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Abstract.  Using a generalized spherical mean operator, we define generalized modu-
lus of smoothness in the space Lz (Rd). Based on the Dunkl operator we define
Sobolev-type space and K-functionals. The main result of the paper is the proof of the
equivalence theorem for a K-functional and a modulus of smoothness for the Dunkl

transform on R¥.
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1. Introduction and preliminaries

In [2], Belkina and Platonov proved the equivalence theorem for a K-functional and
a modulus of smoothness for the Dunkl transform in the Hilbert space Ly (R, |x[>*t1),
o > —1/2, using a Dunkl translation operator.

In this paper, we prove the analog of this result (see [2]) in the Hilbert space
L>(R?, wy). For this purpose, we use a generalized spherical mean operator in the place
of the Dunkl translation operator.

Dunkl [4] defined a family of first-order differential-difference operators related to
some reflection groups. These operators generalize in a certain manner the usual differ-
entiation and have gained considerable interest in various fields of mathematics and also
in physical applications. The theory of Dunkl operators provides generalizations of vari-
ous multivariable analytic structures. Among others, we cite the exponential function, the
Fourier transform and the translation operator. For more details about these operators, see
[3,4,6,7,9,10, 12] and the references therein.

Let R be a root system in RY, W the corresponding reflection group, Ry a positive
subsystem of R and k a non-negative and W-invariant function defined on R. The Dunkl
operator is defined for f € C'(R?) by
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Here (, ) is the usual Euclidean scalar product on R? with the associated norm |.| and o,
the reflection with respect to the hyperplane H, orthogonal to «z. We consider the weight
function

we () = [ He, %),

O[ER+

where wy is W-invariant and homogeneous of degree 2y where

y = Z k(a).

QER+
We let ) be the normalized surface measure on the unit sphere SY~! in R? and set

dne(y) = wr(y)dn(y).

Then ny is a W-invariant measure on S9-1 and we let dr = nx (S9-1h.

The Dunkl kernel E; on R? x R? has been introduced by Dunkl in [5]. For y € R4,
the function x —> Ej(x, y) can be viewed as the solution on R? of the following initial
problem:

Dju(x,y) =yulx,y), 1=<j<=d,
u(0,y) = 1.
This kernel has a unique holomorphic extension to C¢ x C?.
Rosler has proved in [12] the following integral representation for the Dunkl kernel,
Ex(x,2) = / e Jduc(y), x eRY zeC,
R4
where /1, is a probability measure on R¢ with support in the closed ball B(0, |x|) of center
0 and radius |x|.

PROPOSITION 1.1

Let z, w € C? and A € C. Then
(1) Ex(z,0) =1,

(2) Ex(z, w) = Ex(w, 2),

(3) Ex(rz, w) = Er(z, Aw),
4) Forallv = (vq,...,vq) € N, x e R4, 7z € C?, we have

IDYEx(x, 2)| < |x|"exp(|x|[Re(z)]),
where

alvl
DU

=——— 7, Wl=vi+- -+
ozt azy

In particular,
|ID!Ei(ix, )| < |x|"

forall x, z € R4,
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Proof. See [3].
The Dunkl transform is defined for f € Li(Rd) = LY R?, wi (x)dx) by
f@&=¢' / | SOEK(=i&, xywp(x)dx,
R
where the constant ¢y is given by
ck = e 2 wi(z)dz.
R4
The inverse Dunkl transform is defined by the formula
) = /R f®Eix. wi©)ds,  x e R

The Dunkl Laplacian Dy is defined by

d
Dy = Z D?.
i=1
From [11], we have that if f € L?(R?),

Dif(§) = —I£12f(©). (1)

The Dunkl transform shares several properties with its counterpart in the classical case.
We mention here, in particular that Parseval theorem holds in L%(Rd). As in the classical
case, a generalized translation operator is defined in the Dunkl (see [13, 14]). Namely,
for f € L%(Rd) and x € RY we define 7,(f) to be the unique function in L%(Rd)
satisfying

T f(y) = Ex(ix, ) f(y) ae.yeR

Form to Parseval theorem and Proposition 1.1, we see that
lex fll 2y < WSl 2ray  forallx e R,
The generalized spherical mean value of f € L,%(Rd) is defined by
1
My f(x) = —/ T (f)(hy)dn(y). (x € R b > 0).
di Jsi-1
We have
”th”L%(Rd) = ”f”Lz(Rd)' 2)

PROPOSITION 1.2
Let f € L7(RY) and fix h > 0. Then My, f € L}(R?) and

Mif (€)= j,pa_(HEDFE). &R 3)
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Proof. See [8].

Let the function f(x) € L,%(Rd ). We define differences of the orderm (m € 1,2, ...)
with astep i > 0.

AR f&) =T —Mp)" f0),

where [ is the unit operator.
For any positive integer m, we define the generalized module of smoothness of the mth
order by the formula

wa(f, 824 = sup A fll 2y, 8> 0.
0<h<§

Let W3, be the Sobolev space constructed by the operator Dy, i.e.,
Te={feLi®Y: D f e Li®RY; j=1,2,....m}.
Let us define the K -functional constructed by the spaces Li(Rd) and Wz”fk,
Kn(f.02xk = K(f.t: LERD; W)
= inf{llf — gll 2, + 11D}l 2 ey 8 € WAL,

where f € L,%(Rd), t > 0.
Fora > _71, let jy (x) be a normalized Bessel function of the first kind, i.e.,

2°T (o + 1) Jo (x)

xC(

Ja(x) =

where J,, (x) is a Bessel function of the first kind (Chap. 7 of [1]).
The function j,(x) is infinitely differentiable, j, (0) = 1.
We understand a generalized exponential function as the function [2]

eq(x) = jo(x) +iceXjout1(x), “4)

where ¢, = Qo +2)71,i = /1.
From (4), we have |1 — j,(x)]| < |1 — eq(x)]

2. Main results
Lemma 2.1. Let f(x) € L3(R?). Then
AR fllz2gaey < 2" 1 12 @a).

Proof. We use the proof of recurrence for m and the formula (2).

Lemma 2.2. For x € R, the following inequalities are fulfilled:

(1) lea(x)] = 1,

(2) 11 = eq(x)| = 2|x|,

3) |1 —eq(x)| = ¢ with |x| > 1, where ¢ > 0 is a certain constant which depends only
on .
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Proof. See [2].

Lemma 2.3. For x € R, the following inequalities are fulfilled:

(D e =1,
2) |1 — ju(x)| = c1 with |x| > 1, where c1 > 0 is a certain constant which depends only
on .

Proof. Analog of proof of Lemma 2.2.
In what follows, f(x) is an arbitrary function of the space L,%(]Rd );c,c1,C2,C3,... are
positive constants.

Lemma2.4. Let f € W), t > 0. Then
W (f, ok < CztzmllfollL%(Rd).

Proof. Assume that h € (0,¢], A}’ f = (I — My)™ f is the difference with the step /.
From Proposition 1.2, formula (1) and the Parseval equality,

1A fllzay = 1= j, ay BIED" F @)l 2 pay:
1D £l 2 gay = 1EP" 1 ©)l 2 g, 5)
Formula (5) implies the equality

(= jy a_ (RIED)™
h2m|g>:|2m

2 2m 7
IAR 2@y =A™ E17" f ()l 2 ra).

Then
(I—e, a_(RIED)"
(h|g[)>m

According to Lemma 2.2, for all s € R we have the inequality |(1 — e, (x))*"s~2"| <
¢a, where ¢; = 22" We have

1A fll 2y < B2 1§17 £ 2 (©)

IA

1A Fllz2ay = 2 INEP" FE 12 ey
= ™D fl 3 ey < 2™ I DY 2oy
Calculating the supremum with respect to all 4 € (0, ¢], we obtain
wan (f, D2k < 2™ 1DR fll 2 ey
For any f € L7(R) and any number v > 0, let us define the function
Pu(H)x) = F (f @&,

where x, (£) is the function defined by x,(§) = 1, for |£] < v and x(§) = 0, for || > v,
F~!is the inverse Dunkl transform. One can easily prove that the function P,(f) is
infinitely differentiable and belongs to all classes Wy"..
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Lemma 2.5. For any function f € L,%(Rd ). Then
lf— Pu(f)”L]%(Rd) < C4||Ar1n/uf||L%(Rd)a v>0

Proof. Let |1 — jy+%7](t)| > ¢y with |f] > 1 (see Lemma 2.3). Using the Parseval
equality, we have

If =P (Dlpgs = I - XU(E))f(E)”L%(Rd)

_ H 1= xu(®) (1_ . (E))’”
(1_jy+%—] (@))m Jy+%_1 5

Note that

1- Xv(é)
sup

: £
58 | (1= Jyag (F))

m A
Then [ = Po(Hll 2y 7" 1 (1= a1 (5)) PO 2 gy=esl ATy S 1L 2 oy

1
=
€l

COROLLARY 2.6
If = PoCH gy < cawm(f, 1/
Lemma 2.7. The following inequality is true:
IDF P (Dl 2y < eV IAT, fll ey, V>0, me (1,2,

Proof. Using the Parseval equality, we have

17 P 2wy = IDFPo D zay = 1EP" X0 ) FEN 2gay

_ H HESNG) (1_ . <|s_|>>m
) (1 _jy—&-%—l (li—‘))m JV+%71 .

xf(®)
L2(RY)
Note that
2m (m)zm
1§17 xu (§)  om v
sup =V sup
€1k 11— 7, gy (&) 1 = 1= g,y (B1)
t2m
= v sup

=t 11— Jypa_ (O
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Let

t2m
¢s=sup ——————.
<t 1L =Jj, pa ;O™

Then, we have

IDF Py 2y < sV AT, f1l 2.
(R / X

COROLLARY 2.8

1D Py 2 gy < €5V win(f, 1/V)2.k-
Theorem 2.9. One can find positive numbers cq and c7 which the inequality
cown (f, )2k < Kn(f, 82k < crwm (£, 8)2.k,

feLiRY, §>0.

Proof. Firstly prove of the inequality

cowm (fr 82k < K (fr 872 1.

Leth € (0,6], g € Wé’fk. Using Lemmas 2.1 and 2.4, we have

”Aznf”Ll%(Rd) =< ”Azn(f - g)”L%(Rd) + ”A;lng”Lf(Rd)

IA

2
2" f = g”L,%(]Rd) + coh™" ||D]’<ng||L]%(Rd)

IA

cs(|lf — g”L]%(]Rd) + 82m ||D;{ng”L%(Rd))s

where cg = max(2™, ¢p). Calculating the supremum with respect to & € (0, §] and the
infimum with respect to all possible functions g € W7';, we obtain

Wi (f, 8ok < csKm(f, 872k,

whence we get the inequality.
Now, we prove the inequality

Km(f. 82k < c7wm (f. 8)2.k.
Since P,(f) € Wé’,’k, by the definition of a K-functional we have
Kn (£, 82k < 1f = o 2y + 87 1D PoCh) 2y
Using Corollaries 2.6 and 2.8, we obtain
Ko (f. 822 < cawn(f, 1/v)2,k + e50°" 62wy (f, 1/v)2,4,
Ko (f. 82 < cawn (f, 1/v)2k + e5(08) > win (. 1/v)24

Since v is an arbitrary positive value, choosing v = 1/§, we obtain the inequality.
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