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1. Introduction

The growth of fundamental group for Riemannian manifolds was first discussed by Milnor
[4]. By using the volume comparison theorems he was able to prove that the fundamental
group of any n-dimensional compact Riemannian manifold with nonnegative Ricci curva-
ture has polynomial growth of order ≤ n. There have been several attempts to generalize
this result in various directions, most of which extend the theorem to the case of manifolds
with small ‘wells of negative curvature’ (see [2,10,15]). For example, Wei [10] allowed
the negative lower bound on the Ricci curvature to be sufficiently small and showed that
for any constant v > 0, there exists an ε = ε(n, v) > 0 such that if a compact n-manifold
M admits a Riemannian metric satisfying the conditions RicM ≥ −ε, diam(M) = 1 and
vol(M) ≥ v, then the fundamental group of M is of polynomial growth of order ≤ n. It
should be pointed out here that the pointwise curvature can be replaced by integral cur-
vature bound and one can consider the growth of fundamental group under integral Ricci
curvature bound [3,16].

Finsler geometry is just the Riemannian geometry without quadratic restriction. Instead
of a Euclidean norm on each tangent space, one endows Minkowski norms on every
tangent space of a differentiable manifold. In global Finsler geometry, it is also impor-
tant to reveal the relationship between the topology and geometry invariants for Finsler
manifolds. As for the fundamental group of Finsler manifolds, Milnor’s result has been
generalized to Finsler manifolds by Shen for reversible case [6,7], and by Shen and Zhao
[8] for the general case. However, an additional condition on the te S-curvature is needed
in these results. This additional condition on S-curvature was removed recently by using
the maximal or minimal volume form [11,12].
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Recently a relative volume comparison theorem for Finsler manifolds under integral
Ricci curvature bound was established and the integral Ricci curvature and topology was
studied [13]. In this paper, an upper bound on the growth of fundamental group for a class
of Finsler manifolds with integral Ricci curvature bound is given. The result generalizes
the corresponding results with pointwise Ricci curvature in the literature. The maximal
and minimal volume forms (see §2 for the definition) are used throughout this paper. We
need some notations to state our result. On a compact Finsler manifold (M,F), let dVmax
and dVmin be the maximal volume form and minimal volume form, respectively, and Ric :
M → R the function of smallest Ricci curvature at a given point. More precisely,

Ric(x) = min
y∈TxM\{0}Ric(y), ∀x ∈ M.

Let

ε(p;M) :=
(∫

M(max{−Ric, 0})pdVmax

volmin(M)

) 1
p

.

It is clear that ε(p;M) = 0 whenever RicM ≥ 0. The main purpose of this paper is to
prove the following.

Theorem 1.1. Given n ∈ N, p > n/2, δ ∈ [1,∞), and v,D ∈ (0,∞), there exists
α = α(n, p, δ, v,D) > 0 such that if a compact n-manifold M admits a Finsler metric F
satisfying the conditions

ε(p;M) ≤ α, μF ≤ δ2, volmin(M) ≥ v, diam(M) ≤ D,

then the fundamental group of M is of polynomial growth of order ≤ n. Here μF is the
uniformity constant of F .

COROLLARY 1.2 [14]

Given n ∈ N, δ ∈ [1,∞), and v,D ∈ (0,∞), there exist ε = ε(n, δ, v,D) > 0 such that
if a compact n-manifold M admits a Finsler metric F satisfying the conditions

RicM ≥ −ε, μF ≤ δ2, volmin(M) ≥ v, diam(M) ≤ D,

then the fundamental group of M is of polynomial growth of order ≤ n. Particularly,
the fundamental group of any n-dimensional compact Finsler manifold with nonnegative
Ricci curvature has polynomial growth of order ≤ n.

Remark 1.1. Corollary 1.2 generalizes the corresponding results in [9,11,12]. By
comparing the result in [9], we remove the additional condition on S-curvature.

2. Preliminaries

In this section, we give a brief description of some basic materials that are needed to
prove Theorem 1.1, for more details one is referred to [11,13]. Let (M,F) be a Finsler n-
manifold with Finsler metric F : TM → [0,∞). The fundamental tensor gij is defined
by

gij (x, y) := 1

2

∂2F 2(x, y)

∂yi∂yj
.
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A volume form dμ on Finsler manifold (M,F) is nothing but a global non-degenerate
n-form on M . In local co-ordinates we can express dμ as dμ = σ(x)dx1 ∧· · ·∧dxn. The
frequently used volume forms in Finsler geometry are the so-called Busemann-Hausdorff
volume form and Holmes–Thompson volume form. Other useful volume forms are the
maximal and minimal volume forms which can be defined as follows. Let

dVmax = σmax(x)dx1 ∧ · · · ∧ dxn

and

dVmin = σmin(x)dx1 ∧ · · · ∧ dxn

with

σmax(x) := max
y∈TxM\{0}

√
det(gij (x, y)), σmin(x) := min

y∈TxM\{0}
√

det(gij (x, y)).

Then it is easy to check that the n-forms dVmax and dVmin are well-defined on M . We
call dVmax and dVmin the maximal volume form and the minimal volume form of (M,F),
respectively. We note that both maximal and minimal volume forms play a crucial role in
comparison techniques in Finsler geometry [11–13]. The uniformity function μ : M → R

is defined by

μ(x) = max
y,z,u∈TxM\0

gy(u, u)

gz(u, u)
.

μF = maxx∈M μ(x) is called the uniformity constant [1]. Similarly, the reversible
function λ : M → R is defined by

λ(x) = max
y∈TxM\0

F(y)

F (−y)
.

λF = maxx∈M λ(x) is called the reversibility of (M,F) [5], and (M,F) is called
reversible if λF = 1. It is clear that λ(x)2 ≤ μ(x) and thus λ2

F ≤ μF .
In order to prove Theorem 1.1, we need to use the relative volume comparison theorem

for star-shaped subset with integral Ricci curvature bound. Let T ⊂ M , we say that T is
star-shaped at x ∈ T if for all y ∈ T there exists a minimal geodesic from x to y contained
in T . For r > 0, let T (r) = T ∩Bx(r), where Bx(r) is the forward geodesic ball of radius
r centered at x. For any star-shaped subset T of finite minimal volume consider

ε(p; T ) :=
(∫

T (max{−Ric, 0})pdVmax

volmin(T )

) 1
p

.

The following theorem is a special case of Theorem 1.1 in [13].

Theorem 2.1. Let (M,F) be a forward complete Finsler n-manifold, T be a star-shaped
subset of M at x ∈ M , and T ⊂ Bx(RT ) for some RT > 0. For p > n/2, there exists a
constant C(n, p,RT ) > 0 such that when

ε = ε(p; T ) <
(

1

2C(n, p,RT )

) 2p−1
p

,
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then one has for all 0 < r ≤ R ≤ RT ,

volmin(T (R))

vol(Bn(R))
≤

(
1−C(n, p,RT)ε

p
2p−1

1−2C(n, p,RT)ε
p

2p−1

)2p−1

· max
z∈Bx(r)

(μ(z))
n
2 ·volmin(T (r))

vol(Bn(r))
.

Here μ is the uniformity function, and B
n(R) the ball of radius R in Euclidean n-space

R
n. In particular, for all 0 < R ≤ RT ,

volmin(T (R)) ≤ μ(x)
n
2

(
1 − C(n, p,RT )ε

p
2p−1

1 − 2C(n, p,RT )ε
p

2p−1

)2p−1

vol(Bn(R)).

Remark 2.1 [13]. The quantity

(
1−C(n,p,RT )ε

p
2p−1

1−2C(n,p,RT )ε
p

2p−1

)2p−1

in Theorem 2.1 is nondecreasing

both in RT and in ε. This property will be used in §3.

For a given compact Finsler manifold (M,F), let f : (M̃, F̃ ) → (M,F) be the uni-
versal covering with pulled-back metric. Then it is known that the fundamental group
is isomorphic to the deck transformation group 	 and each deck transformation is an
isometry of (M̃, F̃ ) (see [8,12] for details). We also need the following two lemmas.

Lemma 2.2 [13]. Let f : (M̃, F̃ ) → (M,F) be the universal covering space of (M,F),
then for any forward geodesic ball B̃x̃ (r) ⊂ M̃ with r > diam(M) there exists a star-
shaped subset T satisfying B̃x̃ (r) ⊂ T ⊂ B̃x̃ ((2 + λF )r) and

∫
T (max{−Ric, 0})pdVmax

volmin(T )
=

∫
M(max{−Ric, 0})pdVmax

volmin(M)
. (1)

Lemma 2.3 [9]. Let (M,F) be a compact Finsler n-manifold of reversibility λF and M̃

be its universal covering space. For each x ∈ M , there always exists a generating set
{γ1, . . . , γm} for the fundamental group 	 ∼= π1(M, x) such that d(x̃, γi(x̃)) ≤ (1 +
λF )diam(M) (where x̃ ∈ f−1(x) is in the fiber over x ∈ M) and such that all relations
for 	 in these generators are of the form γiγjγ

−1
k = 1.

3. Proof of Theorem 1.1

In this section we shall complete the proof of Theorem 1.1. Let us first recall the notion
of algebraic norm. Let G be a finitely generated group and S = {gi} be a generating set
for G. For each g ∈ G, define ‖g‖alg to be the smallest length of the word in terms of gi
and their inverse that represents g. We call ‖ · ‖alg the algebraic norm associated with the
generating set S. One is referred to [4,8] for more details of the algebraic norm.

Proof of Theorem 1.1. Given n ∈ N, p > n/2, δ ∈ [1,∞), and v,D ∈ (0,∞). Suppose
on the contrary that for any(

1

3C(n, p, (2 + δ)2D)

) 2p−1
p ≥ α > 0,
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there exists a Finsler metric F on compact n-manifold M satisfying

ε(p;M) ≤ α, μF ≤ δ2, volmin(M) ≥ v, diam(M) ≤ D

such that π1(M) is not of polynomial growth of order ≤ n, here the constant C is given by
Theorem 2.1. Choose the generating set {γ1, . . . , γm} of π1(M, x) as in Lemma 2.3. Let
�x ⊂ M̃ be a fundamental domain constructed as in [8]. The sets γi(�x), 1 ≤ i ≤ m are
mutually disjoint and have same minimal volume as M , since γi acts isometrically. Notice
that λ2

F ≤ μF ≤ δ2, one has d(x̃, γi(x̃)) ≤ (1 + δ)D, γi(�x) ⊂ B̃x̃ ((2 + δ)D),∀1 ≤
i ≤ m. By Lemma 2.2, there is a star-shaped subset T ⊂ M̃ satisfying (1) and
B̃x̃ ((2 + δ)D) ⊂ T ⊂ B̃x̃((2 + δ)2D). Since

ε = ε(p;M) ≤ α ≤
(

1

3C(n, p, (2 + δ)2D)

) 2p−1
p

,

by Theorem 2.1 and Remark 2.1 we have

volmin(B̃x̃ ((2 + δ)D)) ≤ volmin(T )

≤ δn ·
(

1 − C(n, p, (2 + δ)2D)ε
p

2p−1

1 − 2C(n, p, (2 + δ)2D)ε
p

2p−1

)2p−1

· vol(Bn((2 + δ)2D))

≤ δn · 22p−1 · vol(Bn((2 + δ)2D)).

Recall that volmin(�x) = volmin(M), we get

m ≤ volmin(B̃x̃ ((2 + δ)D))

volmin(�x)
≤ δn · 22p−1 · vol(Bn((2 + δ)2D))

v
< ∞.

In summary, one can choose a finite generating set {γ1, . . . , γm} of π1(M, x) such that

(i) m ≤ δn·22p−1·vol(Bn((2+δ)2D))
v

:= N(n, p, δ, v,D),

(ii) d(x̃, γi(x̃)) ≤ (1 + δ)D, for each 1 ≤ i ≤ m,

(iii) every relation is of the form γiγjγ
−1
k = 1.

For any s ≥ 1 define 	(s) = {γ ∈ π1(M, x) : ‖γ ‖alg ≤ s}, and choose the fun-
damental domain �x as before. By (ii) and triangle inequality, one easily has γ (�x) ⊂
B̃x̃ (s(1 + δ)D +D) ⊂ B̃x̃ (s(2 + δ)D) for each γ ∈ 	(s), and consequently,


	(s) ≤ volmin(B̃x̃ (s(2 + δ)D)

volmin(M)
. (2)

Since π1(M) is not of polynomial growth of order ≤ n, for each j ∈ N, there exists
sj ∈ N such that


	(sj ) > j · (sj )n. (3)

It is crucial that this relation is independent of α, as follows from (i) and (iii).
Now by Lemma 2.2, there is a star-shaped subset T ⊂ M̃ satisfying (1) and

B̃x̃ (s(2 + δ)D) ⊂ T ⊂ B̃x̃ (s(2 + δ)2D), and from Theorem 2.1 and (2) one has


	(s) ≤ δn

v
·
(

1−C(n, p, s(2+δ)2D)ε
p

2p−1

1−2C(n, p, s(2+δ)2D)ε
p

2p−1

)2p−1

· vol(Bn(s(2 + δ)2D))
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≤ δn(2 + δ)2nDn

v
· 22p−1 · vol(Bn(1)) · sn

when

ε(p;M) <

(
1

3C(n, p, s(2 + δ)2D)

) 2p−1
p

.

In summary, for any fixed, sufficiently large s0, there is

α0 = α0(s0, n, p, δ,D) :=
(

1

3C(n, p, s0(2 + δ)2D)

) 2p−1
p

such that for each s ≤ s0 and α ≤ α0(s0, n, p, δ,D),


	(s) ≤ A(n, p, δ, v,D)sn,

A(n, p, δ, v,D) := δn(2 + δ)2nDn

v
· 22p−1 · vol(Bn(1)). (4)

Now let j0 > A(n, p, δ, v,D), by (3), there exists sj0 such that


	(sj0) > A(n, p, δ, v,D)(sj0 )
n.

But we get a contradiction by taking α ≤ α0(sj0 , n, p, δ,D) and (4). �
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