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Diagrams for certain quotients of PSL(2,Z[i])

QAISER MUSHTAQ and AWAIS YOUSAF

Department of Mathematics, Quaid-i-Azam University 45320,
Islamabad 144000, Pakistan
E-mail: pir_qmushtaq@yahoo.com; awaisysf@gmail.com

MS received 4 June 2013; revised 17 July 2013

Abstract. Actions of the Picard group PSL(2, Z[i]) on PL(Fp), where p≡ 1(mod 4),
are investigated through diagrams. Each diagram is composed of fragments of three
types. A technique is developed to count the number of fragments which frequently
occur in the diagrams for the action of the Picard group on PL(Fp). The conditions of
existence of fixed points of the transformations are evolved. It is further proved that the
action of the Picard group on PL(Fp) is transitive. A code in Mathematica is developed
to perform the calculation.
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1. Introduction

It is well known that PSL(2, C) = PGL(2, C) can be identified with the group of
orientation preserving isometries of H 3 [9]. Let Od denote the ring of integers in the
imaginary quadratic number field Q(

√−d), where d is a square-free positive integer [5].
An important class of discrete subgroups of PSL(2, C) consists of the groups of the form
PSL(2,Od) and PGL(2,Od), which can be considered as generalizations of the classical
modular group PSL(2, Z).

It is known that Od has a Euclidean algorithm only if d = 1, 2, 3, 7, 11 while only O1
and O3 have units �=±1. The groups �d = PSL (2, Od) with d and Od as above are called
Bianchi groups [3]. The group �1, that is PSL (2,O1), where O1 is the ring of Gaussian
integers is known as the Picard group [3, 10]. The modular group, PSL (2, Z), one of
the most extensively studied group, is strongly related to the Picard group [4]. Group
theoretically, �1 is quite similar to PSL (2, Z). However, �1 and PSL (2, Z) differ greatly
in their action on the complex plane. PSL (2, Z) is a Fuchsian group, �1 is discontinuous
in C and therefore has no Fuchsian subgroups [2] of finite index. As with PSL (2, Z) and
the other Euclidean Bianchi groups, many properties of �1 depends on its decomposition
as a non-trivial amalgam. Real interest in Picard and Bianchi groups, in general, began
due to the famous paper of Serre [11].

It is also known (see [4] and [10]) that the Picard group has the presentation �1 = 〈A,
B, C, D | A3 = B2 = C3 = D2 = (AC)2 = (AD)2 = (BC)2 = (BD)2 = 1〉, where
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A(z) :�→ 1
z−i

, B(z) :�→ 1
z
, C(z) :�→ − 1+z

z
, and D(z) :�→ − 1

z
. The decomposition of �1

= G1 ∗
PSL(2,Z)

G2 arises by letting

G1 = 〈A,C,D | A3 = C3 = D2 = (AC)2 = (AD)2 = 1〉,
G2 = 〈B,C,D | B2 = C3 = D2 = (BC)2 = (BD)2 = 1〉;

and the group PSL(2, Z) is precisely the modular group [1].
In this article, we have explored some group theoretic properties of the action of Picard

group �1 = PSL(2,O1) on PL
(
Fp

)
, where O1 is the ring of Gaussian integers and p is

a Pythagorean prime. Throughout this article, we use the symbol u for a square root of
−1(mod p).

2. The action of PSL(2,Z [i]) on PL(Fp)

Theorem 1. �1 acts on PL(Fp) only if −1 is a perfect square in Fp.

Proof. The transformations B, C and D map all the elements of PL(Fp) to the elements
of PL(Fp) except the transformation A(z) = 1

z−u
, which belongs to PL(Fp) only if −1 ≡

p − 1(mod p), that is, if −1 is a perfect square in Fp. �

Such kind of primes can also be written as a sum of squares of two integers. So, these
are called Pythagorean primes [8] and, as is well-known, the odd primes with this property
are precisely those which can be written in the form of p ≡ 1(mod 4).

Theorem 2. Consider the action of PSL(2, Z[i]) on PL(Fp), where p is a Pythagorean
prime. Then

(i) D maps each fixed point of A to its other fixed point,
(ii) B maps each fixed point of C to its other fixed point.

Proof. Suppose, A fixes ν, that is, ν = A(ν) = 1
v−u

. Therefore,

ν2 − uν − 1 = 0.

So, there are two fixed points whose product is −1, hence D(z) = −1
z

interchanges the
two fixed points.

Similarly, if μ is a point fixed by C, then μ = C(μ) = −1−μ
μ

, which gives

μ2 + μ + 1 = 0.

There are two fixed points whose product is 1, the transformation B(z) = 1
z

interchanges
the two fixed points. �

3. Coset diagrams

We use special graphs propounded by Higman known as coset diagrams (see [6, 7]) to
investigate the behavior of the group PSL(2, Z [i]). A coset diagram is a graph whose
vertices are the (right) cosets of a subgroup of finite index in a finitely generated group.
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The vertices representing cosets α and β (say), are joined by a gi-edge, of ‘color i’
directed from vertex α to vertex β,

α −→ αgi = β.

It may well happen that αgi = α, in which case the α-vertex is joined to itself by a gi-
loop or a fixed point. The coset diagrams of the action of PSL(2, Z [i]) on PL

(
Fp

)
are

defined as follows. The coset diagram for the action of the PSL(2, Z [i]) on PL(Fp) is
obtained by using linear fractional transformations A, B, C and D. These transformations
give permutations and with the help of these permutations coset diagram is drawn. The
three cycles of the permutations Ā is denoted by a triangle having bold solid lines whereas
C̄ is represented by triangles having solid lines. Any two vertices which are interchanged
by the involution B̄ and D̄ are represented by dotted and broken line edges, respectively.
The fixed points of Ā, B̄, C̄ and D̄ are denoted by heavy dots, if they exist.

For instance, consider the action of PSL(2, Z [i]) by A : z �→ 1
z−u

, B : z �→ 1
z
,

C : z �→ − 1+z
z

and D : z �→ − 1
z

on PL(F17). We obtained the following permutation
representations of A, B, C and D:

Ā = (0, 4,∞)(1, 11, 5)(2, 8, 13)(3, 16, 10)(6, 9, 7)(12, 15, 14),

B̄ = (0,∞)(1)(2, 9)(3, 6)(4, 13)(5, 7)(8, 15)(10, 12)(11, 14)(16),

C̄ = (0,∞, 16)(1, 15, 8)(2, 7, 11)(3, 10, 4)(5, 9, 14)(6, 13, 12),

D̄ = (0,∞)(1, 16)(2, 8)(3, 11)(4)(5, 10)(6, 14)(7, 12)(9, 15)(13).

This action yields the following diagram:

1

8

15

12

146

13

2

7
11 9

5

16

0

4

10

3

oc

The above coset diagram represents a non-abelian and simple group PSL(2, 17) of
order 2448 with finite presentation 〈A, B, C, D | A3 = B2 = C3 = D2 = (A−1C−1)2 =
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(BC−1)2 = (A−1D)2 = (BD)2 = DABAC(BA−1)2B = DA−1(C−1D)3C−1

B=1〉.

Theorem 3. There does not exist any T in PSL(2, Z [i]), such that T 2 = (AT )2 =
(BT )2 = (CT )2 = 1.

Proof. Suppose, on the contrary, there exists T satisfying T 2 = (AT )2 = (BT )2 =
(CT )2 = 1. Suppose, T (z) = az+b

cz+b
, i.e., T =

(
a b

c d

)
. The matrix T in GL(2, Z [i])

satisfies T 2 = 1 if and only if the trace of the matrix T is zero or T = ±1. So, the

matrix T becomes T =
(

a b

c −a

)
because we can take a + d = 0. Now AT =

(
uc ud

ua + c ub + d

)
, since AT �= ±1 �= T because of A3 = 1. So the trace of AT must

be zero, hence u(b + c) + d = 0. Again BT =
(

uc ud

ua ub

)
, since BT �= ±1 because

B = B−1 and T �= B �= ±1. Thus trace of BT is zero and we obtain u(b + c) = 0. Now

CT =
( −a − c −b − d

a b

)
; since C3 = 1, hence CT �= ±1 �= T . This means trace of

CT should be zero, which is −a−c+b = 0. Indeed, T 2 = (AT )2 = (BT )2 = (CT )2 =
1 gives T =

(
2b b

−b −2b

)
. But the determinant of T is −3b2 which can never be ±1. �

PROPOSITION 1

The coset diagram of the action of PSL(2, Z [i]) on PL
(
Fp

)
is not a bipartite graph.

Proof. By definition, a graph is bipartite if and only if it does not contain an odd cycle.
Since the coset diagram contains 3-cycles due to the generators A and C of PSL(2, Z [i])
therefore, it is not a bipartite graph. �

Remark 1. Fixed points of A and C exist when 3 is a perfect square in Fp and fixed points
of B and D exist for Pythagorean primes only.

It can be proved as: let z be a point of Fp fixed by A if and only if z2 − uz − 1 = 0;
this has a solution if and only if u2 + 4(= 3) is a perfect square. Similarly, a point z

is fixed by C if and only if z2 + z + 1 = 0; this has a solution only if −3 or 3 is a
perfect square (By Theorem 1). Suppose, B fixes z, i.e., z = B(z) = 1

z
. Therefore,

z2 = 1, this has a solution for all p, where p is a Pythagorean prime. Similarly for z =
D(z) = −1

z
implies that z2 = −1, by Theorem 1 this has a solution for only Pythagorean

primes.

4. Occurrence of fragments

The coset diagrams, which depict the action of PSL(2, Z [i]) on PL(Fp) where p is
a Pythagorean prime, are composed of various types of fragments. There are certain
fragments which frequently occur in these coset diagrams and it is worthwhile to
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know under what conditions they exist in them. In the coset diagrams for the action
of PSL(2, Z [i]) on PL(Fp), where p is a Pythagorean prime, the following spe-
cial fragments [7], namely γ1, γ2 and γ3 occur frequently. We describe them here
respectively.

Each fragment represents A4.

Theorem 4. In the action of PSL(2, Z [i]) on PL(Fp),

(i) fragment γ1 occurs if and only if −3 is a perfect square in Fp, and
(ii) fragments γ2 and γ3 occur for all Pythagorean primes p.

Proof.

(i) Suppose, fragment γ1 occurs in the coset diagram. Let υ be a vertex of γ1, it means
that AAC fixes the vertex υ, that is,

v = v(AAC) = −1 − υ

uυ + 1
implies

υ2 + (1 − 2u)υ − u = 0

which has a solution only when (1 − 2u)2 + 4u = −3 is a perfect square in Fp.
Conversely, suppose that −3 is a perfect square in Fp, so AAC fixes an element v

in Fp but the element v is represented by a vertex in the coset diagram which implies
that the fragment occurs in the coset diagram.

(ii) Let γ2 and γ3 be two fragments. Since every vertex fixed by (AC)2 is in both the
fragments, (AC)2 is also a relator of PSL(2, Z [i]) and the coset diagram depicts
the action of PSL(2, Z [i]) on PL(Fp). So, γ2 and γ3 occur together in every coset
diagram for the action of PSL(2, Z [i]) on PL(Fp). �

We denote the total number of fragments of type γ1 by N (γ1), type γ2 by N (γ2) and
type γ3 by N (γ3).

Theorem 5. A Pythagorean prime p can be expressed as 12l + 4m + 5, where l ∈ Z
+,

m = 0 or 2, N (γ1) = m, N(γ2) = 1 and N(γ3) = l.

Proof. The coset diagrams for the action of PSL(2, Z [i]) on PL(Fp) contain three types
of fragments namely γ1, γ2 and γ3. The fragment γ1 has four vertices and two copies of γ1
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exist in the diagrams only when −3 is a perfect square mod p. Let, m denote the number
of fragments γ1. Since each vertex of a coset diagram is an element of PL(Fp), therefore
the elements of PL(Fp), occupied by γ1 are 4m, where m = 0 or 2. The fragment γ2

has six vertices, and this fragment exists once in every coset diagram of the action of
PSL(2, Z [i]) on PL(Fp). The fragment γ3 has twelve vertices and this fragment exists
also in every coset diagram. If l is the number of fragments of type γ3, then the elements
of PL(Fp), occupied by γ3 are 12l. Thus the total number of vertices in the coset diagram
are 12l+4m+6, where l ∈ Z

+and m = 0 or 2. Hence, |PL(Fp)| = 12l+4m+6, where l ∈
Z
+ and m = 0 or 2.
Now |PL(Fp)| = p + 1 implies that p = 12l+4m+ 5, where l ∈ Z

+ and m = 0 or 2.
It further implies that N (γ1) = m, N(γ2) = 1 and N (γ3) = l, where l ∈ Z

+and
m=0 or 2. �

The fragment γ1 occurs twice when 3 is a perfect square modp, γ2 fragment exists once

and γ3 fragment occurs p−13
12 times if 3 is a perfect square modp and occurs p−5

12 times
otherwise. Thus the total number of copies of A4 are l + m + 1.

Example 1. Since p = 61 is a Pythagorean prime, therefore by Theorem 5, it can be
expressed as 12l+4m+5, where l ∈ Z

+ and m = 0 or 2. That is, 61 = 12(4)+4(2)+5,
where l = 4, m = 2 implies that N (γ1) = 2, N(γ2) = 1 and N (γ3) = 4. Hence the
total number of copies of A4 is 7 and these are:
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Example 2. The prime p = 73 can be expressed as 73 = 12(5) + 4(2) + 5, where l = 5
and m = 2. Therefore by Theorem 5, N (γ1) = 2, N(γ2) = 1 and N (γ3) = 5. Hence the
total number of copies of A4 is 8, as shown:

DEFINITION 1

If PSL(2, Z [i]) acts on PL(Fp), then two elements of PL(Fp) are equivalent if there exists
g ∈ PSL(2, Z [i]), of the form

g : z �→ αz + β

γ z + δ

with αδ − βγ = ±1 and α, β, γ , δ ∈ Z [i], such that (μ) g = ν.

Theorem 6. Action of PSL(2, Z [i]) on PL(Fp) is transitive.

Proof. The group PSL(2, Z [i]) is generated by the linear fractional transformations

A,B,C and D. Therefore, BA(z) = B
(

1
z−u

)
= z

1−zu
. Also (BA)2 (z) = z

1−2zu
and

(BA)3 (z) = z
1−3zu

. With the help of mathematical induction, we get (BA)n (z) = z
1−nzu

,
where n = 1, 2, . . . , p − 1. Similarly, (DC)n (z) = z

1+nz
, where n = 1, 2, . . . , p − 1.

Since, PSL(2, Z [i]) is generated by the linear fractional transformations A : z �→ 1
z−u

,

B : z �→ 1
z
, C : z �→ −1−z

z
and D : z �→ − 1

z
. And we have inductively

(BA)n (z) = z

1 − nzu
, for n = 1, 2, . . . , p − 1

Thus, we get any υ ∈ F ∗
p as υ = ((BA)n)1, where n = (υ−1 − 1)u in Fp. Also,

((BA)m))1 = ∞, where m = −u. Thus, we have obtained in the orbit of 1 every point
on PL

(
Fp

)
other than 0. Finally, 0 is also obtained by using B : z �→ 1

z
. �
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5. Outline of the Mathematica code

The symbolic code is written in mathematica. The code is constructed in the following
way:

(1) One should give a Pythagorean prime as an input.
(2) The main features of the code:

(i) Solve the expression for a given Pythagorean prime, which is proved in Theorem
5.

(ii) Count the number of fragments of type γ1, γ2 and γ3.
(iii) Count the total number of copies of A4.
(iv) Take the action of PSL(2, Z [i]) on PL(Fp), which gives the permutation group

as a homomorphic image of PSL(2, Z[i]).

Example 3. The action of PSL(2, Z [i]) on PL(F17) by A : z �→ 1
z−u

, B : z �→ 1
z
,

C : z �→ − 1+z
z

and D : z �→ − 1
z

on PL(F17) yields the following:

INPUT
p = 17
OUTPUT
By Theorem 5,
17 = 12(1) + 4(0) + 5
N(γ1) = 0, N(γ2) = 1 and N(γ3) = 1
Total number of copies of subscript A4 are 2.
Action of PSL(2, Z [i]) by A :�→ 1

z−u
, B :�→ 1

z
, C :�→ − 1+z

z
and D :�→ − 1

z
on

PL(F17) to give the following permutation representations:

Ā = (0, 13,∞)(1, 7, 14)(2, 3, 5)(4, 15, 9)(6, 12, 16)(8, 10, 11),

B̄ = (0,∞)(1)(2, 9)(3, 6)(4, 13)(5, 7)(8, 15)(10, 12)(11, 14)(16),

C̄ = (0,∞, 16)(1, 15, 8)(2, 7, 11)(3, 10, 4)(5, 9, 14)(6, 13, 12),

D̄ = (0,∞)(1, 16)(2, 8)(3, 11)(4)(5, 10)(6, 14)(7, 12)(9, 15)(13).

Appendix

The code is developed in Mathematica software to generate the permutation group of the
action of PSL(2, Z [i]) on PL(Fp) and for finding the number fragments which frequently
occur in the coset diagrams.

ClearAll;
P =?;
Print["By theorem5"]
Ex=Solve[{P == 12 ∗ l + 4 ∗ m + 5,m == 0||m == 2}, {l, m}, Integers];
l = Ex[[1, 1, 2]];
m = Ex[[1, 2, 2]];
Print[P, " = 12(", l, ") + 4(",m, ") + 5"]
Print["N(γ1) = ",m, ", "N(γ2) = 1", "N(γ3) = ", l]
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Print["Total Number of Copies of A4 are", l + m + 1]
temp = FindInstance[n^2 + 1 == 0, n, Modulus− > P ];
iota = temp[[1, 1, 2]];
Print["A := {"] For [i = 0, i < P/2,
i ++, {t t = Solve[x ∗ i − iota ∗ x − 1 == 0, Modulus− > P ];
t = t t[[1, 1, 2]];
t t t = Solve[x ∗ t − iota ∗ x − 1 == 0, Modulus− > P ];
t2 = t t t[[1, 1, 2]]; If[IntegerQ[t2], t2, t2 = ∞]}
Print["(", i, ", ", t, ", ", t2, ")"]]Print["}"]
Print["B := {"]For[i = 0, i < P/2, i ++,
t t = Solve[x ∗ i − 1 == 0, Modulus− > P ]; t = t t[[1, 1, 2]];
If[IntegerQ[t], t, t = ∞]
Print["(", i, ", ", t, ")"]]Print["}"]
Print["C := {"]For[i = 0, i < P/2,
i ++, {t t = Solve[(−x − 1) ∗ i − 1 == 0, Modulus− > P ];
t = t t[[1, 1, 2]]; t t t = Solve[(x + 1)t + 1 == 0, Modulus− > P ];
t2 = t t t[[1, 1, 2]]; If[IntegerQ[t], t, t = ∞]}
If[i == 0, Print["(0, ", t, ", ", P − 1, ")"],
Print["(", i, ", ", t, ", ", t2, ")"]]]Print["}"]
Print["D := {"]For[i = 0, i < P/2, i ++,
t t = Solve[x ∗ i + 1 == 0, Modulus− > P ]; t = t t[[1, 1, 2]];
If[IntegerQ[t], t, t = ∞]
Print["(", i, ", ", t, ")"]]Print["}"]
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