we prove the following corollary which is very useful in the proof of our main
result.

COROLLARY 3.8

Suppose that G = @lezzni withny > ny > --- > ny. Then,
Kop,—1(G) = (0).

That is, G is A-nilpotent.

Proof. Let

- G, ifng—ny=1
| G®Zyn -1, otherwise

In other cases, G is a direct summand of H, so it is clear that K,,(G) C K,,(H). Now
from the result of Corollary 3.6 being applied to H, we get

Top—1,20-1

Qni—1D)—Q-D+ 17" [2n—201+17"
e

=n—=l+1>n>ny_
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and
Qn—1=20+17" N
Tony—1,20 = 5 =[n =117 =n1 =1 =ni41 = ny.
Note that we use the fact that n; > k. This completes the proof. (]

4. A-nilpotent abelian groups

In this section, we classify all abelian groups which are A-nilpotent groups.

Lemma 4.1 Let G be an abelian group. Then for any natural number m,
2"G C Ky (G).

Proof. 1tis proved in a similar way to Lemma 2.3. O

Remark 4.2. An additively written group is called bounded if its elements have bound-
edly finite orders. Of course multiplicative groups with this property are said to have finite
exponent but this term is inappropriate in the context of additive groups.

Theorem 4.3 (Priifer-Baer, Corollary 10.37 of [8]). If G is a bounded, abelian p-group,
then G is a direct sum of cyclic groups.

COROLLARY 4.4

Suppose that G is a bounded, infinite abelian 2-group. Then, G = Zy @ Zy & H, for
some natural number t and an abelian group H. That is, G is not A-nilpotent.

Proof. Let G be a bounded, infinite abelian 2-group. Then, by Theorem 4.3 we write
G = ®;c1 X; as the direct sum of cyclic subgroups. Note that there is a positive integer
n so that each X; = Z,; for some #; < n. If there was only (at most) one copy of
each X;, then G would be finite. So, the result is true. Also G is not A-nilpotent by
Corollary 3.3. (]

Now, we are able to classify all abelian groups, which are A-nilpotent.

Theorem 4.5. A non trivial abelian group G is A-nilpotent if and only if G is Zym @
<o @ Lo withny > -+ > ny.

Proof. The necessary condition follows from Corollary 3.8. Now for the reverse conclu-
sion, we assume that G is a non-trivial, A-nilpotent, abelian group. By Lemma 4.1, it
follows that 2" G = (0) for some positive integer m. Thus, G has no elements of odd
order and G is a bounded, abelian 2-group. As above, it follows that G is the direct sum
of cyclic 2-groups. However, since G is A-nilpotent, no two direct summands can be iso-
morphic. Thus, G is isomorphic to a finite, direct sum of cyclic 2-groups, all with distinct
orders. The result follows. O
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The following corollary is an immediate result of the above theorem.

COROLLARY 4.6

Let G be an infinite abelian group. Then G is not A-nilpotent.
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