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Abstract. Let G be a group and A = Aut(G) be the group of automorphisms of
G. Then, the element [g, α] = g−1α(g) is an autocommutator of g ∈ G and α ∈ A.
Hence, for any natural number m the m-th autocommutator subgroup of G is defined as

Km(G) = 〈[g, α1, . . . , αm]|g ∈ G, α1, . . . , αm ∈ A〉,
where [g, α1, α2, . . . , αm] = [[g, α1, . . . , αm−1], αm]. In this paper, we introduce the
new notion of A-nilpotent groups and classify all abelian groups which are A-nilpotent
groups.
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1. Introduction

Let G be a group and A = Aut(G) denote the group of automorphisms of G. As in [3], if
g ∈ G and α ∈ A, then the element [g, α] = g−1α(g) is an autocommutator of g and
α. Hence, following [5] one may define the autocommutator of weight m + 1 (m ≥ 2)

inductively as

[g, α1, α2, . . . , αm] = [[g, α1, . . . , αm−1], αm],
for all α1, α2, . . . , αm ∈ A.

Now for any natural number m,

Km(G) = [G,A, . . . , A
︸ ︷︷ ︸

m-times

] = 〈[g, α1, α2, . . . , αm]|g ∈ G,α1, . . . , αm ∈ A〉,

which is called the m-th autocommutator subgroup of G. Hence, we obtain a descending
chain of autocommutator subgroups of G as follows:

G ⊇ K1(G) ⊇ K2(G) ⊇ · · · ⊇ Km(G) ⊇ · · · ,

which is called the lower autocentral series of G.
Throughout this paper if p is a prime, then a p-group is a group in which every element

has order a power of p. Also we adopt additive notation for all abelian groups. To be brief,
([a]n, [a′]m) of group Zn ⊕Zm will be indicated as (a, a′), where a ∈ {0, 1, 2, . . . , n−1}
and a′ ∈ {0, 1, 2, . . . ,m − 1}.
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In [5, 6] some properties of autocommutator subgroups of a finite abelian group are
studied. The below example shows the m-th autcommutator subgroup of a finite abelian
group was incorrectly concluded in Theorem 2.5 of [5].

Example 1.1. Let G = Z8 ⊕ Z4. Then, by Theorem 2.5 of [5], K2(G) = Z2 ⊕ Z2.
But if we define the automorphisms α and β of G, given by α(a, b) = (a, a + b) and
β(a, b) = (a + 2b, b) for all (a, b) ∈ G, then we have [(1, 0), α, β] = (2, 0) and hence,
K2(G) has an element of order 4. So K2(G) 
= Z2 ⊕ Z2.

In §3, we obtain the Km(⊕k
i=1Z2ni ) with n1 > n2 > · · · > nk using a function which is

recursively defined in terms of n1, . . . , nk’s. In particular, we prove

K2n1−1(⊕k
i=1Z2ni ) = 〈0〉,

for all natural numbers n1 > n2 > · · · > nk .
Now, we introduce the new notion of A-nilpotent groups.

DEFINITION 1.2

A group G is called A-nilpotent, if the lower autocentral series ends in the identity
subgroup after a finite number of steps.

If a group G is A-nilpotent, then Aut(G) is the stability group of the lower autocentral
series of G. In [2], Hall proved that the stability group is nilpotent. Hence, a group with
non-nilpotent automorphism group can not be A-nilpotent.

Example 1.3. Let n be a natural number and G = Z2n . Then, Km(G) = 2mG, for any
natural number m. Hence, G is an A-nilpotent group.

Example 1.4. Let G = D2n be a dihedral group of order 2n. Then, one can check that
Km(G) ∼= 2m−1

Zn, for any natural number m. Hence, G = D2n is A-nilpotent if and only
if n has no odd factors.

The A-nilpotent groups are nilpotent, but the converse is not true in general. For exam-
ple, the generalized quaternion group of order 8, Q8, is a nilpotent group, but is not
A-nilpotent.

Remark 1.5. The set of elements L(G) = {g ∈ G | [g, α] = 1,∀α ∈ A} is called the
autocentre of G. Clearly, it is a characteristic subgroup of G. Following [6], we define the
upper autocentral series of G as follows:

〈1〉 = L0(G) ⊆ L1(G) = L(G) ⊆ L2(G) ⊆ · · · ⊆ Lm(G) ⊆ · · · ,

where Lm(G)
Lm−1(G)

= L( G
Lm−1(G)

). In [6], a group G is said to be autonilpotent group, if the

upper autocentral series ends in the group G after a finite number of steps. It is easy to
check that any autonilpotent group is A-nilpotent, but the converse is not true in general.
The dihedral group of order 8, D8, is A-nilpotent, but is not autonilpotent.

In §4, we classify all abelian groups which are A-nilpotent groups.
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2. Preliminary results

We begin with some useful results that will be used in the proof of our main results.

Lemma 2.1

(i) Let H and T be two arbitrary groups. Then, for any natural number m, Km(H) ×
Km(T ) ⊆ Km(H × T ).

(ii) Let H and T be finite groups such that (|H |, |T |) = 1. Then, for any natural number
m, Km(H) × Km(T ) = Km(H × T ).

Proof.

(i) For α ∈ Aut(H) and β ∈ Aut(T ), we define the automorphism α × β of group
H × T , given by (α × β)((h, t)) = (α(h), β(t)) for all h ∈ H and t ∈ T .
Now by induction on m, it is easy to check that ([h, α1, . . . , αm], [t, β1, . . . , βm]) =
[(h, t), α1 × β1, . . . , αm × βm] for all h ∈ H , t ∈ T , α1, . . . , αm ∈ Aut(H) and
β1, . . . , βm ∈ Aut(T ). This implies the result.

(ii) It is sufficient to prove that Km(H × T ) ⊆ Km(H) × Km(T ). It is easy to check that
γ |H ∈ Aut(H) and γ |T ∈ Aut(T ), for all γ ∈ Aut(H × T ). Now by induction on
m, we have [(h, t), γ1, . . . , γm] = ([h, γ1|H , . . . , γm|H ], [t, γ1|T , . . . , γm|T ]), for all
h ∈ H , t ∈ T and γ1, . . . , γm ∈ Aut(H × T ). This implies the result. �

The following corollary is an immediate result of the above lemma.

COROLLARY 2.2

If H or T is not A-nilpotent group, then H × T is not A-nilpotent.

Lemma 2.3 (Lemma 2.2 of [5]). If G is a finite cyclic group, then Km(G) = 2mG, for any
natural number m.

COROLLARY 2.4

If G is a finite abelian group of odd order, then Km(G) = G, for any natural number m.

Proof. It is obvious by Lemma 2.1(i) and 2.3. �

Lemma 2.5 Suppose that G is an abelian group, G = 〈X〉 and A = 〈�〉. Then, [G,A] =
〈[x, α]|x ∈ X,α ∈ �〉. In particular, if G is an abelian group and Km(G) = 〈Y 〉, then
Km+1(G) = 〈[y, α]|y ∈ Y, α ∈ �〉.

Proof. Let x ∈ G, α, β ∈ � and suppose that x = ∑s
i=1 nixi and β(x) = ∑t

j=1 mjx
′
j

with for i = 1, . . . , s, j = 1, . . . , t and xi, x
′
j ∈ X. Then,

[x, αβ] = [x, β] + [β(x), α] =
s

∑

i=1

ni[xi, β] +
t

∑

j=1

mj [x ′
j , α].

The result follows by induction. �
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Remark 2.6. Recall for any natural number n, if G = Z2n , then Aut(G) consists of all
automorphisms αi : g �→ ig, where 1 ≤ i < 2n and i is an odd number. We know that
the automorphism groups of finitely generated abelian groups are well-understood (see,
for example [4]).

Now we need to describe the automorphisms of G = ∑k
i=1 Z2ni with n1 > n2 > · · · >

nk . Let ε1 = (1, 0, . . . , 0), ε2 = (0, 1, 0, . . . , 0), . . . , εk = (0, 0, . . . , 1). Now
{ε1, . . . , εk} is a generating set for G. Thus, an automorphism of G is completely deter-
mined by its action on this generating set. Using the fact that for i = 1, . . . , k, we have
|εi | = 2ni and that the height of εi in G is 0 for all α ∈ Aut(G), we must have

α(ε1) = (a11, a12, . . . , a1k)

α(ε2) = (2n1−n2a21, a22, . . . , a2k)

α(ε3) = (2n1−n3a31, 2n2−n3a32, a33, . . . , a3k)
...
...

α(εk) = (2n1−nk ak1, 2n2−nk ak2, . . . , 2nk−1−nk ak(k−1), akk),

where aij ∈ Z for all i, j and for all i, we must have aii is odd. It is also easy to see that
the automorphisms of G must arise in this manner for appropriate choices of aij ’s.

3. Autocommutator subgroups of finite abelian groups

Let G be a finite abelian group and m be a natural number. Then G = H ⊕ T , where T

is a finite abelian group of odd order and H is trivial group or a finite abelian 2-group.
Hence, Km(G) = Km(H) ⊕ T , by Lemma 2.1(ii) and Corollary 2.4. Therefore in this
section, without loss of generality, we restrict attention to the case where G is a finite
abelian 2-group.

Lemma 3.1 [1]. For all natural numbers k, n1, n2, . . . , nk such that n1 > n2 ≥ · · · ≥ nk ,

K1(Z2n1 ⊕ Z2n2 ⊕ · · · ⊕ Z2nk ) = 2Z2n1 ⊕ Z2n2 ⊕ · · · ⊕ Z2nk .

Lemma 3.2 [7]. Suppose that G = ⊕k
i=1Z2ni with k > 1 and n1 = n2 ≥ n3 ≥ · · · ≥ nk .

Then,

Km(G) = G, for any natural number m.

COROLLARY 3.3

Suppose that G = ⊕k
i=1Z2ni with k > 1 and n1 ≥ n2 ≥ · · · ≥ nt = nt+1 ≥ · · · ≥ nk ,

for some natural number 1 ≤ t < k. Then,

Km(⊕k
i=1Z2ni ) 
= 〈0〉, for any natural number m.

That is, G is not A-nilpotent.

Proof. It is obvious by Lemmas 3.2 and 2.1(i). �
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DEFINITION 3.4

We define for i = 1, 2, . . . , k, T0,i = 0 and for m = 1, 2, . . ., that Tm,0 = ∞. Now for
m ≥ 0 and i = 1, 2, . . . , k, we have

Tm+1,i = min{Tm,i−1, Tm,i + 1, ni − ni+1 + Tm,i+1, . . . , ni − nk + Tm,k}.
With this notation, we can determine the structure of Km(⊕k

i=1Z2ni ) with n1 > n2
> · · · > nk .

Theorem 3.5. Suppose that G = ⊕k
i=1Z2ni with n1 > n2 > · · · > nk . Then,

Km(G) = ⊕k
i=12Tm,iZ2ni ,

for any natural number m.

Proof. We prove the result by induction on m. First we note that T1,1 = 1 and T1,j = 0
for j = 2, 3, . . . , k, as required.

Now suppose we have determined that

Km(G) = ⊕k
j=12Tm,jZ2nj ,

the induction hypothesis. Considering the automorphisms of G, as described earlier, it is
easy to see that

Tm+1,1 = min{Tm,1 + 1, n1 − n2 + Tm,2, . . . , n1 − nk + Tm,k},
and if j = 2, . . . , k, then

Tm+1,j = min{Tm,j−1, Tm,j + 1, nj −nj+1 +Tm,j+1, . . . , nj −nk +Tm,k}.
Note that there is an automorphism α of G so that α(εj ) = εj + εj+1. It follows that

since Km(G) is a characteristic subgroup of G, Tm,j+1 ≤ Tm,j for j = 1, . . . , k − 1. This
completes the proof. �

In order to simplify the statements of the following corollaries, we introduce the
following notations:

The ceiling function of x, also called the smallest integer function, gives the smallest
integer not less than to x. The ceiling function is written in a number of different notations.
In this paper, we use of the symbol �x�. Also for each real number x, we define

x+ =
{

x, if x ≥ 0,

0, if x < 0.

COROLLARY 3.6

Suppose that G = ⊕k
i=1Z2ni with n1 − 1 = n2 > · · · > nk . Then,

Km(G) = ⊕k
i=12� m−i+1

2 �+
Z2ni ,

for any natural number m.
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Proof. We use mathematical induction to prove that for m = 1, 2, . . .,

Tm,j =
⌈

m − j + 1

2

⌉+
, for j = 1, 2, . . . , k.

First we note that T1,1 = 1 and T1,j = 0, for j = 2, 3, . . . , k, as required.

Case 1. Here we assume that m ≤ k. Now by Theorem 3.5 and the induction hypothesis,
we have

Tm+1,1 = min{Tm,1 + 1, n1 − n2 + Tm,2, n1 − n3 + Tm,3, . . . ,

n1 − nm+1 + Tm,m+1, . . . , n1 − nk + Tm,k}

= min

{
⌈m

2

⌉

+ 1, 1 +
⌈

m − 1

2

⌉

, n1 − n3 +
⌈

m − 2

2

⌉

, . . . ,

n1 − nm+1 + 0, . . . , n1 − nk + 0

}

=
⌈

m + 1

2

⌉

=
⌈

(m + 1) − 1 + 1

2

⌉

,

as required. Note that the last equality uses the fact that for j ≥ 3, since n1 − nj ≥ j − 1,
we have that n1 − nj + �m−j+1

2 � ≥ �m+j−1
2 � ≥ �m+1

2 �. Next we assume that j ≥ 2. We
have

Tm+1,j = min{Tm,j−1, Tm,j +1, nj −nj+1+Tm,j+1, . . . , nj −nk+Tm,k}

= min

{
⌈

m−j +2

2

⌉+
,

⌈

m−j +1

2

⌉+
+1, nj −nj+1+

⌈

m−j

2

⌉

, . . . ,

nj − nm+1 + 0, . . . , nj − nk + 0

}

=
⌈

m − j + 2

2

⌉+
=

⌈

(m + 1) − j + 1

2

⌉+
,

as required. Here again we are using the fact that nj − nl ≥ l − j for l > j .

Case 2. Here we assume that m > k. Now we have

Tm+1,1 = min{Tm,1+1, n1−n2+Tm,2, n1 −n3+Tm,3, . . . , n1 − nk +Tm,k}

= min

{
⌈m

2

⌉

+ 1, 1 +
⌈

m − 1

2

⌉

, n1 − n3 +
⌈

m − 2

2

⌉

, . . . ,

n1 − nk +
⌈

m − k + 1

2

⌉}

=
⌈

m + 1

2

⌉

,
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as required. Here again we need to use the fact that for j ≥ 3, we have n1 − nj ≥ j − 1.
Now for j ≥ 2, we have

Tm+1,j = min{Tm,j−1, Tm,j + 1, nj − nj+1 +Tm,j+1, . . . , nj − nk +Tm,k}

= min

{⌈

m−j +2

2

⌉

,

⌈

m−j +1

2

⌉

+1, nj −nj+1 +
⌈

m−j

2

⌉

, . . . ,

nj − nk +
⌈

m − k + 1

2

⌉}

=
⌈

m − j + 2

2

⌉

=
⌈

(m + 1) − j + 1

2

⌉

,

as required. Again we use the fact that nj − nl ≥ l − j for l > j . This completes the
proof. �

With a similar proof one can prove as follows:

COROLLARY 3.7

Suppose that G = ⊕k
i=1Z2ni with n1 > n2 > · · · > nk . Further, suppose that for all

s = 1, 2, . . . , k − 1, we have ns − ns+1 ≥ 2. Then,

Km(G) = ⊕k
i=12(m−i+1)+

Z2ni ,

for any natural number m.

Finally we prove the following corollary which is very useful in the proof of our main
result.

COROLLARY 3.8

Suppose that G = ⊕k
i=1Z2ni with n1 > n2 > · · · > nk . Then,

K2n1−1(G) = 〈0〉.
That is, G is A-nilpotent.

Proof. Let

H =
{

G, if n1 − n2 = 1
G ⊕ Z2n1−1, otherwise

.

In other cases, G is a direct summand of H , so it is clear that Km(G) ⊆ Km(H). Now
from the result of Corollary 3.6 being applied to H , we get

T2n1−1,2l−1 =
⌈

(2n1−1)−(2l−1) + 1

2

⌉+
=

⌈

2n1 − 2l + 1

2

⌉+

= n1 − l + 1 ≥ nl ≥ n2l−1
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and

T2n1−1,2l =
⌈

(2n1 − 1) − 2l + 1

2

⌉+
= �n1 − l�+ = n1 − l ≥ nl+1 ≥ n2l .

Note that we use the fact that n1 ≥ k. This completes the proof. �

4. A-nilpotent abelian groups

In this section, we classify all abelian groups which are A-nilpotent groups.

Lemma 4.1 Let G be an abelian group. Then for any natural number m,

2mG ⊆ Km(G).

Proof. It is proved in a similar way to Lemma 2.3. �

Remark 4.2. An additively written group is called bounded if its elements have bound-
edly finite orders. Of course multiplicative groups with this property are said to have finite
exponent but this term is inappropriate in the context of additive groups.

Theorem 4.3 (Prüfer-Baer, Corollary 10.37 of [8]) . If G is a bounded, abelian p-group,
then G is a direct sum of cyclic groups.

COROLLARY 4.4

Suppose that G is a bounded, infinite abelian 2-group. Then, G ∼= Z2t ⊕ Z2t ⊕ H , for
some natural number t and an abelian group H . That is, G is not A-nilpotent.

Proof. Let G be a bounded, infinite abelian 2-group. Then, by Theorem 4.3 we write
G = ⊕i∈I Xi as the direct sum of cyclic subgroups. Note that there is a positive integer
n so that each Xi

∼= Z2ti for some ti ≤ n. If there was only (at most) one copy of
each Xi , then G would be finite. So, the result is true. Also G is not A-nilpotent by
Corollary 3.3. �

Now, we are able to classify all abelian groups, which are A-nilpotent.

Theorem 4.5. A non trivial abelian group G is A-nilpotent if and only if G is Z2n1 ⊕
· · · ⊕ Z2nk with n1 > · · · > nk .

Proof. The necessary condition follows from Corollary 3.8. Now for the reverse conclu-
sion, we assume that G is a non-trivial, A-nilpotent, abelian group. By Lemma 4.1, it
follows that 2mG = 〈0〉 for some positive integer m. Thus, G has no elements of odd
order and G is a bounded, abelian 2-group. As above, it follows that G is the direct sum
of cyclic 2-groups. However, since G is A-nilpotent, no two direct summands can be iso-
morphic. Thus, G is isomorphic to a finite, direct sum of cyclic 2-groups, all with distinct
orders. The result follows. �
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The following corollary is an immediate result of the above theorem.

COROLLARY 4.6

Let G be an infinite abelian group. Then G is not A-nilpotent.
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