
Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 3, August 2014, pp. 365–381.
c© Indian Academy of Sciences

Stability of a simple Levi–Civitá functional equation
on non-unital commutative semigroups

JAEYOUNG CHUNG1, HEATHER HUNT2, ALLISON PERKINS2

and PRASANNA K SAHOO2

1Department of Mathematics, Kunsan National University, Kunsan 573-701, Korea
2Department of Mathematics, University of Louisville, Louisville,
Kentucky 40292, USA
E-mail: jychung@kunsan.ac.kr; hbhunt01@louisville.edu; amperk02@louisville.edu;
sahoo@louisville.edu

MS received 23 January 2013; revised 29 May 2013

Abstract. In this paper, we study the Hyers–Ulam stability of a simple Levi–Civitá
functional equation f (x + y) = f (x)h(y) + f (y) and its pexiderization f (x + y) =
g(x) h(y)+k(y) on non-unital commutative semigroups by investigating the functional
inequalities |f (x+y)−f (x)h(y)−f (y)| ≤ ε and |f (x+y)−g(x)h(y)− k(y)| ≤ ε,
respectively. We also study the bounded solutions of the simple Levi–Civitá functional
inequality.
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1. Introduction

A certain formula or equation is applicable to model a physical process if a small change
in the formula or equation gives rise to a small change in the corresponding result. When
this happens we say the formula or equation is stable. In an application, a functional
equation like the additive Cauchy functional equation f (x + y)− f (x)− f (y) = 0 may
not be true for all x, y ∈ R but it may be true approximately, that is

f (x + y)− f (x)− f (y) ≈ 0

for all x, y ∈ R. This can be stated mathematically as

|f (x + y)− f (x)− f (y)| ≤ ε (1.1)

for some small positive ε and for all x, y ∈ R. We would like to know when small
changes in a particular equation like the additive Cauchy functional equation have only
small effects on its solutions. This is the essence of stability theory.
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In 1940, S. M. Ulam asked the following question: Given a group G, a metric group
H with metric d(·, ·) and a positive number ε, does there exist a δ > 0 such that if
f : G → H satisfies

d(f (xy), f (x)f (y)) ≤ ε

for all x, y ∈ G, then a homomorphism φ : G → H exists with

d(f (x), φ(x)) ≤ δ

for all x ∈ G? These kind of questions form the material for the stability theory of func-
tional equations (see [11] and [14]). For Banach spaces, Ulam’s problem was solved by
Hyers [10] in 1941 with δ = ε and the additive map

φ(x) = lim
n→∞

f (2nx)

2n
.

The functional equation

f (x + y) = f (x) h(y)+ f (y) (1.2)

is a special case of the Levi–Civitá functional equation

f (x + y) = g1(x) h1(y)+ g2(x) h2(y)+ · · · + gn(x) hn(y) (1.3)

which was solved by Levi–Civitá in [12] under differentiability conditions. A simple
Levi–Civitá functional equation (1.2) was recently studied by Ebanks in [9] on non-
abelian groups. This functional equation was also treated in [7], [1] and [2]. This
functional equation contains the Cauchy additive functional equation f (x+ y) = f (x)+
f (y).

The stability of the Levi-Civitá functional equation was investigated by Shulman on
amenable locally compact groups in [15]. For more on functional equations and stabilities
of functional equations, the interested reader should refer to the books [3], [14] and [11].

In this paper, we investigate the Hyers–Ulam stability of the functional equation (1.2)
and its generalization

f (xy) = g(x)h(y)+ k(y) (1.4)

on non-unital commutative semigroups. We also study the bounded real-valued solutions
of the functional inequality

|f (x + y)− f (x) h(y)− f (y)| ≤ ε

holding for all x, y ∈ G, where G is a 2-divisible commutative group and ε ≥ 0.

2. Terminology and preliminary results

A nonempty set S with an associative binary operation is called a semigroup. If in addition
there is an identity element for the operation, then S is called a unital semigroup. A non-
unital semigroup S is a semigroup without a neutral element. Throughout this paper we
denote by S a non-unital commutative semigroup and C the field of complex numbers.
For a commutative semigroup S with binary operation +, the set S + S is defined as
{s + t | s, t ∈ S }. A function A : S → C is said to be additive provided A(x + y) =
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A(x)+A(y) for all x, y ∈ S, andm : S → C exponential providedm(x+y) = m(x)m(y)

for all x, y ∈ S.
In 1941, Hyers [10] provided an answer to Ulam’s problem given in the theorem below.

Theorem 2.1 [10]. Let X,Y be Banach spaces and let f : X → Y be a mapping
satisfying

‖f (x + y)− f (x)− f (y)‖ ≤ ε (2.1)

for all x, y in X and for some ε ≥ 0. Then the limit

A(x) = lim
n→∞

f (2nx)

2n
(2.2)

exists for all x in X and A : X → Y is the unique additive mapping satisfying

‖f (x)− A(x)‖≤ ε (2.3)

for all x in X.

Hyers’ theorem holds if the Banach space X is replaced by a commutative semigroup
S without a neutral element.

The stability of the exponential functional equation f (xy) = f (x) f (y) was first inves-
tigated by Baker et al. [6] and then subsequently improved by Baker [5] and Albert and
Baker [4]. The following theorem is due to Baker (see [5]) and is well known.

Theorem 2.2. Let ε > 0. Let S be a semigroup and let f be a complex-valued function
defined on S such that |f (xy) − f (x)f (y)| ≤ ε for all x, y ∈ S. Then either f (x) ≤
(1 +√

1 + 4ε )/2 for all x ∈ S or f (xy) = f (x) f (y) for all x, y ∈ S.

3. Stability of the Levi–Civitá equation (1.2)

Let f, h : S → C be complex-valued functions defined on a semigroup S and ε ≥ 0. In
this section, we consider the functional inequality

|f (x + y)− f (x) h(y)− f (y)| ≤ ε (3.1)

for all x, y ∈ S. Throughout this section we exclude the trivial cases f ≡ 0 or h ≡ 0.

Theorem 3.1. Let f, h : S → C be nonzero functions satisfying inequality (3.1). Then
(f, h) satisfies one of the following:

(i) both f and h are bounded functions,
(ii) h(x) = 1 for all x ∈ S and there exists an additive function A : S → C such that

|f (x)− A(x)| ≤ ε ∀ x ∈ S,

(iii) there exist an unbounded exponential function m and α ∈ C such that

h(x) = m(x) and f (x) = α (m(x)− 1) ∀ x ∈ S.

Proof. Assume that f is bounded. Since f 
≡ 0, it follows from (3.1) that h is bounded,
which yields (i).
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If h ≡ 1, then by Theorem 2.1 there exists a unique additive function A : S → C such
that

|f (x)− A(x)| ≤ ε (3.2)

for all x ∈ S. Hence, we have (ii).
Thus, it remains to consider the case when f is unbounded and h 
≡ 1. Replacing (x, y)

by (y, x) in (3.1) and using the triangle inequality we have

|f (x) (h(y)− 1) − f (y) (h(x)− 1)|
= |f (y + x)− f (y) h(x)− f (x)− f (x + y)

+ f (x) h(y)+ f (y)|
≤ |f (y + x)− f (y) h(x)− f (x)| + |f (x + y)

− f (x) h(y)− f (y)|
≤ 2ε

which is

|f (x) (h(y)− 1)− f (y) (h(x)− 1)| ≤ 2ε (3.3)

for all x, y ∈ S. Dividing both sides of (3.3) by |h(y)− 1| we have

|f (x)− α(y)(h(x)− 1)| ≤ 2ε

|h(y)− 1| (3.4)

for all y ∈ J := {y : h(y) 
= 1}, where α(y) = f (y)/(h(y)− 1). Since f is unbounded,
we have α(y) 
= 0 for all y ∈ J and hence h is unbounded.

Replacing y by y1 and again y by y2 in (3.4) we have two inequalities. By the use of
the triangle inequality on these two resulting inequalities we have

|α(y1)− α(y2)| |h(x)− 1| ≤ 2ε

(
1

|h(y1)− 1| +
1

|h(y2)− 1|
)

(3.5)

for all y1, y2 ∈ J and x ∈ S. Thus, we must have α(y1) = α(y2) and hence α(y) := α.
That is, α(y) is independent of y ∈ J . From (3.4) we have

|f (x)− α (h(x)− 1)| ≤ 2ε

|h(y)− 1| (3.6)

for all y ∈ J . Since h is unbounded we have

f (x) = α (h(x)− 1) (3.7)

for all x ∈ S.
Now, let D(x, y) = f (x + y)− f (x) h(y)− f (y). Then, using the triangle inequality

we have

( 3 + |h(z)| ) ε ≥ |D(x + y, z)−D(x, y + z)−D(y, z)+ h(z)D(x, y)|
= |f (x + y + z)− f (x + y) h(z)− f (z)

−(f (x + y + z)− f (x)h(y + z)− f (y + z))

−(f (y + z)− f (y)h(z)− f (z))

+h(z)(f (x + y)− f (x)h(y)− f (y))|
= |f (x)| |h(y + z)− h(y) h(z)| (3.8)
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for all x, y, z ∈ S. Thus, from (3.8) we have

h(y + z) = h(y) h(z) (3.9)

for all y, z ∈ S. Therefore, h = m, where m is an exponential function and, by (3.7), we
have f (x) = α (m(x)− 1). This completes the proof of the theorem. �

In particular, if S = G, where G is a 2-divisible commutative group and f and h

are mappings from G to R, then we can describe the behavior of bounded solutions of
inequality (3.1), that is

|f (x + y)− f (x) h(y)− f (y)| ≤ ε, x, y ∈ G, (3.10)

in terms of the constant ε. If the group G is 2-divisible, then following the proof of
Theorem 2 in [4] and using the inequalities

1 −√
1 − 4δ

2
≤ 2δ and

√
1 + 4δ − 1

2
≤ δ

for 0 ≤ δ ≤ 1
4 , we obtain the following lemma.

Lemma 3.2. Suppose that G is a 2-divisible commutative group and 0 ≤ δ ≤ 1
4 . Let

h : G → R be a bounded function satisfying

|h(x + y)− h(x) h(y)| ≤ δ (3.11)

for all x, y ∈ G. Then h satisfies either

−δ ≤ h(x) ≤ 2δ (3.12)

for all x ∈ G, or

−δ ≤ 1 − h(x) ≤ 2δ (3.13)

for all x ∈ G.

The following theorem presents the real-valued bounded solutions f, h : G → R of
the functional inequality (3.10).

Theorem 3.3. Let G be a 2-divisible commutative group and R be the field of real num-
bers. Let (f, h) be a pair of bounded functions satisfying (3.10). Then (f, h) satisfies
either

h(x) = 1 and |f (x)| ≤ ε (3.14)

for all x ∈ G, or

|h(x + y)− h(x) h(y)| ≤ ε

Mf
(3 +Mh) , (3.15)

|f (x)− α (1 − h(x))| ≤ 3ε

Mh0

(3.16)

for all x, y ∈ G and for some α ∈ R, where

Mf = sup
y∈G

|f (y)|, Mh = sup
y∈G

|h(y)|, Mh0 = sup
y∈G

|1 − h(y)|.
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In particular, if δ := ε
Mf

(3 +Mh) ≤ 1
4 , then we have

−min

{
7ε

2Mf

,
ε

|f (0)|
}
≤ h(x) ≤ min

{
7ε

Mf

,
ε

|f (0)|
}

(3.17)

and ∣∣∣∣f (x)− f (0)

1 − h(0)

∣∣∣∣ ≤ 2ε (3.18)

for all x ∈ G.

Proof. Assume that h ≡ 1. Then, it follows from inequality (3.2) that the additive function
A is bounded, which implies A ≡ 0. Thus, we have

|f (x)| ≤ ε (3.19)

for all x ∈ G. This yields (3.14). From now on, we assume that h 
≡ 1. From inequality
(3.8) in Theorem 3.1 we have

|h(y + z)− h(y) h(z)| ≤ ε

|f (x)| (3 +Mh) (3.20)

for all x, y, z ∈ G. Taking the infimum of both sides of (3.20) for all x ∈ G, we have

|h(y + z)− h(y) h(z)| ≤ ε

Mf
(3 +Mh) (3.21)

for all y, z ∈ G. Thus, we have (3.15). Now, choosing y0 ∈ G such that |h(y0) − 1| ≥
2
3Mh0 and putting y = y0 in (3.4) we have (3.16). Now, assume that

δ := ε

Mf
(3 +Mh) ≤ 1

4
. (3.22)

Then by Lemma 3.2, h satisfies (3.12) or (3.13). Assume that h satisfies (3.13). Then,
using the triangle inequality, (3.10), (3.13) and (3.22) we have

|f (x+ y)− f (x)− f (y)| ≤ |f (x + y)− f (x)− f (y)− f (x) (h(y)− 1)|
+ |f (x)| |h(y)− 1|

≤ ε + 1

2
Mf (3.23)

for all x, y ∈ G. By Hyers’ theorem (see Theorem 2.1), there exists a unique additive
function A : G → R such that

|f (x)− A(x)| ≤ ε + 1

2
Mf (3.24)

for all x ∈ G. Since f is bounded, A is bounded, and hence, the additive function A ≡ 0.
Thus, it follows from (3.24) that

Mf ≤ ε + 1

2
Mf . (3.25)

From (3.22) and (3.25) we have the contradiction

4ε (3 +Mh) ≤ Mf ≤ 2ε. (3.26)
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Therefore, h satisfies (3.12). Using (3.12) we have

|h(x)| ≤ 2δ ≤ 1

2
(3.27)

for all x ∈ G. Putting y = 0 in (3.10) and dividing the resulting inequality by |1 − h(0)|
we have ∣∣∣∣f (x)− f (0)

1 − h(0)

∣∣∣∣ ≤ ε

|1 − h(0)| ≤
ε

1 − |h(0)| ≤ 2ε (3.28)

for all x ∈ G. Thus, we get (3.18). If f (0) = 0, then from (3.28) we have Mf ≤ 2ε,
which contradicts (3.22). Putting x = 0 in (3.10) and dividing the resulting inequality by
|f (0)| we have

|h(y)| ≤ ε

|f (0)| (3.29)

for all y ∈ G. Also, it follows from (3.12), (3.22) and (3.27) that

− 7ε

2Mf

≤ h(x) ≤ 7ε

Mf

(3.30)

for all x ∈ G. Now, (3.17) follows from (3.29) and (3.30) and the proof of the theorem is
complete. �

Remark 3.4. If h and f satisfy (3.17) and (3.18) respectively, then we have

|f (x + y)− f (x) h(y)− f (y)|
≤

∣∣∣∣f (x + y)− f (0)

1 − h(0)

∣∣∣∣ +
∣∣∣∣ f (0)

1 − h(0)
− f (y)

∣∣∣∣ + |f (x) h(y)|
≤ 2ε + 2ε + 7ε = 11ε (3.31)

for all x, y ∈ G.

Remark 3.5. We can find the behavior of f when h is near 1. Assume that h satisfies

|h(x)− 1| ≤ r < 1

for all x ∈ G. Then, using inequalities similar to (3.23), (3.24) and (3.25) we have

Mf ≤ ε

1 − r
.

Example 3.6. Consider the functional inequality

|f (x + y)− f (x)h(y)− f (y)| ≤ 10−10 (3.32)

for all x, y ∈ G, where G is 2-divisible. We can determine the behavior of (f, h) satis-
fying (3.32) when |f | is not extremely small and |h| is not extremely large. For example,
we assume that

Mf ≥ 10−4 and Mh ≤ 105. (3.33)

Then, ε
Mf

(3+Mh) ≤ 10−10(3+105)

10−4 < 1
4 . Thus, by Theorem 3.3, |h(0)| ≤ 1

2 and f satisfies

|f (x)− f (0)

1 − h(0)
| ≤ 2 × 10−10 (3.34)



372 Jaeyoung Chung et al.

for all x ∈ G. Using the triangle inequality with (3.34), and using (3.27), we have

2|f (0)| ≥ |f (0)|
1 − h(0)

≥ |f (x)| − 2 × 10−10 (3.35)

for all x ∈ G. Thus, using (3.35) and (3.33) we have

|f (0)| ≥ 1

2
(Mf − 2 × 10−10) ≥ 1

2
(10−4 − 2 × 10−10). (3.36)

Now, using (3.17) and (3.36) we have

− 2

106 − 2
≤ − 10−10

|f (0)| ≤ h(x) ≤ 10−10

|f (0)| ≤
2

106 − 2
(3.37)

for all x ∈ G. Also, using (3.17) and (3.33) we have

− 3.5

106
≤ 7 × 10−10

2Mf

≤ h(x) ≤ 7 × 10−10

Mf

≤ 7

106
(3.38)

for all x ∈ G. Therefore, h satisfies (3.37). We can also find the behavior of f when h is
near 1. Assume that

|1 − h(x)| ≤ 1

2
(3.39)

for all x ∈ G. Then, by Remark 3.5 we have

|f (x)| ≤ 2 × 10−10 (3.40)

for all x ∈ G. If h and f satisfy (3.39) and (3.40) respectively, then we have

|f (x + y)− f (x) h(y)− f (y)| ≤ |f (x + y)| + |f (y)| + |f (x) h(y)|
≤ 2 × 10−10 + 2 × 10−10 + 3 × 10−10

= 7 × 10−10

for all x, y ∈ G.

4. Pexider generalization

In this section, we consider the pexiderized version of the inequality (3.1). Let f, g, h, k :
S → C and ε ≥ 0. We consider the stability of the functional inequality

|f (x + y)− g(x)h(y)− k(y)| ≤ ε (4.1)

for all x, y ∈ S. Note that if h is a constant function (without loss of generality we may
assume h ≡ 1), the inequality (4.1) is reduced to the Hyers–Ulam stability of the Pexider
functional equation f (x + y) = g(x)+ k(y) on non-unital commutative semigroups (see
[8]). The following theorem was proved in [8].

Theorem 4.1. Let S be a non-unital commutative semigroup andC be the field of complex
numbers. Assume that ε ≥ 0 and f, g, k : S → C satisfy the functional inequality

|f (x + y)− g(x)− k(y)| ≤ ε (4.2)
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for all x, y ∈ S. Then, there exists a unique additive function A : S → C and α, β ∈ C

such that

|g(x)−A(x)−α| ≤ 8ε, |k(x)−A(x)−β| ≤ 8ε, |f (t)−A(t)−α−β| ≤ 18ε

for all x ∈ S, t ∈ S\(S + S).

From now on, we assume that h is a nonconstant function.

Theorem 4.2. Let S be a non-unital commutative semigroup andC be the field of complex
numbers. Let f, g, h, k : S → C satisfy the functional inequality (4.1). Then (f, g, h, k)

satisfies one of the following:

(i) g, h, k are bounded on S and f is bounded on S + S;
(ii) there exist an unbounded exponential function m : S → C and α, β, γ, μ ∈ C with

αβ 
= 0 such that

h(x) = βm(x), g(x) = αβm(x)+ γ,

|k(x)+ βγm(x)− μ| ≤ 2√
3
ε, |f (t)− αβ2m(t)− μ| ≤

(
1 + 2√

3

)
ε,

f (w) : arbitrary

for all x ∈ S, t ∈ S + S, w ∈ S\(S + S);
(iii) there exist α ( 
= 0), γ, μ ∈ C such that

h(t) = 0,

|h(p)h(q)− h(r)h(s)| ≤ 2(2 +√
3)ε√

3|α| , p + q = r + s,

g(x) = αh(x)+ γ,

|k(x)+ γ h(x)− μ| ≤ 2√
3
ε,

|f (x + y)− αh(x)h(y)− μ| ≤
(

1 + 2√
3

)
ε,

f (w) : arbitrary

for all x, y, p, q, r, s ∈ S, t ∈ S + S, w ∈ S\(S + S).
(iv) there exist γ,μ ∈ C such that

g(x) ≡ γ,

|k(x)+ γ h(x)− μ| ≤ 2√
3
ε,

|f (t)− μ| ≤
(

1 + 2√
3

)
ε,

f (w) : arbitrary

for all x ∈ S, t ∈ S + S, w ∈ S\(S + S).

Proof. First, we assume that g is a nonconstant bounded function. Fix y0 ∈ S and let
D(x, y) = f (x + y)− g(x) h(y)− k(y). Then, using the triangle inequality we have

4ε ≥ |D(y, x)−D(x, y)−D(y0, x)+D(x, y0)|
= |(h(y)− h(y0)) g(x)− (g(y)− g(y0)) h(x)+ k(y)− k(y0)|. (4.3)



374 Jaeyoung Chung et al.

Thus, it follows from (4.3) that h is bounded. Replacing x by y and y by x in (4.1) and
using the triangle inequality we have

|k(x)| ≤ 2ε + |g(x)h(y0)− h(y0)g(x)+ k(y0)|
for all x ∈ G. Thus, k is bounded and consequently, f is bounded on S + S, which yields
(i).

Secondly, we assume that g is unbounded. Since h is nonconstant, it follows from (4.3)
that h is unbounded. Now, dividing both sides of (4.3) by |h(y)− h(y0)| we have

|g(x)− α(y) h(x)+ η(y)| ≤ 4ε

|h(y)− h(y0)| (4.4)

for all x, y ∈ S such that h(y)− h(y0) 
= 0, where

α(y) = g(y)− g(y0)

h(y)− h(y0)
and η(y) = k(y)− k(y0)

h(y)− h(y0)
. (4.5)

Replacing y by y1 and y by y2 in (4.4) and using the triangle inequality with the results
we have

|α(y1)− α(y2)| |h(x)| ≤ |η(y1)− η(y2)|
+ 4ε

(
1

|h(y1)− h(y0)| +
1

|h(y2)− h(y0)|
)

(4.6)

for all x ∈ S. Since h is unbounded, it follows from (4.6) that α(y1) = α(y2). Thus
α(y) := α is independent of y ∈ J := {y ∈ S : h(y)− h(y0) 
= 0} and from (4.5),

g(y)− g(y0) = α(h(y)− h(y0)) (4.7)

for all y ∈ J . From (4.3) it is easy to see that g(y) − g(y0) = 0 if and only if h(y) −
h(y0) = 0 since both g and h are unbounded. Thus, we have

g(x) = α h(x)+ γ (4.8)

for all x ∈ S, where γ = g(y0)− αh(y0). Putting (4.8) in (4.1) we have

|f (x + y)− αh(x) h(y)− γ h(y)− k(y)| ≤ ε. (4.9)

Replacing (x, y) by (y, x) in (4.9) and using the triangle inequality we have

|k(x)+ γ h(x)− k(y)− γ h(y)| ≤ 2ε. (4.10)

Let q(x) := k(x) + γ h(x) and let d := supx,y∈G |q(x) − q(y)|, the diameter of q(S).

Then, by Jung’s theorem [13], there exists a circle with radius r ≤ 1√
3
d containing q(S).

Let μ be the center of the circle. Then we have

|k(x)+ γ h(x)− μ| ≤ 2√
3
ε (4.11)

for all x ∈ S. Using the triangle inequality, (4.9), and (4.11), we have

|f (x + y)− αh(x)h(y)− μ| ≤
(

1 + 2√
3

)
ε. (4.12)



Stability of a simple Levi–Civitá functional equation 375

Now, using the triangle inequality and (4.12) we have

|αh(x)h(y)− αh(u)h(v)| ≤ | − f (x + y)+ αh(x)h(y)+ μ|
+ |f (u+ v)− αh(u)h(v) − μ|

≤ 2(2 +√
3)ε√

3
(4.13)

for all x, y, u, v ∈ S satisfying x + y = u + v. Dividing both sides of (4.13) by |α| we
have

|h(x) h(y)− h(u) h(v)| ≤ 2(2 +√
3)ε√

3|α| := M. (4.14)

Replacing (x, y) by (x + y, z) and (u, v) by (x, y + z) in (4.14) we have

|h(x + y) h(z)− h(x) h(y + z)| ≤ M. (4.15)

Now, using the triangle inequality and (4.15) we can write

|h(x+y)h(z)−h(x)h(y+z)| ≤
∣∣∣∣h(x + y)h(z)h(v)

h(v)
− h(x)h(y + v)h(z)

h(v)

∣∣∣∣
+

∣∣∣∣h(x)h(y+v)h(z)

h(v)
− h(x)h(y+z)h(v)

h(v)

∣∣∣∣
≤ M

( |h(z)| + |h(x)|
|h(v)|

)
(4.16)

for all x, y, z, v ∈ S. Since h is unbounded we have

h(x + y) h(z) = h(x) h(y + z) (4.17)

for all x, y, z ∈ S. Multiplying both sides of (4.17) by h(v) we have

h(x + y) h(z) h(v) = h(x) h(y + z) h(v)

= h(x) h(y) h(z+ v). (4.18)

If h 
≡ 0 on S + S, i.e., there exist s1, s2 ∈ S such that h(s1 + s2) 
= 0, and putting
z = s1, v = s2, x = y = s1 + s2 in (4.18) we have

h(2s1 + 2s2) h(s1) h(s2) = [h(s1 + s2)]3 
= 0.

Thus, we have

h(s1) h(s2) 
= 0.

Putting z = s1, v = s2 in (4.18) and dividing the result by h(s1)
2h(s2)

2/h(s1 + s2) we
have

h(x + y)

β
= h(x)

β
· h(y)

β
(4.19)

for all x, y ∈ S, where β = h(s1)h(s2)/h(s1 + s2). This implies

h(x) = β m(x) (4.20)
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for all x ∈ S, where m is an unbounded exponential function. Putting (4.20) in (4.8),
(4.11) and (4.12) respectively, we get (ii). Similarly, (iii) follows from (4.8), (4.11), (4.12)
and (4.14).

Finally, we assume that g is a constant function. Let g(x) ≡ γ . Replacing (x, y) by
(y, x) in (4.1), and using the triangle inequality with (4.1) and the result we have

|k(x)+ γ h(x)− k(y)− γ h(y)| ≤ 2ε (4.21)

for all x, y ∈ S. By Jung’s theorem, there exists μ ∈ C such that

|k(x)+ γ h(x)− μ| ≤ 2√
3
ε (4.22)

for all x ∈ S. Using the triangle inequality with (4.1) and (4.22) we have

|f (x + y)− μ| ≤
(

1 + 2√
3

)
ε (4.23)

for all x, y ∈ S, which gives (iv). This completes the proof. �

Remark 4.3. If we take f = g = k in Theorem 4.2, then (i), (iii) and (iv) are reduced to
case (i) of Theorem 3.1. Also, item (ii) of Theorem 4.2 is reduced to

h(x) = β m(x), x ∈ S, (4.24)
f (x) = α β m(x)+ γ, (4.25)

|f (x) + β γm(x)− μ| ≤ 2√
3
ε, (4.26)

|f (t) − α β2 m(t)− μ| ≤
(

1 + 2√
3

)
. (4.27)

Putting (4.25) in (4.26) and using the triangle inequality we have

|β(α + γ )| |m(x)| ≤ |γ − μ| + 2√
3
ε

for all x ∈ S. Since m is unbounded, we get γ = −α. Similarly, putting (4.25) in (4.27)
we have β = 1. Thus, Theorem 4.2 includes Theorem 3.1.

In particular, if S + S = S, then as a direct consequence of the above result we have
the following.

COROLLARY 4.4

Assume that S is a commutative semigroup such that S = S + S and f, g, h, k : S → C

satisfy the functional inequality (4.1). Then (f, g, h, k) satisfies one of the following:

(i) f, g, h, k are all bounded on S;
(ii) there exist an unbounded exponential function m and α, β, γ, μ ∈ C with αβ 
= 0

such that

h(x) = βm(x), g(x) = αβm(x)+ γ,

|k(x)+β γ m(x)−μ| ≤ 2√
3
ε, |f (x)−α β2 m(x)−μ| ≤

(
1 + 2√

3

)
ε

for all x ∈ S;
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(iii) there exist γ,μ ∈ C such that

g(x) ≡ γ, |k(x)+ γ h(x)− μ| ≤ 2√
3
ε, |f (x)− μ| ≤

(
1 + 2√

3

)
ε

for all x ∈ S.

Now, we give two examples of regular, as well as irregular solutions of functional
inequality (4.1). In the following example, we denote the polynomials P of finite degree
by the infinite sum P(x) = ∑∞

j=0 ajx
j to avoid confusion, where the coefficients aj = 0

for all but a finite number of j ∈ N ∪ {0}.
Example 4.5. Let S be the set of all nonzero polynomials P(x) = ∑∞

j=0 ajx
j of finite

degree with aj ∈ N ∪ {0} for all j = 0, 1, 2, 3, . . . , and f, g, h, k : S → C. It is easy to
see that every nonzero exponential function m : S → C has the form

m

⎛
⎝ ∞∑

j=0

ajx
j

⎞
⎠ =

∞∏
j=0

c
aj
j , (4.28)

where c0, c1, c2, . . . , cn, . . . is an arbitrary sequence of nonzero complex numbers. Thus,
the regular solution (f, g, h, k) of the inequality (4.1) has the form

h

⎛
⎝ ∞∑

j=0

ajx
j

⎞
⎠ = β

∞∏
j=0

c
aj
j ,

g

⎛
⎝ ∞∑

j=0

ajx
j

⎞
⎠ = α β

∞∏
j=0

c
aj
j + γ,

∣∣∣∣∣∣k
⎛
⎝ ∞∑

j=0

ajx
j

⎞
⎠ + β γ

∞∏
j=0

c
aj
j − μ

∣∣∣∣∣∣ ≤
2√
3
ε,

∣∣∣∣∣∣f
⎛
⎝ ∞∑

j=0

ajx
j

⎞
⎠ − α β2

∞∏
j=0

c
aj
j − μ

∣∣∣∣∣∣ ≤
(

1 + 2√
3

)
ε,

∞∑
j=1

aj ≥ 2,

f (xj ) : arbitrary, j = 0, 1, 2, . . . .

Also it is easy to see that the irregular solutions are given by

h(xj ) = cj , j = 0, 1, 2, . . . ,

h

⎛
⎝ ∞∑

j=0

ajx
j

⎞
⎠ = 0,

∞∑
j=0

aj ≥ 2,

g(xj ) = α cj + γ, j = 0, 1, 2, . . . ,

g

⎛
⎝ ∞∑

j=0

ajx
j

⎞
⎠ = γ,

∞∑
j=0

aj ≥ 2,

|k(xj )+ γ cj − μ| ≤ 2√
3
ε, j = 0, 1, 2, . . . ,



378 Jaeyoung Chung et al.

∣∣∣∣∣∣k
⎛
⎝ ∞∑

j=0

ajx
j

⎞
⎠ − μ

∣∣∣∣∣∣ ≤
2√
3
ε,

∞∑
j=0

aj ≥ 2,

|f (xp + xq)− α cp cq − μ| ≤
(

1 + 2√
3

)
ε, p, q = 0, 1, 2, . . . ,∣∣∣∣∣∣f

⎛
⎝ ∞∑

j=0

ajx
j

⎞
⎠ − μ

∣∣∣∣∣∣ ≤
(

1 + 2√
3

)
ε,

∞∑
j=0

aj ≥ 3,

f (xj ) : arbitrary, j = 0, 1, 2, . . . ,

where α, β, γ, μ ∈ C.

Example 4.6. Let aj > 0, j = 0, 1, 2, . . . , n, and S = [a1,∞) × · · · × [an,∞). Then
every exponential function m : S → C is given by

m(x1, . . . , xn) = ep(x1,...,xn)+iq(x1,...,xn), xj ≥ aj , j = 0, 1, 2, . . . , n,
(4.29)

where p is an additive function on the semigroup S and the function q satisfies

q(x1 + y1, . . . , xn + yn) ≡ q(x1, . . . , xn)+ q(y1, . . . , yn) (mod 2π)

for all xj , yj ≥ aj , j = 0, 1, 2, ..., n.
Thus, the regular solution of the functional inequality (4.1) is given by

h(x1, . . . , xn) = β ep(x1,...,xn)+iq(x1,...,xn),

g(x1, . . . , xn) = α β ep(x1,...,xn)+iq(x1,...,xn) + γ,∣∣∣k(x1, . . . , xn)+ β γ ep(x1,...,xn)+iq(x1,...,xn) − μ

∣∣∣ ≤ 2√
3
ε,

∣∣∣f (t1, . . . , tn)− α β2 ep(x1,...,xn)+iq(x1,...,xn) − μ

∣∣∣ ≤
(

1 + 2√
3

)
ε,

f (w1, . . . , wn) : arbitrary

for all xj ≥ aj , tj ≥ 2aj , aj ≤ sj < 2aj , j = 0, 1, 2, . . . n, and some α, β, γ, μ ∈ C.
Next we find the irregular solutions. Define h0 : [0,∞)× · · · × [0,∞) → C by

h0(x1, . . . , xn) = h(x1 + a1, . . . , xn + an), xj ≥ 0, j = 0, 1, 2, . . . , n.
(4.30)

From (4.14), we have∣∣∣∣∣h0

(
x1 + y1

2
, . . . ,

xn + yn

2

)2

− h0(x1, . . . , xn) h0(y1, . . . , yn)

∣∣∣∣∣ ≤ M

for all xj , yj ≥ 0, j = 0, 1, 2, . . . , n. Let k ≡ 0 and replace g, h by h0 and f (x1, . . . , xn)

by h0(
x1
2 , . . . , xn

2 ) in (4.1). Then by Corollary 4.4 we have

h0(x1, . . . , xn) = β m(x1, . . . , xn) (4.31)

for some β ∈ C and an exponential function m : [0,∞) × · · · × [0,∞) → C. Since
h ≡ 0 on S + S, we have h(y1, . . . , yn) = 0 for all yj ≥ 2aj , j = 0, 1, 2, . . . , n.
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Now, for each xj > 0, j = 0, 1, 2, . . . , n, if we choose a positive integer r such that
rxj ≥ aj , j = 0, 1, 2, . . . , n, then

m(x1, . . . , xn)
r = m(rx1, . . . , rxn)

= β−1 h0(rx1, . . . , rxn) (4.32)
= β−1 h(rx1 + a1, . . . , rxn + an)

= 0.

Thus, it follows that

m(x1, . . . , xn) = 0 (4.33)

for all xj > 0, j = 0, 1, 2, . . . , n. Since m is written in the form

m(x1, . . . , xn) = m1(x1) · · ·mn(xn) (4.34)

for some nonzero exponential functions mj : [0,∞) → C, j = 0, 1, 2, . . . , n, it follows
from (4.33) and (4.34) that there exists j0 ∈ {1, 2, . . . , n} such that

mj0(x) = 0 (4.35)

for all x > 0. Note that for all j ∈ {1, 2, . . . , n}, mj satisfies mj(0) = 1 and one of the
following:

mj(x) = 0 (4.36)

for all x > 0, or

mj(x) 
= 0 (4.37)

for all x > 0. Without loss of generality, we assume that J = {1, 2, . . . , r} is the set of
all j ∈ {1, 2, . . . , n} such that mj satisfies (4.36). Since m is unbounded, we have r < n.
Thus, we can write

h(x1, . . . , xn) = h0(x1 − a1, . . . , xn − an)

= β m(x1 − a1, . . . , xn − an)

= β

r∏
i=1

mi(xi − ai)

n∏
i=r+1

mi(xi − ai)

= β

r∏
i=1

mi(xi − ai)

n∏
i=r+1

mi(xi)

n∏
i=r+1

mi(ai)
−1

= β

n∏
i=r+1

mi(ai)
−1

r∏
i=1

mi(xi − ai)

n∏
i=r+1

mi(xi)

= M1(x1, . . . , xr)M2(xr+1, . . . , xn)

= M1 ⊗M2(x1, . . . , xr ; xr+1, . . . , xn)

for all xj ≥ aj , j = 1, 2, . . . , n, where

M1(x1, . . . , xr ) := β

n∏
i=r+1

mi(ai)
−1

r∏
i=1

mi(xi − ai),

M2(xr+1, . . . , xn) :=
n∏

i=r+1

mi(xi)
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and

M1⊗M2(x1, . . . , xr; xr+1, . . . , xn) := M1(x1, . . . , xr ) M2(xr+1, . . . , xn).

It is easy to see that

M1(x1, . . . , xr )

{ = 0, if ∀ xj > aj , j = 1, 2, ..., r

= 0, if ∀ xj = aj , j = 1, 2, ..., r,

and M2 is an unbounded exponential function on [ar+1,∞)× · · · × [an,∞).
Now, the irregular solution of inequality (4.1) has the form

h(x1, . . . , xn) = M1 ⊗M2(x1, . . . , xr; xr+1, . . . , xn),

g(x1, . . . , xn) = αM1 ⊗M2(x1, . . . , xr; xr+1, . . . , xn)+ γ,

|k(x1, . . . , xn)+ γ M1 ⊗M2(x1, . . . , xr; xr+1, . . . , xn)− μ| ≤ 2√
3
ε,

|f (2x1, . . . , 2xn)− αM1 ⊗M2(2x1, . . . , 2xr; 2xr+1, . . . , 2xn)

−μ| ≤
(

1 + 2√
3
ε

)
,

f (w1, . . . , wn) : arbitrary

for all xj ≥ aj , aj ≤ wj < 2aj , j = 1, 2, . . . , n, and some α( 
= 0), γ, μ ∈ C.

We end this paper with the following question.

Question 4.7. We do not know if every unbounded function h : S → C satisfying the
following functional inequality

|h(p) h(q)− h(r) h(s)| ≤ M, ∀p, q, r, s ∈ S with p + q = r + s (4.38)

for some M > 0, also satisfies the functional equation

h(p) h(q) = h(r) h(s), ∀p, q, r, s ∈ S with p + q = r + s. (4.39)

If there exists a function satisfying (4.38) but not (4.39), then under what conditions
on h and/or the semigroup S does the above functional inequality imply the functional
equation?
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