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1. Introduction

Let H be a complex and separable Hilbert space and let L (H ) be the set of bounded
linear operators on H . Let � be a open connected subset of complex plane C. A class
of Cowen–Douglas operator with index one: B1(�) is defined as follows [6]: B1(�) =:
{T ∈ L (H ):

(i) � ⊂ σ(T ) =: {λ ∈ C : T − λI is not invertible,
(ii)

∨
λ∈� Ker(T − λ) = H ,

(iii) Ran(T − λ) = H ,

(iv) dim Ker(T − λ) = 1,∀λ ∈ �}.
For any operator T ∈ B1(�), it is shown that we can find a holomorphic family of
eigenvectors {e(λ), λ ∈ �} such that T e(λ) = λe(λ),∀λ ∈ �. A holomorphic curve
with one dimension is a map from H to Grassmann manifold Gr(n,H ) defined as
F(λ) =: ∨{e(λ)} for λ ∈ �. We call two linear bounded operators T and S are unitarily
equivalent if and only if there exists a unitary operatorU ∈ L (H ) such that T = USU∗,
denoted by T ∼u S. For two holomorphic curves F and G defined on �, if there exists
a unitary operator U ∈ L (H ) such that F(λ) = UG(λ),∀λ ∈ �, then we call them
unitarily equivalent, denoted by F ∼u G.

In [6], it is shown that unitary equivalence of operator T can be deduced to the same
problem of holomorphic curve F associated to it. Following Cowen and Doulgas [6], a
curvature function for T ∈ B1(�) can be defined as

KT = − ∂

∂λ̄

(

h−1 ∂h

∂λ

)

, for all λ ∈ �,
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where h(λ) = ||e(λ)||2,∀λ ∈ �. And a remarkable result is also proved in [6]: For T , S ∈
B1(�), T ∼u S if and only if KT = KS on �. Subsequently, the curvature function
turns into an important object of the research of Cowen–Douglas operators. Many other
mathematicians too have done a lot of work around the curvature [2–5,11–13,19–22,25].
On the other hand, by using the K0-group, a few others [7–10] worked on the prob-
lems of similarity classification of Cowen–Douglas operators and some holomorphic
curves.

In [1], Apostol and Martin discussed the unitary equivalence problem of Cowen–
Douglas operators in a C∗-algebraic setting. Let U be a unital C∗-algebra, then p ∈ U
is called a projection in U whenever p2 = p = p∗, and P(U) denotes the set of
all projections in U which is called the Grassmann manifold of U . Let � ⊆ C be a
connected open set. If P : � → P(U) is an infinite differential U-valued map with
∂PP = 0, then it is called an extended holomorphic curve on P(U) (see more details
in [15]).

Let P,Q : � → P(U) be two extended holomorphic curves. We call P and Q are
unitarily equivalent (denoted by P ∼u Q) if there exists a unitary U ∈ U such that
P(λ) = UQ(λ)U∗,∀λ ∈ �. Martin and Salinas did a series work of holomorphic curves
on extended flag manifolds and Grassmann manifolds [15–18, 24].

In [15], Martin and Salinas proved as follows.

Lemma 1.1 (Theorem 4.5 of [15]). Suppose P,Q be two extended holomorphic curves in
Class Ak(�,U) if U is inner (see Definition 1.5) , then the following are equivalent:

(1) P ∼u Q;
(2) for each λ ∈ �, there exists a unitary v such that

v∂̄J P (λ)∂I P (λ)v∗ = ∂̄JQ(λ)∂IQ(λ), ∀J, I ≤ k.

Condition (2) is also said to be that P and Q have order of contact k at λ. In this note,
we introduce a class of extended holomorphic curves including Bott projection on C2

and holomorphic curves in L (H ), etc. With the same form of curvature of the Cowen–
Douglas operator, we define the curvature of these extended holomorphic curves and give
a unitarily equivalent theorem. The following is our main theorem:

Theorem 2.3. Let P,Q ∈ P1(�,U) ∩ A1(�,U). For each λ ∈ �, if there exists a
unitary vλ ∈ U such that P(λ) = vλQ(λ)v∗λ, then P ∼u Q if and only if KP (λ) =
KQ(λ),∀λ ∈ �.

We will first introduce some notations and results, and all the notations are adopted
from [1], [7] and [15].

1.2. Let U be a C∗-algebra, and P : � → P(U) be an infinite differential map. Then P

is holomorphic if and only if

∂̄P (λ)P (λ) = 0, ∀λ ∈ �, (1.1)

where we use symbol ∂̄J ∂I to denote ∂J+I

∂J λ∂I λ
,∀J, I ∈ Z+. We assume that ∂IP = P ,

∂̄J P = P , ∂̄J ∂IP = P , when J = I = 0.
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1.3. Let C∞(�,U) denote the ∗-algebra of all U-valued infinitely differentiable functions
defined on �. Then we have that

(∂I (A))∗ = ∂̄ I (A), ∀A ∈ C∞(�,U).
Let U be a unital C∗-algebra, and P : � → P(H) be an extended holomorphic curve.
Assume that S ⊆ U is a fixed subset containing the unit of U . For each λ ∈ � and every
α ∈ Z+ ∪ {∞}, set

Bα
λ = {

∂̄J P (λ)y∗x∂IP (λ) : I, J ∈ Z+, I, J ≤ α, x, y ∈ S
}
.

Let Uα
λ be the closure of ∗-subalgebra of U generated by Bα

λ with property

U0
λ ⊆ U1

λ ⊆ · · · ⊆ U∞
λ .

DEFINITION 1.4 [15]

Let k ≥ 1 be an integer. If the following conditions are satisfied, then (P, S) is said to be
in the class Ak(�,U):
(1) U∞

λ is a finite-dimensional C∗-algebra for each λ ∈ �.
(2) If kλ denotes the cardinal of any maximal collection of mutually orthogonal minimal

projections in U∞
λ , then kλ ≤ k.

(3) If a ∈ U and aP(λ) = 0 for every λ ∈ �, then a = 0.

In particular, when S = {1}, (P, S) is equal to P .

DEFINITION 1.5 [15]

We say G ⊂ U is a separating subset of U if {a ∈ U : as = 0, s ∈ G} = {0}. Assume G,
T are two separating subsets of U , and θ : G → T is a given bijection. We say θ is inner
(semi-inner), if there exists a unitary u ∈ U (a unitary ν ∈ U) such that

usu∗ = θ(s), s ∈ G, (or νt∗sν∗ = θ(t)θ(s), s, t ∈ G).

U is said to be inner if each semi-inner bijection between two separating subsets of U is
inner. In the following, we always assume that U is inner.

1.6. Let diag{x1, x2, . . . , xn} denote a diagonal matrix with the diagonal entries:
x1, x2, . . . , xn.

2. Curvature and unitary equivalence of extended holomorphic curve

Let B be a C∗-algebra. A Hilbert B-module l2(N, B) is defined as

l2(N, B) =:
{

(ai)i∈N : ai ∈ B,∀i ∈ N, and
∑

i∈N
||ai||2 < ∞

}

.

We denote the set of all linear bounded operators on l2(N, B) by L (l2(N, B)). Then
L (l2(N, B)) is a C∗-algebra.
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Let α∗ = (a∗i )i∈N ∈ l2(N, B) and α = (ai)
T
i∈N be the conjugate transpose of α∗. Let

the symbol ‘·’ denote the multiplication of a matrix. We will first introduce the following
two notations:

(1) α · α∗ := (aia
∗
j )i,j∈N which can be seen as an element in L (l2(N, B));

(2) α∗ · α := ∑∞
i=1 α

∗
i αi ∈ B.

DEFINITION 2.1

Let � be a connected open subset of C and B be a unital C∗-algebra. For U =
L (l2(N, B)), and let P1(�,U) denote the extended holomorphic curve P which
satisfies:

(1) P(λ) = (α∗(λ) · α(λ))−1α(λ) · α∗(λ),∀λ ∈ �, where α : � → l2(N, B) is a
holomorphic function and α∗ is the conjugate transpose of α.

(2) α∗(λ) · α(λ) ∈ Z(B),∀λ ∈ �, where Z(B) := {x ∈ B : xb = bx,∀b ∈ B} is the
centre of B.

DEFINITION 2.2

Let P ∈ P1(�,U). Considering l2(N, B)) is a Hilbert C*-module, denote h(λ) =
〈α(λ), α(λ)〉 = α∗(λ) · α(λ). A curvature function of P is defined as

KP = − ∂

∂λ

(

h−1 ∂h

∂λ

)

, for all λ ∈ �.

This curvature is the same inform as the curvature of the Cowen–Douglas operator.

Theorem 2.3. Let P,Q ∈ P1(�,U) ∩ A1(�,U). For each λ ∈ �, if there exists a
unitary vλ ∈ U such that P(λ) = vλQ(λ)v∗λ, then P ∼u Q if and only if KP (λ) =
KQ(λ),∀λ ∈ �.

Proof. Since P(λ) = (α∗(λ) · α(λ))−1α(λ) · α∗(λ),∀λ ∈ � and ∂̄α = 0, ∂α∗ = 0, we
have

∂̄P = ∂̄((α∗ · α)−1)α · α∗ + (α∗ · α)−1∂̄(α · α∗)
= ∂̄((α · α∗)−1)α · α∗ + (α∗ · α)−1(α · ∂̄α∗)
= ∂̄h−1α · α∗ + h−1α · ∂̄α∗

and

∂P = ∂h−1α · α∗ + h−1∂α · α∗.

By ∂̄α = 0, ∂α∗ = 0, it follows that

∂h = ∂α · α∗, ∂̄h = α · ∂̄α∗

and

∂∂̄h = ∂(∂̄α∗ · α + α∗ · ∂̄α)
= ∂∂̄α∗ · α + ∂̄α∗ · ∂α
= ∂̄α∗ · ∂α.
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By condition (2) in Definition 2.1, h := α · α∗ ⊆ Z(B). So h commutes with each
element in B. Since α ∈ l2(N, B), h and h−1 also commute with α and α∗. Notice that
condition (2) always means that Span{∂̄J α∗ · ∂Iα, J, I ∈ Z+ ∪ {0}} ⊆ Z(B). Then for
any J, I ∈ Z+ ∪ {0}, it follows that ∂̄J α∗ · ∂Iα commutes with α and α∗.

From these observations, we have that

∂̄P ∂P = (∂̄h−1(α · α∗)+ h−1(α · ∂̄α∗))(∂h−1(α · α∗)+ h−1(∂α · α∗))
= ∂̄h−1∂h−1(α · α∗ · α · α∗)+ h−1(α · ∂̄α∗)h−1(∂α · α∗)
+∂̄h−1h−1(α · α∗ · ∂α · α∗)+ h−1∂h−1(α · ∂̄α∗ · α · α∗)

= ∂̄h−1∂h−1h(α · α∗)+ h−2(α · ∂̄α∗ · ∂α · α∗)
+∂̄h−1h−1(α · α∗ · ∂α · α∗)+ h−1∂h−1(α · ∂̄α∗ · α · α∗)

= [∂̄h−1∂h−1h2 + h−1∂∂̄h+ ∂̄h−1∂h+ ∂h−1 · ∂̄h]P
= [−h−1∂̄hh−1∂h+ h−1∂∂̄h]P
= −KPP.

Similarly, ∂̄Q∂Q = −KQQ. Chose S = {1}, and from Lemma 1.1, we know that P
and Q have order of contact one at each λ if and only if P and Q are unitarily equivalent.

Since the formulas

∂̄PP = P∂P = 0, ∂̄QQ = Q∂Q = 0

and

∂̄P ∂P = −KPP, ∂̄Q∂Q = −KQQ

hold, it follows that if KP = KQ holds, then P and Q satisfy condition (2) in Lemma 1.1,
and P and Q are unitarily equivalent. So we finish the proof of the ‘if part’.

If P = uQu∗, then ∂̄P ∂P = u∂̄Q∂Qu∗. By condition (2) of 3.1, it follows that
KP ,KQ ∈ Z(B). Thus,

∂̄P ∂P = −KPP = −KPuQu∗ = −uKPQu∗
= −uKQQu∗ = −KQuQu∗
= u∂̄Q∂Qu∗.

That means KP (λ)Q(λ) = KQ(λ)Q(λ),∀λ ∈ �. By condition (3) of Definition 1.4, we
have KP = KQ on �. This completes the proof of Theorem 2.3.

Let α : � → l2(N, B) be a holomorphic function. In Definition 2.1, the C∞ map
P : � → l2(N, B) is defined as P := (α∗ · α)−1α · α∗.

By the proof of Theorem 2.3, we can see that P is an extended holomorphic curve. In
fact, by the following calculation, we can show that P satisfies equation (1.1) since we
have that

∂̄PP = ∂̄((α∗α)−1α · α∗)((α∗α)−1α · α∗)
= (∂̄h−1α · α∗ + h−1α · ∂̄α∗)h−1α · α∗
= (∂̄h−1 + (h−1)2∂̄h)α · α∗
= h−1(∂̄h−1 + (h−1)2∂̄h)α · α∗
= h−1(∂̄(h−1h))α · α∗
= 0.
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By using the same construction in Definition 2.1, we can get a series of extended holo-
morphic curves which can be classified by using curvature. And the finite dimension
case of our extended holomorphic curve contains the Bott projection (Example 2.4)
and the infinite case contains the classical holomorphic curves in Grassmann manifold
(Example 2.5).

Example 2.4 (Bott projection). Let U be M2(C) and � ⊆ C be a connected open set,
and let P : � → M2(C) be defined by

P(λ) = 1

1 + |λ|2
(

1 λ̄

λ |λ|2
)

, ∀λ ∈ �.

Then P is called Bott projection which is important in K-theory [12]. If we choose
α(λ) := (1, λ)T ∈ C2 and α∗(λ) := (1, λ̄), then

P(λ) = (α∗(λ) · α(λ))−1α(λ) · α∗(λ), ∀λ ∈ �,

and P is an extended holomorphic curve on �.
If we consider another extended holomorphic curve

Q(λ) = 1

1 + |g(λ)|2
(

1 ¯g(λ)

g(λ) |g(λ)|2
)

, ∂̄g = 0,

by 3.3, we can see that the curvatures of P and Q are −1
1+|λ|2 and −|∂g(λ)|2

1+|g(λ)|2 respectively.

In particular, if we choose g(λ) = λ2, then the two curvatures can not be equal for |λ| �=√
2−1. By Theorem 2.3, P and Q are not unitarily equivalent. In fact, for anyU ∈ M2(C)

with UP(λ) = Q(λ)U,∀λ ∈ D, it can be shown that U is zero.

Example 2.5 (Holomorphic curves) Let T ∈ B(H) be a Cowen–Douglas operator with
index 1 and Ker(T − λ) = Span{e(λ)},∀λ ∈ � (see more details in [6] and [15]). For the
kernel function e, let α(λ) be its coordinate function in l2. P(λ) = (α∗(λ) ·α(λ))−1α(λ) ·
α∗(λ) is just the matrix form for the projection from H on to Ker(T −λ). For each λ ∈ �,
chose α(λ) = (a0(λ), a1(λ), . . . , an(λ) . . .)

T , and we have that

P(λ) = (α∗(λ) · α(λ))−1α(λ) · α∗(λ)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(a0(λ), a1(λ), . . . , an(λ) . . .)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0(λ)

a1(λ)
...

an(λ)
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

−1 ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0(λ)

a1(λ)
...

an(λ)
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

×(a0(λ), a1(λ), . . . , an(λ) . . .)

= 1
∞∑
k=0

|ak(λ)|2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0(λ)

a1(λ)
...

an(λ)
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(a0(λ), a1(λ), . . . , an(λ) . . .)
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= 1
∞∑
k=0

|ak(λ)|2

⎛

⎜
⎜
⎜
⎜
⎝

|a0(λ)|2 a0(λ)a1(λ) · · · a0(λ)an(λ) · · ·
a1(λ)a0(λ) |a1(λ)|2 · · · a1(λ)an(λ) · · ·

· · · · · · · · · · · · · · ·
an(λ)a0(λ) an(λ)a1(λ) · · · |an(λ)|2 · · ·

· · · · · · · · · · · · · · ·

⎞

⎟
⎟
⎟
⎟
⎠

∞×∞

.

From the above discussion, for each operator in B1(�), we can find a related extended
holomorphic curve with the same form in Definition 2.1. Furthermore, they have the same
unitary invariants. So we can deduce that the extended holomorphic curve class P1(�,U)
is just the generation of operator class B1(�).

3. Extended holomorphic curves and inductive limits

3.1. As is well known, it is a common to construct new C∗-algebras using the inductive
limits of some inductive sequences ofC∗-algebras which are familiar to us. In this chapter,
we will focus on discussing the unitary classification problem of some special extended
holomorphic curves associated with inductive limits. This kind of inductive limits was
introduced in [7] and [14].

Let U be a unital C∗-algebra, and Un := Mkn(U), where {kn}∞n=1 ∈ N and l = km
kn

∈ N,
∀m ≥ n. Let C(�,Un) denote the ∗-algebra of all the Un-valued continuous functions
defined on �. Let A be a inductive limit of ∗-algebras defined as follows:

C(�,U1)
φ1,2→ C(�,U2)

φ2,3→ · · ·→C(�,Un)
φn,n+1→ C(�,Un+1) · · · → A .

Let P ∈ Aαn(�,Un) be an extended holomorphic curve. Assume homomorphisms
φn,m : C(�,Un) → C(�,Um) satisfies the following three conditions:

(1) For any m > n, there exist a unitary un,mand holomorphic functions {xi}∞i=1 on �

such that

φn,m(P (λ))=un,m(λ)diag{P(x1(λ)),P (x2(λ))· · ·P(xl(λ))}u∗n,m(λ),∀λ ∈ �;
(2) There exists a connected open set 
⊂
̄ ⊆ � such that Ran xi ⊆ 
, ∀i = 1, 2, . . . , l.
(3) There exist functions hJ,Ii ∈ C∞(�),∀i = 1, 2, . . . , l,∀0 < J, I ≤ αm such that

∂̄J φn,m(P (λ))∂I φn,m(P (λ))

= un,m(λ)diag
{
h
J,I
1 (λ)P (x1(λ)), . . . , h

J,I
l (λ)P (xl(λ))

}
u∗n,m(λ).

Notice that φn,m(P ) belongs to Aαm(�,Um), where αm = km
kn
αn.

DEFINITION 3.2

The set {x1(λ), x2(λ), . . . , xl(λ)} in 3.1 is called the spectrum of φn,m at λ, denoted
by SP(φn,m)λ. Let ψn,m be another homomorphism in 4.1 and SP(ψn,m)λ = {x̃1(λ),

x̃2(λ), . . . , x̃l(λ)}. And we define the distance of the two sets as follows:

dist{SP(φn,m)λ, SP (ψn,m)λ} = max
i

min
σ

{|xi(λ)− x̃σ (i)(λ)|},

where σ is a permutation of set {1, 2, . . . , l}.
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3.3 [23]. Let {Ui}∞i=1 be a family of C∗-algebras. We associate two new C∗-algebras∏∞
i Ui and

∑∞
i Ui as follows. Let

∏∞
i Ui be the set of all functions a : N → ∪i∈NUi for

each a(i) ∈ Ui , where ||a|| = Sup{||a(i)||Ui
: i ∈ N}. Let

∑∞
i Ui be the closure of the

subset

I =
{

a ∈
∞∏

i

Ui : a(i) = 0 for all but finite many i ∈ N

}

.

Let M = limn→∞(Un, in,m) and in,m : Un → Um be the embedding homomorphisms.
Then M = ∏∞

i Ui/
∑∞

i Ui and in,∞(a) = [. . . , a, in,n+1(a), in,n+2(a), . . .]. For more
details on inductive limits of C∗-algebras, see [14].

In the following theorem, we will consider the unitary equivalent problems of the
extended holomorphic curves in inductive limits C∗-algebras. To give a classification of
inductive limits C∗-algebras, we need to consider the spectrum of the homomorphisms
between two C∗-algebras in the inductive sequences. In our case (with assumptions
(1)–(3) in 3.1), we also can describe the unitary equivalence of two extended holo-
morphic curves in inductive limits of C∗-algebras by comparing the spectrums of the
corresponding homomorphism sequences.

Theorem 3.4. Let U = limn→∞(C(�,Un), φn,m), Ũ = limn→∞(C(�,Un), ψn,m) be
inductive limits in 3.1. Let P ∈ AαN (�,UN) be an extended holomorphic curve in 3.1,
where N is a given integer.

The following statements are true if :

(1) limm→∞ maxλ∈
 dist{SP(φn,m)λ, SP (ψn,m)λ} = 0;
(2) For any m > N and λ ∈ �,

h
J,I
i (λ) = h̃

J,I
σ0(i)

(λ) (in 3.1),

when |xi(λ) − x̃σ0(i)(λ)| = minσ {|xi(λ) − x̃σ (i)(λ)|}, ∀i ∈ {1, 2, . . . , l},∀λ ∈ �, 0 <

∀J, I ≤ αm.
Then there exists M > 0 such that φN,m(P ) ∼u ψN,m(P ) for all m > M . Furthermore,

φN,∞(P ) ∼u ψN,∞(P ) in M = ∏∞
i Ui/

∑∞
i Ui .

Proof. For any λ, λ′ ∈ 
, there exists δ > 0 such that if |λ − λ′| < δ, then ||P(λ) −
P(λ′)|| < 1. Since P(λ) and P(λ′) are projections, then P(λ)

u∼ P(λ′).
Suppose permutation σ0 satisfies

|xi(λ)− x̃σ0(i)(λ)| = min
σ

{|xi(λ)− x̃σ (i)(λ)|}.

Then

h
J,I
i (λ) = h̃

J,I
σ0(i)

(λ),∀i = 1, 2, . . . , l, ∀λ ∈ �.

By condition (1), there exists M > 0 such that for any m ≥ M ,

|xi(λ)− x̃σ0(i)(λ)| ≤ dist(SP (φN,m)λ, SP (ψN,m)λ) ≤ δ, ∀λ ∈ �.
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So when m ≥ M ,

P(xi(λ))
u∼ P(x̃σ0(i)(λ)), ∀λ ∈ �,∀0 < i ≤ l.

Notice that for any λ ∈ 
 and 0 ≤ J, I ≤ αm,

∂̄J φN,m(P (λ))∂IφN,m(P (λ))

= uN,m(λ)

⎛

⎜
⎝

hJI1 (λ)P (x1(λ))

. . .

hJ Il (λ)P (xl(λ))

⎞

⎟
⎠ u∗N,m(λ). (3.1)

Obviously, (3.1) also holds for ψN,m. That is, for any λ ∈ 
 and 0 ≤ J, I ≤ αm,

∂̄J φN,m(P (λ))∂IψN,m(P (λ))

= ũN,m(λ)

⎛

⎜
⎝

h̃J I1 (λ)P (x̃1(λ))

. . .

h̃J Il (λ)P (x̃l(λ))

⎞

⎟
⎠ ũ∗N,m(λ).

By (3.1), for any λ ∈ �, we have

∂̄J φN,m(P (λ))∂IφN,m(P (λ))
u∼ ∂̄J ψN,m(P (λ))∂IψN,m(P (λ)), ∀m ≥ M.

Since φN,m(P ) and ψN,m(P ) ∈ Aαm(
,Um) and Um is an inner algebra, by Lemma 1.6,

we have φn,m(P )
u∼ ψn,m(P ), ∀m ≥ M .

Suppose φn,m(P (λ)) = Umψn,m(P (λ))U∗
m, where Um does not depend on λ. Set

U = iM,∞(UM) = [UM, . . . , Um,Um+1, . . .] ∈ M =
∞∏

i

Ui

/∞∑

i

Ui .

Notice that U, Ũ ⊂ M, and we have

φN,∞(P (λ)) = [φN,M(P (λ)), φN,M+1(P (λ)), . . .]
U∗ = U [ψN,M(P (λ)), ψN,M+1(P (λ)), . . .]

= UψN,∞(P (λ))U∗, ∀λ ∈ �.

�
Remark 3.5. For conditions (1)–(3) given for the extended holomorphic curves mentioned
in 3.1, conditions (1) and (2) are always used in the classification theory in C∗-algebras.
In the last part of this note, we would like to point out that condition (3) in 3.1 can also be
satisfied for some special extended holomorphic curves.

In fact, if we let P : � → P(U) be an extended holomorphic curve with the following
properties:

(a) P(λ) = f (λ)p(λ)p∗(λ),∀λ ∈ �, where f ∈ C∞(�), p ∈ C∞(�,U);
(b) ∂P (λ) = f (λ)p∗(λ), ∂̄P (λ) = f (λ)p(λ),∀λ ∈ �;

(c)
∂

∂λ
p∗(λ) = ∂

∂λ̄
p(λ) = 0,∀λ ∈ �.
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Then, by conditions (b) and (c), we have

∂IP (λ) = ∂I

∂λ
f (λ)p∗(λ), ∂̄J P (λ) = ∂J

∂λ
f (λ)p(λ)

and

∂̄J P (λ)∂IP (λ) =
∂I

∂λ
f (λ)

∂J

∂λ̄
f (λ)

f (λ)
P (λ) = f J,I (λ)P (λ).

A calculation shows that such a kind of extended holomorphic curves with properties: (a),
(b) and (c) will satisfy condition (3) in 3.1. And we can also check that the Bott projection
on to C2 satisfies conditions (a), (b) and (c).
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