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Dirichlet problem on the upper half space
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Abstract. In this paper, a solution of the Dirichlet problem on the upper half space
for a fast growing continuous boundary function is constructed by the generalized
Dirichlet integral with this boundary function.
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1. Introduction and results

Let Rn(n ≥ 3) denote the n-dimensional Euclidean space with points x = (x′, xn), where
x′ = (x1, x2, . . . , xn−1) ∈ Rn−1 and xn ∈ R. The boundary and closure of an open set
D of Rn are denoted by ∂D and D̄ respectively. The upper half space is the set H =
{(x′, xn) ∈ Rn : xn > 0}, whose boundary is ∂H . We identify Rn with Rn−1 × R and
Rn−1 with Rn−1 × {0}, writing typical points x, y ∈ Rn as x = (x′, xn), y = (y′, yn),

where y′ = (y1, y2, . . . , yn−1) ∈ Rn−1 and putting

x · y =
n∑

j=1

xjyj = x′ · y′ + xnyn, |x| = √
x · x, |x′| = √

x′ · x′.

Let B(r) denote the open ball with centre at the origin and radius r and σ denote the
(n − 1)-dimensional surface area measure. Let [d] denote the integer part of the positive
real number d. In the sense of Lebesgue measure dy′ = dy1 . . . dyn−1 and dy = dy′dyn.

Given a continuous function f on ∂H , we say that h is a solution of the (classical)
Dirichlet problem on H with f, if �h = 0 in H and limx∈H,x→z′ h(x) = f (z′) for every
z′ ∈ ∂H .

The classical Poisson kernel for H is defined by P(x, y′) = 2xnω
−1
n |x − y′|−n, where

ωn = 2π
n
2 /�(n/2) is the area of the unit sphere in Rn.

To solve the Dirichlet problem on H, as in [2, 3, 5, 7], we use the following modified
Poisson kernel of order m defined by

Pm(x, y′) =
{

P(x, y′), when |y′| ≤ 1,

P (x, y′) − ∑m−1
k=0

2xn|x|k
ωn|y′|n+k C

n
2
k

(
x·y′
|x||y′|

)
, when |y′| > 1,
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where m is a non-negative integer, Cn/2
k (t) is the ultraspherical (Gegenbauer) polynomials

[6]. The expression arises from the generating function for Gegenbauer polynomials

(1 − 2tr + r2)−
n
2 =

∞∑

k=0

C
n
2
k (t)rk,

where |r| < 1 and |t | ≤ 1. The coefficient C
n/2
k (t) is called the ultraspherical

(Gegenbauer) polynomial of degree k associated with n/2, the function C
n/2
k (t) is a

polynomial of degree k in t.
Put

Um(f )(x) =
∫

∂H

Pm(x, y′)f (y′)dy′,

where f (y′) is a continuous function on ∂H .
Using the modified Poisson kernel Pm(x, y′), Yoshida (cf. Theorem 1 of [7]) and

Siegel-Talvila (cf. Corollary 2.1 of [5]) gave classical solutions of the Dirichlet problem
on H respectively. Motivated by their results, we consider the Dirichlet problem for har-
monic functions of infinite order (e.g. see Definition 4.1, p. 143 of [4] for the order of
harmonic functions).

To do this, we define a nondecreasing and continuously differentiable function ρ(r) ≥
1 on the interval [0,+∞). We assume further that

ε0 = lim sup
r→∞

ρ′(r)r log r

ρ(r)
< 1. (1.1)

Let F(p, ρ, β) be the set of continuous functions f on ∂H such that
∫

∂H

|f (y′)|pdy′

1 + |y′|ρ(|y′|)+n+β−1
< ∞, (1.2)

where 1 ≤ p < ∞ and β is a positive real number.
Now we have as follows:

Theorem 1. If f ∈ F(p, ρ, β), then the integral U[ρ(|y′|)+β](f )(x) is a solution of the
Dirichlet problem on H with f.

If we put [ρ(|y′|) + β] = m in Theorem 1, we immediately obtain as follows (cf.
Theorem 1 of [7] and Corollary 2.1 of [5]).

COROLLARY 1

If f is a continuous function on ∂H satisfying
∫
∂H

|f (y′)|p(1 + |y′|)−n−mdy′ < ∞, then
Um(f )(x) is a solution of the Dirichlet problem on H with f.

Theorem 2. Let u be harmonic in H and continuous on H̄ . If u ∈ F(p, ρ, β), then we
have

u(x) = U[ρ(|y′|)+β](u)(x) + h(x)

for all x ∈ H̄ , where h(x) is harmonic in H and vanishes continuously on ∂H .
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2. Proof of Theorem 1

We need to use the following inequality (see p. 3 of [5]):

|Pm(x, y′)| ≤ Mxn|x|m|y′|−n−m (2.1)

for any x ∈ H and y′ ∈ ∂H satisfying |y′| ≥ max{1, 2|x|}, where M is positive constant.
For any ε (0 < ε < 1 − ε0), there exists a sufficiently large positive number R such

that r > R. By (1.1) we have

ρ(r) < ρ(e)(ln r)(ε0+ε),

which yields that there exists a positive constant M(r) dependent only on r such that

k−β/2(2r)ρ(k+1)+β+1 ≤ M(r) (2.2)

for any k > kr = [2r] + 1.
For any x ∈ H and |x| ≤ r , we have by (1.2), (2.1), (2.2), 1/p+ 1/q = 1 and Hölder’s

inequality

M
∑∞

k=kr

∫

{y′∈∂H :k≤|y′|<k+1}
(2|x|)[ρ(|y′|)+β]+1

|y′|[ρ(|y′|)+β]+n
|f (y′)|dy′

≤ M

∞∑

k=kr

(2r)ρ(k+1)+β+1

(∫

{y′∈∂H :k≤|y′|<k+1}
|f (y′)|p

|y′|ρ(|y′|)+n+ pβ
2 −1

dy′
) 1

p

×
(∫

{y′∈∂H :k≤|y′|<k+1}
|y′|−q{[ρ(|y′|)+β]+n− ρ(|y′|)+n−1

p
− β

2 }dy′
) 1

q

≤ M

∞∑

k=kr

(2r)ρ(k+1)+β+1

kβ/2

(∫

{y′∈∂H :k≤|y′|<k+1}
|f (y′)|p

|y′|ρ(|y′|)+n+ pβ
2 −1

dy′
) 1

p

≤ 2MM(r)

(∫

{y′∈∂H :|y′|≥kr }
|f (y′)|p

1 + |y′|ρ(|y′|)+n+ pβ
2 −1

dy′
) 1

p

< ∞.

Thus U[ρ(|y′|)+β](f )(x) is finite for any x ∈ H . Since P[ρ(|y′|)+β](x, y′) is a harmonic
function of x ∈ H for any fixed y′ ∈ ∂H , U[ρ(|y′|)+β](f )(x) is also a harmonic function
of x ∈ H .

To verify the boundary behavior of U[ρ(|y′|)+β](f )(x), we fix a boundary point z′ ∈ ∂H .
Choose a large t > |z′| + 1, and write

U[ρ(|y′|)+β](f )(x) = X(x) − Y (x) + Z(x),

where

X(x) =
∫

{y′∈∂H :|y′|≤t}
P(x, y′)f (y′)dy′,

Y (x) =
[ρ(|y′|+β)]−1∑

k=0

2xn|x|k
ωn

∫

{y′∈∂H :1<|y′|≤t}
1

|y′|n+k
C

n
2
k

(
x′ · y′

|x||y′|
)

f (y′)dy′,



178 Dewu Yang and Yudong Ren

Z(x) =
∫

{y′∈∂H :|y′|>t}
P[ρ(|y′|+β)](x, y′)f (y′)dy′.

Notice that X(x) is the Poisson integral of f (y′)χB(t)(y
′), where χB(t) is the character-

istic function of the ball B(t). So it tends to f (z′) as x → z′. Since Y (x) is a polynomial
times xn and Z(x) = O(xn), both of them tend to zero as x → z′. Thus the function
U[ρ(|y′|)+β](f )(x) can be continuously extended to H̄ such that U[ρ(|y′|)+β](f )(z′) =
f (z′) for any z′ ∈ ∂H . Theorem 1 is proved.

3. Proof of Theorem 2

Consider the function u(x) − U[ρ(|y′|)+β](u)(x), which is harmonic in H, can be
continuously extended to H̄ and vanishes on ∂H .

The Schwarz reflection principle (p. 68 of [1]) applied to u(x) − U[ρ(|y′|)+β](u)(x)

shows that there exists a harmonic function h(x) in H such that h(x∗) = −h(x) =
−(u(x) − U[ρ(|y′|)+β](u)(x)) for x ∈ H̄ , where ∗ denotes reflection in ∂H just as
x∗ = (x′,−xn).

Thus u(x) = h(x)+U[ρ(|y′|)+β](u)(x) for all x ∈ H̄ , where h(x) is a harmonic function
on H vanishing continuously on ∂H . We complete the proof of Theorem 2.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant
Nos. 11301140 and U1304102). The authors are very grateful to Professor Guochang Wu
for some very useful conversations related to this problem. The authors would also like
to thank the referee for his/her careful reading and helpful suggestions which led to the
improvement of their original manuscript.

References

[1] Axler S, Bourdon P and Ramey W, Harmonic function theory, second edition (1992)
(New York: Springer-Verlag)

[2] Deng G T, Integral representations of harmonic functions in half spaces, Bull. Sci. Math.
131 (2007) 53–59

[3] Finkelstein M and Scheinberg S, Kernels for solving problems of Dirichlet type in a
half-plane, Adv. Math. 18(1) (1975) 108–113

[4] Hayman W K and Kennedy P B, Subharmonic functions, vol. 1 (1976) (London:
Academic Press)

[5] Siegel D and Talvila E, Sharp growth estimates for modified Poisson integrals in a half
space, Potential Anal. 15 (2001) 333–360

[6] Szegö G, Orthogonal polynomials (1975) (Providence: American Mathematical Society)
[7] Yoshida H, A type of uniqueness of the Dirichlet problem on a half-space with continuous

data, Pac. J. Math. 172 (1996) 591–609


	Dirichlet problem on the upper half space
	Abstract
	Introduction and results
	Proof of Theorem 1
	Proof of Theorem 2
	References


