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Abstract. Using a generalized spherical mean operator, we define generalized modu-
lus of smoothness in the space L2

k
(Rd). Based on the Dunkl operator we define

Sobolev-type space and K-functionals. The main result of the paper is the proof of the
equivalence theorem for a K-functional and a modulus of smoothness for the Dunkl
transform on R

d .
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1. Introduction and preliminaries

In [2], Belkina and Platonov proved the equivalence theorem for a K-functional and
a modulus of smoothness for the Dunkl transform in the Hilbert space L2(R, |x|2α+1),
α > −1/2, using a Dunkl translation operator.

In this paper, we prove the analog of this result (see [2]) in the Hilbert space
L2(Rd , wk). For this purpose, we use a generalized spherical mean operator in the place
of the Dunkl translation operator.

Dunkl [4] defined a family of first-order differential-difference operators related to
some reflection groups. These operators generalize in a certain manner the usual differ-
entiation and have gained considerable interest in various fields of mathematics and also
in physical applications. The theory of Dunkl operators provides generalizations of vari-
ous multivariable analytic structures. Among others, we cite the exponential function, the
Fourier transform and the translation operator. For more details about these operators, see
[3, 4, 6, 7, 9, 10, 12] and the references therein.

Let R be a root system in R
d , W the corresponding reflection group, R+ a positive

subsystem of R and k a non-negative and W -invariant function defined on R. The Dunkl
operator is defined for f ∈ C1(Rd) by

Dj f (x) = ∂f

∂xj

(x) +
∑

α∈R+
k(α)αj

f (x) − f (σα(x))

〈α, x〉 , x ∈ R
d .
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Here 〈, 〉 is the usual Euclidean scalar product on R
d with the associated norm |.| and σα

the reflection with respect to the hyperplane Hα orthogonal to α. We consider the weight
function

wk(x) =
∏

α∈R+
|〈α, x〉|2k(α),

where wk is W-invariant and homogeneous of degree 2γ where

γ =
∑

α∈R+
k(α).

We let η be the normalized surface measure on the unit sphere S
d−1 in R

d and set

dηk(y) = wk(y)dη(y).

Then ηk is a W -invariant measure on S
d−1, and we let dk = ηk(S

d−1).
The Dunkl kernel Ek on R

d × R
d has been introduced by Dunkl in [5]. For y ∈ R

d ,

the function x �−→ Ek(x, y) can be viewed as the solution on R
d of the following initial

problem:

Dj u(x, y) = yiu(x, y), 1 ≤ j ≤ d,

u(0, y) = 1.

This kernel has a unique holomorphic extension to C
d × C

d .
Rösler has proved in [12] the following integral representation for the Dunkl kernel,

Ek(x, z) =
∫

Rd

e〈y,z〉dμx(y), x ∈ R
d , z ∈ C

d ,

where μx is a probability measure on R
d with support in the closed ball B(0, |x|) of center

0 and radius |x|.
PROPOSITION 1.1

Let z,w ∈ C
d and λ ∈ C. Then

(1) Ek(z, 0) = 1,
(2) Ek(z,w) = Ek(w, z),
(3) Ek(λz,w) = Ek(z, λw),
(4) For all ν = (ν1, ..., νd) ∈ N

d , x ∈ R
d , z ∈ C

d , we have

|Dν
z Ek(x, z)| ≤ |x||ν|exp(|x||Re(z)|),

where

Dν
z = ∂ |ν|

∂z
ν1
1 . . . ∂z

νd

d

, |ν| = ν1 + · · · + νd .

In particular,

|Dν
z Ek(ix, z)| ≤ |x|ν

for all x, z ∈ R
d .
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Proof. See [3].

The Dunkl transform is defined for f ∈ L1
k(R

d) = L1(Rd , wk(x)dx) by

f̂ (ξ) = c−1
k

∫

Rd

f (x)Ek(−iξ, x)wk(x)dx,

where the constant ck is given by

ck =
∫

Rd

e
−|z|2

2 wk(z)dz.

The inverse Dunkl transform is defined by the formula

f (x) =
∫

Rd

f̂ (ξ)Ek(ix, ξ)wk(ξ)dξ, x ∈ R
d .

The Dunkl Laplacian Dk is defined by

Dk =
d∑

i=1

D2
i .

From [11], we have that if f ∈ L2
k(R

d),

D̂kf (ξ) = −|ξ |2f̂ (ξ). (1)

The Dunkl transform shares several properties with its counterpart in the classical case.
We mention here, in particular that Parseval theorem holds in L2

k(R
d). As in the classical

case, a generalized translation operator is defined in the Dunkl (see [13, 14]). Namely,
for f ∈ L2

k(R
d) and x ∈ R

d we define τx(f ) to be the unique function in L2
k(R

d)

satisfying

τ̂xf (y) = Ek(ix, y)f̂ (y) a.e. y ∈ R
d .

Form to Parseval theorem and Proposition 1.1, we see that

‖τxf ‖L2
k(R

d ) ≤ ‖f ‖L2
k(R

d ) for all x ∈ R
d .

The generalized spherical mean value of f ∈ L2
k(R

d) is defined by

Mhf (x) = 1

dk

∫

Sd−1
τx(f )(hy)dηk(y), (x ∈ R

d , h > 0).

We have

‖Mhf ‖L2
k(R

d ) ≤ ‖f ‖L2
k(R

d ). (2)

PROPOSITION 1.2

Let f ∈ L2
k(R

d) and fix h > 0. Then Mhf ∈ L2
k(R

d) and

M̂hf (ξ) = j
γ+ d

2 −1(h|ξ |)f̂ (ξ), ξ ∈ R
d . (3)
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Proof. See [8].

Let the function f (x) ∈ L2
k(R

d). We define differences of the order m (m ∈ 1, 2, . . .)

with a step h > 0.

�m
h f (x) = (I − Mh)

mf (x),

where I is the unit operator.
For any positive integer m, we define the generalized module of smoothness of the mth

order by the formula

wm(f, δ)2,k = sup
0<h≤δ

‖�m
h f ‖L2

k(R
d ), δ > 0.

Let Wm
2,k be the Sobolev space constructed by the operator Dk , i.e.,

Wm
2,k = {f ∈ L2

k(R
d) : D

j
k f ∈ L2

k(R
d); j = 1, 2, . . . , m}.

Let us define the K-functional constructed by the spaces L2
k(R

d) and Wm
2,k ,

Km(f, t)2,k = K(f, t;L2
k(R

d);Wm
2,k)

= inf{‖f − g‖L2
k(R

d ) + t‖Dm
k g‖L2

k(R
d ); g ∈ Wm

2,k},

where f ∈ L2
k(R

d), t > 0.
For α > −1

2 , let jα(x) be a normalized Bessel function of the first kind, i.e.,

jα(x) = 2α
(α + 1)Jα(x)

xα
,

where Jα(x) is a Bessel function of the first kind (Chap. 7 of [1]).
The function jα(x) is infinitely differentiable, jα(0) = 1.

We understand a generalized exponential function as the function [2]

eα(x) = jα(x) + icαxjα+1(x), (4)

where cα = (2α + 2)−1, i = √−1.
From (4), we have |1 − jα(x)| ≤ |1 − eα(x)|

2. Main results

Lemma 2.1. Let f (x) ∈ L2
k(R

d). Then

‖�m
h f ‖L2

k(R
d ) ≤ 2m‖f ‖L2

k(R
d ).

Proof. We use the proof of recurrence for m and the formula (2).

Lemma 2.2. For x ∈ R, the following inequalities are fulfilled:

(1) |eα(x)| ≤ 1,
(2) |1 − eα(x)| ≤ 2|x|,
(3) |1 − eα(x)| ≥ c with |x| ≥ 1, where c > 0 is a certain constant which depends only

on α.
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Proof. See [2].

Lemma 2.3. For x ∈ R, the following inequalities are fulfilled:

(1) |jα(x)| ≤ 1,

(2) |1− jα(x)| ≥ c1 with |x| ≥ 1, where c1 > 0 is a certain constant which depends only
on α.

Proof. Analog of proof of Lemma 2.2.
In what follows, f (x) is an arbitrary function of the space L2

k(R
d); c, c1, c2, c3, . . . are

positive constants.

Lemma 2.4. Let f ∈ Wm
2,k , t > 0. Then

wm(f, t)2,k ≤ c2t
2m‖Dm

k f ‖L2
k(R

d ).

Proof. Assume that h ∈ (0, t], �m
h f = (I − Mh)

mf is the difference with the step h.
From Proposition 1.2, formula (1) and the Parseval equality,

‖�m
h f ‖L2

k(R
d ) = ‖(1 − j

γ+ d
2 −1(h|ξ |))mf̂ (ξ)‖L2

k(R
d );

‖Dm
k f ‖L2

k(R
d ) = |ξ |2m‖f̂ (ξ)‖L2

k(R
d ). (5)

Formula (5) implies the equality

‖�m
h f ‖L2

k(R
d ) = h2m‖

(1 − j
γ+ d

2 −1(h|ξ |))m
h2m|ξ |2m

|ξ |2mf̂ (ξ)‖L2
k(R

d ).

Then

‖�m
h f ‖L2

k(R
d ) ≤ h2m‖

(1 − e
γ+ d

2 −1(h|ξ |))2m

(h|ξ |)2m
|ξ |2mf̂ (ξ)‖L2

k(R
d ). (6)

According to Lemma 2.2, for all s ∈ R we have the inequality |(1 − eα(x))2ms−2m| ≤
c2, where c2 = 22m. We have

‖�m
h f ‖L2

k(R
d ) ≤ c2h

2m‖|ξ |2mf̂ (ξ)‖L2
k(R

d )

= c2h
2m‖Dm

k f ‖L2
k(R

d ) ≤ c2t
2m‖Dm

k f ‖L2
k(R

d ).

Calculating the supremum with respect to all h ∈ (0, t], we obtain

wm(f, t)2,k ≤ c2t
2m‖Dm

k f ‖L2
k(R

d )

For any f ∈ L2
k(R

d) and any number ν > 0, let us define the function

Pν(f )(x) = �
−1(f̂ (ξ)χν(ξ)),

where χν(ξ) is the function defined by χν(ξ) = 1, for |ξ | ≤ ν and χ(ξ) = 0, for |ξ | > ν,
�

−1 is the inverse Dunkl transform. One can easily prove that the function Pν(f ) is
infinitely differentiable and belongs to all classes Wm

2,k .
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Lemma 2.5. For any function f ∈ L2
k(R

d). Then

‖f − Pν(f )‖L2
k(R

d ) ≤ c4‖�m
1/νf ‖L2

k(R
d ), ν > 0

Proof. Let |1 − j
γ+ d

2 −1(t)| ≥ c1 with |t | ≥ 1 (see Lemma 2.3). Using the Parseval
equality, we have

‖f − Pν(f )‖L2
k(R

d ) = ‖(1 − χν(ξ))f̂ (ξ)‖L2
k(R

d )

=
∥∥∥∥

1 − χν(ξ)
(

1−j
γ+ d

2 −1

( |ξ |
ν

))m

(
1 − j

γ+ d
2 −1

( |ξ |
ν

))m

×f̂ (ξ)

∥∥∥∥
L2

k(R
d ).

Note that

sup
|ξ |∈R

1 − χν(ξ)∣∣∣
(

1 − j
γ+ d

2 −1

( |ξ |
ν

)) ∣∣∣
≤ 1

cm
1

Then ‖f−Pν(f )‖L2
k(R

d )≤c−m
1 ‖

(
1−j

γ+ d
2 −1

( |ξ |
ν

))m

f̂ (ξ)‖L2
k(R

d )=c4‖�m
1/νf ‖L2

k(R
d ).

COROLLARY 2.6

‖f − Pν(f )‖L2
k(R

d ) ≤ c4wm(f, 1/ν)2,k.

Lemma 2.7. The following inequality is true:

‖Dm
k (Pν(f ))‖L2

k(R
d ) ≤ c5ν

2m‖�m
1/νf ‖L2

k(R
d ), ν > 0, m ∈ {1, 2, . . .}.

Proof. Using the Parseval equality, we have

‖Dm
k (Pν(f ))‖L2

k(R
d ) = ‖D̂m

k (Pν(f ))‖L2
k(R

d ) = ‖|ξ |2mχν(ξ)f̂ (ξ)‖L2
k(R

d )

=
∥∥∥∥

|ξ |2mχν(ξ)
(

1 − j
γ+ d

2 −1

( |ξ |
ν

))m

(
1 − j

γ+ d
2 −1

( |ξ |
ν

))m

×f̂ (ξ)

∥∥∥∥
L2

k(R
d )

.

Note that

sup
|ξ |∈R

|ξ |2mχν(ξ)

|1 − j
γ+ d

2 −1

( |ξ |
ν

)
|m

= ν2m sup
|ξ |≤ν

( |ξ |
ν

)2m

|1 − j
γ+ d

2 −1

( |ξ |
ν

)
|m

= ν2m sup
|t |≤1

t2m

|1 − j
γ+ d

2 −1(t)|m
.
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Let

c5 = sup
|t |≤1

t2m

|1 − j
γ+ d

2 −1(t)|m
.

Then, we have

‖Dm
k (Pν(f ))‖L2

k(R
d ) ≤ c5ν

2m‖�m
1/νf ‖L2

k
.

COROLLARY 2.8

‖Dm
k (Pν(f ))‖L2

k(R
d ) ≤ c5ν

2mwm(f, 1/ν)2,k .

Theorem 2.9. One can find positive numbers c6 and c7 which the inequality

c6wm(f, δ)2,k ≤ Km(f, δ2m)2,k ≤ c7wm(f, δ)2,k,

f ∈ L2
k(R

d), δ > 0.

Proof. Firstly prove of the inequality

c6wm(f, δ)2,k ≤ Km(f, δ2m)2,k.

Let h ∈ (0, δ], g ∈ Wm
2,k . Using Lemmas 2.1 and 2.4, we have

‖�m
h f ‖L2

k(R
d ) ≤ ‖�m

h (f − g)‖L2
k(R

d ) + ‖�m
h g‖L2

k(R
d )

≤ 2m‖f − g‖L2
k(R

d ) + c2h
2m‖Dm

k g‖L2
k(R

d )

≤ c8(‖f − g‖L2
k(R

d ) + δ2m‖Dm
k g‖L2

k(R
d )),

where c8 = max(2m, c2). Calculating the supremum with respect to h ∈ (0, δ] and the
infimum with respect to all possible functions g ∈ Wm

2,k , we obtain

wm(f, δ)2,k ≤ c8Km(f, δ2m)2,k,

whence we get the inequality.
Now, we prove the inequality

Km(f, δ2m)2,k ≤ c7wm(f, δ)2,k.

Since Pν(f ) ∈ Wm
2,k , by the definition of a K-functional we have

Km(f, δ2m)2,k ≤ ‖f − Pν(f )‖L2
k(R

d ) + δ2m‖Dm
k Pν(f )‖L2

k(R
d ).

Using Corollaries 2.6 and 2.8, we obtain

Km(f, δ2m)2,k ≤ c4wm(f, 1/ν)2,k + c5ν
2mδ2mwm(f, 1/ν)2,k,

Km(f, δ2m)2,k ≤ c4wm(f, 1/ν)2,k + c5(νδ)2mwm(f, 1/ν)2,k.

Since ν is an arbitrary positive value, choosing ν = 1/δ, we obtain the inequality.
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