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Abstract. Let A(x) be a norm continuous family of bounded self-adjoint operators
on a separable Hilbert space H and let A(x)n be the orthogonal compressions of A(x) to
the span of first n elements of an orthonormal basis of H. The problem considered here
is to approximate the spectrum of A(x) using the sequence of eigenvalues of A(x)n.
We show that the bounds of the essential spectrum and the discrete spectral values
outside the bounds of essential spectrum of A(x) can be approximated uniformly on all
compact subsets by the sequence of eigenvalue functions of A(x)n. The known results,
for a bounded self-adjoint operator, are translated into the case of a norm continuous
family of operators. Also an attempt is made to predict the existence of spectral gaps
that may occur between the bounds of essential spectrum of A(0) = A and study the
effect of norm continuous perturbation of operators in the prediction of spectral gaps.
As an example, gap issues of some block Toeplitz–Laurent operators are discussed.
The pure linear algebraic approach is the main advantage of the results here.
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1. Introduction

Perturbation theory of operators incorporates a good deal of spectral theory. There are
many instances in quantum mechanics, where the perturbation of operators arises. For
example, the Schrödinger operator

Ã(u) = −ü+ V · u (1.1)

defined on a suitable subspace of L2(R) can be viewed as a perturbation of differential
operator. If we consider the discretized version of this operator, we obtain a bounded
operator on l2(Z), which can be seen as a perturbation of the difference operator, up to
some scaling and translation by the identity as defined below:

A({xj }) = {xj+1 + xj−1 + v(j)xj }, {xj } ∈ l2(Z).

Here we discuss the linear algebraic techniques used in [5] and [16], under a norm
continuous perturbation of the operator.
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Let H be a separable Hilbert space and A be a bounded self-adjoint operator defined on
H. The spectrum of A is denoted by σ(A) with m, M as its lower and upper bounds. Let
{e1, e2, . . .} be an orthonormal basis for H. Consider the finite dimensional truncations of
A, that is An = PnAPn, where Pn is the projection of H onto the span of first n elements
{e1, e2, . . . , en} of the basis.

Various mathematicians have done extensive research to use the spectrum of An, for
computing spectrum σ(A) and essential spectrum σe(A) of A [1, 5, 11, 12, 17]. How-
ever prediction of spectral gaps and related problems using truncation method is yet
to be investigated in detail, though a brief attempt in this direction has been done in
[21]. In this paper, the approximation results in [5] are translated into the case of a
norm continuous family of operators A(x). We prove that the bounds of essential spec-
trum and the discrete spectral values outside the bounds of essential spectrum of A(x)
can be approximated uniformly on all compact subsets by a sequence of eigenvalue
functions.

Also, some spectral gap prediction results are proved using the finite dimensional
truncations. We should mention that gap related problems were studied using analytical
and variational techniques, especially for Schrödinger operators with different kinds of
potentials. This refers to classical Borg-type theorems which characterized the periodic
potentials depending on the nature of spectral gaps (see [8, 14, 24] and references therein
and refer to [6, 16] for new perspectives). Here we try for such results in the case of
some perturbed discrete Schrödinger operators treating them as block Toeplitz–Laurent
operators.

The following is a brief account of some developments in the linear algebraic tech-
niques to the spectral approximation problem, which will play a key role throughout this
paper.

1.1 Linear algebraic approach

Let ν, μ be the lower and upper bounds of σe(A) respectively, with A being self-adjoint.
Let λ+R(A) ≤ · · · ≤ λ+2 (A) ≤ λ+1 (A) be the discrete eigenvalues of A lying above μ and
λ−1 (A) ≤ λ−2 (A) ≤ · · · ≤ λ−S (A) be the eigenvalues of A lying below ν. Here R and S
can be infinity. Denote by λ1(An) ≥ λ2(An) ≥ · · · ≥ λn(An) the eigenvalues of An. The
following result from [5] is of interest in our context:

Theorem 1.1. For every fixed integer k we have

lim
n→∞ λk(An) =

{
λ+k (A), if R = ∞ or 1 ≤ k ≤ R,

μ, if R < ∞ and k ≥ R + 1,

lim
n→∞ λn+1−k(An) =

{
λ−k (A), if S = ∞ or 1 ≤ k ≤ S,

ν, if S < ∞ and k ≥ S + 1.

In particular,

lim
k→∞ lim

n→∞ λk(An) = μ and lim
k→∞ lim

n→∞ λn+1−k(An) = ν.

Remark 1.2. The above results are also true if we replace An by some other sequence
A1n with the property that ‖An − A1n‖ → 0 as n → ∞, with ‖ · ‖ being the spectral
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norm. In order to justify this, we need only to recall an important inequality concerning
the eigenvalues of self-adjoint matrices A, B (refer e.g. to [2]),

|λk(A)− λk(B)| ≤ ‖A− B‖ . (1.2)

The notion of essential points and transient points and their relation with spectrum are
quoted below from [1].

DEFINITION 1.3 [1]

Essential points: A real number λ is an essential point if for every open set U con-
taining λ, limn→∞ Nn(U) = ∞, where Nn(U) is the number of eigenvalues of An

in U.

DEFINITION 1.4 [1]

Transient points: A real number λ is transient if there is an open set U containing λ, such
that supn≥1 Nn(U) < ∞.

DEFINITION 1.5 [1]

The degree of an operator A is defined by the relation

deg(A) = sup
n≥1

rank (PnA− APn).

DEFINITION 1.6 [1]

A is an operator in the Arveson’s class if A = �nAn, deg(An) < ∞ for every n and

�n

(
1 + deg (An)

1
2
)‖An‖ < ∞.

Theorem 1.7 [1]. If A is a bounded self-adjoint operator, and if we denote

� = {λ ∈ R; λ = limλn, λn ∈ σ(An)}
and �e, the set of all essential points, then

σ(A) ⊆ � ⊆ [m,M] and σe(A) ⊆ �e.

Theorem 1.8 [1]. If A is a bounded self-adjoint operator in the Arveson’s class, then
σe(A) = �e and every point in � is either transient or essential.

The subsequent theorem taken from [5] denies the existence of spurious eigenval-
ues (points in � which are not spectral values), under the assumption that the essential
spectrum is connected.

Theorem 1.9. If A is a self-adjoint operator and if σe(A) is connected, then σ(A) = �.

Remark 1.10. It is worthwhile to notice that the connectedness of essential spectrum
enables us to compute the spectrum using finite dimensional truncations.

The paper is organized as follows. In §2, the approximation results are extended to
the case of a one-parameter norm continuous family of operators. In §3, the spectral
gap prediction results are proved with some examples. Also, we make observations of
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what happens to the spectral gaps under a norm continuous perturbation. In the fourth
section, results on the spectral gaps of some block Toeplitz–Laurent operators are
reported. We present the modified version of discrete Borg’s theorem with the techniques
used in [16]. This section is not directly linked to the previous sections, however it deals
with examples of perturbed operators and their spectral gap issues. To be more precise,
the absence of spectral gaps ensures the triviality of the potential sequence that appears
in the discretized Schrödinger operator. The proofs are obtained by looking at the block
Toeplitz structure of the matrix representation of the operators. A concluding section ends
the paper.

2. Spectrum under perturbation

Let A(x) be a norm continuous family of operators with domain D0 in the complex plane.
Our aim is to study the changes in the behavior of spectrum, under these perturbations.
We generalize the approximation techniques used in the case of a single operator, to a
norm continuous family of operators.

First we define the approximation number functions as follows.

DEFINITION 2.1

Consider the singular number sk , k natural number,

sk(A(x)) = inf{‖A(x)− F‖ , rank(F ) ≤ k − 1}, x ∈ D0

which is the k-th approximation number function of A(x).

Clearly we have for each x ∈ D0,

‖A(x)‖ = s1(A(x)) ≥ s2(A(x)) ≥ · · · ≥ sk(A(x)) ≥ · · · ≥ 0. (2.1)

Recall the definition of essential norm.

DEFINITION 2.2

‖A(x)‖ess = inf{‖A(x)−K‖,K compact}, x ∈ D0.

The following lemmas are easy consequences of the continuity of A(x).

Lemma 2.3. sk(A(.)) → ‖A(.)‖ess as k → ∞ uniformly on all compact subsets of D0.

Proof. Consider the sequence of functions fk(x) = sk(A(x)). From [15], we have for
each x,

fk(x) = sk(A(x)) → ‖A(x)‖ess .

Also since

|fk(x)− fk(y)| = |sk(A(x))− sk(A(y))| ≤ ‖A(x)− A(y)‖ , (2.2)

and A(x) is norm continuous, we observe that each function in the sequence are contin-
uous. Hence using the monotonicity of the sequence of functions in (2.1), we conclude
that the convergence is uniform in each compact subsets, by Dini’s theoerem (see p. 150
of [23]). Hence the proof. �



Perturbation of operators and approximation of spectrum 209

Now we consider the truncations A(x)n = PnA(x)Pn and singular numbers
sk(A(x)n) = inf{‖A(x)n − Fn‖, rank (Fn) ≤ k − 1}.
Lemma 2.4. sk(A(x)n) → sk(A(x)) as n → ∞, for each k, and the convergence is
uniform on all compact subsets of D0.

Proof. Our first observation is that the sequence of functions fn,k(x) = sk(A(x)n) form
an equicontinuous family of functions. This follows from the following inequality:

|fn,k(x)− fn,k(y)| = |sk(A(x)n)− sk (A(y)n)| ≤ ‖A(x)n − A(y)n‖
≤ ‖A(x)− A(y)‖ .

Also from the interlacing theorem for singular values (see [2] for the proof), we have

fn,k(x) = sk(A(x)n) ≥ sk(A(x)n−1) = fn−1,k(x),

for each k and for every x ∈ D0. Hence the sequence of singular value functions form a
monotone sequence of functions. Also by Theorem (1.1) of [5],

fn,k(x) = sk(A(x)n) → sk(A(x)) as n → ∞,

for each k and for all x ∈ D0. Now by Dini’s theorem, the convergence is uniform on all
compact subsets of D0 and the proof is complete. �

For the rest of this paper, we assume that A(x) is self-adjoint for each x. Let ν(x), μ(x)
be the lower and upper bounds of σe(A(x)) respectively, and also let the numbers
λ+R(A(x)) ≤ · · · ≤ λ+2 (A(x)) ≤ λ+1 (A(x)) be the discrete eigenvalues of A(x) lying
above μ(x), and λ−1 (A(x)) ≤ λ−2 (A(x)) ≤ · · · ≤ λ−S (A(x)) be the eigenvalues lying
below ν(x). Here R and S can be infinity. The quantities λ1,n(x) ≥ λ2,n(x) ≥ · · · ≥
λn,n(x) denote the eigenvalues of A(x)n in non increasing order.

Theorem 2.5.

lim
n→∞ λk,n(x) =

{
λ+k (x), if R = ∞ or 1 ≤ k ≤ R,

μ(x), ifR < ∞ and k ≥ R + 1,

lim
n→∞ λn+1−k,n(x) =

{
λ−k (x), if S = ∞ or 1 ≤ k ≤ S,

ν(x), if S < ∞ and k ≥ S + 1.

In particular,

lim
k→∞ lim

n→∞ λk,n(x) = μ(x) and lim
k→∞ lim

n→∞ λn+1−k,n(x) = ν(x).

Furthermore, in each of the cases given above, the convergence is uniform on all compact
subsets of D0.

Proof. For each fixed x ∈ D0, these limits exist by Theorem 1.1. We observe the fact that
the sequence of eigenvalue functions, fn,k(x) = λk,n(x) form an equicontinuous family
of functions, from the following inequalities:

|fn,k(x)− fn,k(y)| = |λk,n(x)− λk,n(y)| ≤ ‖A(x)n − A(y)n‖
≤ ‖A(x)− A(y)‖ .
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Also by Cauchy’s interlacing theorem for eigenvalues,

λ1,n+1(x) ≥ λ1,n(x) ≥ λ2,n+1(x) ≥ · · · λn,n+1(x) ≥ λn,n(x) ≥ λn+1,n+1(x),

for each x ∈ D0. In particular, for each k and for every x ∈ D0,

fn+1,k(x) = λk,n+1(x) ≥ λk,n(x) = fn,k(x).

Hence fn,k(.) forms a monotone sequence of continuous functions that converges point
wise. Therefore by Dini’s theorem, the convergence is uniform on all compact subsets of
D0. Hence the proof is complete. �

Remark 2.6. Using Theorem 2.5, we can approximate the discrete spectrum of a norm
continuous family of operators, lying outside the bounds of essential spectrum by the
eigenvalue functions of truncations uniformly on all compact subsets.

It was observed in [5] that norm of An
−1 is uniformly bounded if A is invertible and the

essential spectrum is connected. The perturbed version of this result is proved below.

COROLLARY 2.7

Let A(x) be a norm continuous family of bounded self-adjoint operators such that
σe(A(x)) is connected for all x in the domain D0. Then

lim
n→∞‖(A(x)n − λIn)

−1‖ = ‖(A(x)− λI)−1‖ for every λ ∈ C− R.

Also the convergence is uniform on all compact subsets of D0.

Proof. By Theorem 1.9, σ(A(x)) = �(A(x)). Hence we can easily observe the
following:

d(z, σ (A(x)n)) → d(z,�(A(x))

= d(z, σ (A(x))) for every complex number z.

Therefore, for every non real z,

‖(A(x)n − λIn)
−1‖ = 1

d(z, σ (A(x)n))
→ 1

d(z, σ (A(x)))

= ‖(A(x)− λI)−1‖.
Also the convergence is uniform on all compact subsets of D0 as observed in the previous
theorems. �

3. Gaps in the essential spectrum

Now we consider the problem to predict the gaps in the essential spectrum, if any. An
interval I is called spectral gap if there exist real sets J1, J2 containing the spectrum of A
such that sup J1 ≤ inf I < sup I ≤ inf J2. We are interested in the gaps that lie between
the bounds of essential spectrum of A. Also the intervals between these bounds, containing
only discrete eigenvalues, are treated as spectral gaps. The following theorem is an attempt
to predict the existence of spectral gaps, using the finite dimensional truncations. The
perturbed versions are attempted at the end of this section.
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We use the notation #S to denote the number of elements in the set S. From here
onwards the convex combination of eigenvalues of truncations will be considered at many
places. The notation wnk is used to denote an averaging sequence. That is, 0 ≤ wnk ≤ 1
and

∑n
k=1 wnk = 1.

Theorem 3.1. Let A be a bounded self-adjoint operator, and λn1(An)≥λn2(An)≥· · · ≥
λnn(An) be the eigenvalues of An arranged in decreasing order. For each positive integer
n, let an = ∑n

k=1 wnkλnk be the convex combination of eigenvalues of An. If there exists
a δ > 0 and K > 0 such that

#{λnj ; |an − λnj | < δ} < K (3.1)

and in addition if σe(A) and σ(A) has the same upper and lower bounds, then σe(A) has
a gap.

Proof. Consider the set S = {an, n = 1, 2, 3, . . .} and observe that λnn ≤ an ≤ λn1. Also
since each λnj ’s lie in the interval [m,M], we see that the set S is contained in the interval
[m,M] = [ν,μ].

First we consider the case when S is a finite set, say S = {as1, as2, as3, . . . , asm}. In this
case, there exists finitely many numbers, say an1, an2, an3, . . . , anp such that the value of
an equals some of the numbers ani’s, i = 1, 2, . . . , p, for infinitely many n. That is

an = ani for infinitely many n where i = 1, 2, . . . , p.

From this and by condition (3.1), for each i = 1, 2, . . . , p, we have

Nn(ani − δ, ani + δ) = #{λnj ; |ani − λnj | < δ} < K for infinitely many n.

Hence Nn(ani − δ, ani + δ) will not go to infinity as n goes to infinity. Therefore no
number in the interval (ani − δ, ani + δ) is an essential point. Since the essential spectrum
is contained in the set of all essential points, by Theorem 1.7, there is no essential spectral
values in this interval. Also since each ani lies between the bounds of essential spectrum,
we can choose an appropriate ε > 0 such that (ani − ε, ani + ε) lies between the bounds
and contained in the interval (ani − δ, ani + δ). Then the interval (ani − ε, ani + ε) is a
spectral gap.

Now we consider the case when S is an infinite set. Hence S has a limit point in R. Now
if w0 is a limit point of the set S, then we have ν ≤ w0 ≤ μ.

Now the interval (w0 − δ/2, w0 + δ/2) will contain infinitely many points from the
set S. Corresponding to these points, there are infinitely many An’s for which the num-
ber of eigenvalues in (w0 − δ/2, w0 + δ/2) is bounded by K due to (3.1). Hence the
sequence Nn

(
w0 − δ

2 , w0 + δ
2

)
will not go to infinity, since a subsequence of it, is

bounded by K. Hence no point in the interval (w0 − δ/2, w0 + δ/2) is an essential point.
Since the essential spectrum is contained the set of all essential points, by Theorem 1.7,
(w0 − δ/2, w0 + δ/2) contains no essential spectral values. Hence, as in Case 1, we can
choose an ε > 0, such that the interval (w0 − ε,w0 + ε) is a spectral gap between the
bounds of the essential spectrum and the proof is complete. �

Remark 3.2. There is possibility for the presence of discrete eigenvalues inside the gaps
in the above case.



212 K Kumar et al.

Remark 3.3. The special case which is more interesting is when wnk = 1
n

, for all n. In
that case, we are actually looking at the averages of eigenvalues of truncations and these
averages can be computed using the trace at each level.

Remark 3.4. It is to be noted that all the points of the form an = ∑n
k=1 wnkλnk are in

the numerical range of An. Therefore the result can be made simpler in the language of
numerical range. However it is not easy to compute the numbers in the expression (3.1).
Here we treated it as a deviation from the mean value. Hence the condition (3.1) may be
interpreted as a restriction to the deviation of the eigenvalues of truncations from their
central tendency. Nevertheless the computations still remains difficult.

Special choice I

Let us consider an instance where these weights wnk arises naturally associated to a self-
adjoint operator on a Hilbert space. Let An = ∑n

k=1 λn,kQn,k be the spectral resolution
of An. Define wnk = 〈Qn,ke1, e1〉. Then 0 ≤ wnk ≤ 1 and

∑ n
k=1 wnk = 1. Now

n∑
k=1

wnkλnk =
n∑

k=1

λnk〈Qn,ke1, e1〉 = 〈Ane1, e1〉 = 〈Ae1, e1〉 = a11.

Therefore by Theorem 3.1, if there exists a δ > 0 and a K > 0, such that

#{λnj ; |a11 − λnj | < δ} < K

then there exists a gap in the essential spectrum of A. Hence if the first entry in the
matrix representation of A, is not an essential point, then there exists a gap in the essential
spectrum.

Remark 3.5. All points of the form 〈Aei, ei〉 = aii are in the numerical range which lies
between the bounds of the essential spectrum, in the case that the bounds coincide with
the bounds of the spectrum. Hence in that case, if aii is not an essential point for some i,
then that will lead to the existence of a spectral gap. That means if any one of the diagonal
entries in the matrix representation of A is not an essential point, then there exists a gap
in the essential spectrum as indicated in the above special choice of wnk .

The following is an example where the first entry a11 is a transient point and the spectral
gap prediction is valid.

Example 3.6. Define a bounded self-adjoint operator A on l2(N), as follows.

A(xn) = (xn−1 + xn+1)+ (vnxn), x0 = 0,

where the periodic sequence vn = (1, 2, 3, 1, 2, 3, . . .). This is a discretized version of
the well-known Schrödinger operator. The matrix representation of A results in the block
Toeplitz operator with corresponding matrix valued symbol given by

f̃ (θ) =
⎡
⎣ 1 1 eiθ

1 2 1
e−iθ 1 3

⎤
⎦ .
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As indicated in the special choice above, by Theorem 3.1, if 〈A(e1), e1〉 = 1 is a transient
point, then σe(A) has a gap. This is evident in this example, since from [3],

σe(A) =
3⋃

j=1

[
inf
θ
(λj (f̃ (θ)), sup

θ

(λj (f̃ (θ))

]
,

where λj (f̃ (θ)) are the eigenvalues of f̃ (θ). A straightforward numerical computation of
the eigenvalue functions gives

σe(A) = [−0.2143, 0.3249] ∪ [1.4608, 2.5392] ∪ [3.6751, 4.2143].
Also since A is in the Arveson’s class (all band-limited matrices comes in this class), the
point 1 lies in the gap, is a transient point. Hence the prediction of the existence of gap,
in Theorem 3.1, is valid in this example.

Special choice II

By invoking Theorem 1.1, there exists a sequence of eigenvalues of truncations λnl , λnm
such that limnl→∞ λnl = ν and limnm→∞ λnm = μ. Define

wnk =
⎧⎨
⎩

t, if k = l,

1 − t, if k = m,

0, otherwise,

where t ∈ (0, 1). If there exist δ > 0 and K > 0 such that

#{λnj ; |tλnl + (1 − t)λnm − λnj | < δ} < K,

then σe(A) has a gap of width larger than δ.
The advantage of this special choice is that we are able to avoid the assumptions on the

bounds of σ(A) and σe(A). This shows that a more general result is possible, provided that
we choose the sequence of numbers wnk carefully. In the following theorem, we observe
that the converse of Theorem 3.1 is true in the case of operators in the Arveson’s class.

Theorem 3.7. Let A be a bounded self-adjoint operator in the Arveson’s class. And sup-
pose that there exists a gap in the essential spectrum. Then there exists a sequence of
numbers an = ∑n

k=1 wnkλnk in the numerical ranges of A′
ns and a δ > 0 such that

#{λnj ; |an − λnj | < δ} < K,

for some K > 0.

Proof. Let (a, b) be a gap in the essential spectrum. Then by Theorem 1.7, there exists
sequences of eigenvalues of truncations λnl , λnm such that

lim
nl→∞ λnl = a and lim

nm→∞ λnm = b.

Define

an = an(t) = tλnl + (1 − t) λnm,
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for some fixed t ∈ (0, 1). Since ct = ta + (1 − t)b ∈ (a, b), it is not an essential point.
Also since A is in the Arveson’s class, all such points are transient points by Theorem 1.8.
Hence there exists a δ1 > 0 such that

sup Nn(ct − δ1, ct + δ1) < K1 for some K1 > 0.

Also

an = tλnl + (1 − t) λnm→ta + (1 − t)b = ct as n→∞.

Therefore there exists an N such that |ct − an| < δ1/2 for all n > N . Now if for some
n > N, |an − λnj | < δ1/2 then |ct − λnj | < δ1. Therefore,

#

{
λnj ; |an − λnj | < δ1

2

}
< Nn(ct − δ1, ct + δ1) < K1, for all n > N.

Now choosing K = sup{K1, N} and δ = δ1
2 , we complete the proof. �

Remark 3.8. In the above proof, numbers {wnk : k = 1, 2, ...n} and the bound K will
depend on the particular t ∈ (0, 1) that we choose.

3.1 Gaps under perturbation

Now we look at the spectral gaps that may occur between the bounds of the essential spec-
trum of a norm continuous family of self-adjoint operators. Recall that the gaps remain
invariant under a compact perturbation of the operator. The question that we address here
is how stable these gaps are, under a more general perturbation. We need the following
theorem to achieve some invariance for the gaps.

Theorem 3.9. Let A and B are bounded operators and A is invertible. If the quantity∥∥A−1
∥∥ ‖B‖ < 1, then A+B is also invertible.

Now the following theorem is an immediate consequence.

Theorem 3.10. Let (a, b) be a gap in σe(A(0)) which contains no discrete spectral value
in it. Then for all small enough ε > 0, there exists a δ > 0 such that (a + ε, b − ε) is a
gap in the essential spectrum of the norm continuous family of operators A(x), for every
x with |x| < δ.

Proof. First we note that A − λI is invertible for every λ in the interval (a, b), since it
contains no spectral value. Therefore,

sup {‖(A− λI)−1‖; λ ∈ (a + ε, b − ε)} = M < ∞ for a fixed ε > 0.

Now using the continuity assumption corresponding to minimum of
{

1
M
, ε

}
, there exists

a δ > 0 such that

‖(A(x)− A(0)‖ < min

{
1

M
, ε

}
for every x with |x| < δ.
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Now for |x| < δ, observe that

‖(A− λI)−1‖‖A(x)− A(0)‖ < M · 1

M
< 1

for every λ in the interval (a + ε, b − ε).
Hence by Theorem 3.9, if |x| < δ, then

A(x)− λI = A(x)− A(0)+ A(0)− λI

is invertible for every λ in the interval (a+ ε, b− ε). Therefore the interval (a+ ε, b− ε)

does not intersect with σ(A(x)), for every x with |x| < δ.
Now, since ‖A(x)− A(0)‖ < ε, (a+ε, b−ε) will lie between the bounds of σe(A(x)),

for every x with |x| < δ. We conclude that (a+ ε, b− ε) is a spectral gap in σe(A(x)) for
all x, with |x| < δ. �

Remark 3.11. In Theorem 3.10, ε must be small enough so that the interval (a+ ε, b− ε)

should make sense. This theorem indicates that to some extent, the gaps are stable under
small norm perturbation. Once we get (a+ε, b−ε) is a gap, we may remove that interval
and look at the rest of the interval (a, b) and continue the search for gaps.

Let us look at an example to support the above theorem.

Example 3.12. Define a two parameter family of matrix valued symbols as follows:

f (x, θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1(x) 1 e−iθ

1 a2(x) 1
1 a3(x) 1

1 a4(x) 1
. . .

. . .
. . .

eiθ 1 ap(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where a1(.), a2(.) . . . ap(.) are real continuous functions and θ varying in the interval
[0, 2π]. Note that

f (x, θ) = A0(x)+ A1eiθ + A−1e−iθ , where

A0(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1(x) 1
1 a2(x) 1

1 . .

. . .

. . 1
1 ap(x)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

⎤
⎥⎥⎥⎥⎥⎥⎦

= A−1
T .
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We consider the one-parameter family of block Toeplitz–Laurent operators arising from
these symbols, which are represented by the following doubly infinite matrices:

A(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . A0(x) A−1
A1 A0(x) A−1

A1 A0(x) A−1
A1 A0(x) A−1

A1 A0(x) A−1

A1 A0(x)
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus we get a norm continuous family of bounded operators, A(x) which are self-
adjoint for all x in the domain. Now, by Borg’s theorem for discrete Schrödinger operator
[14,16], the essential spectrum of A(x0), has no gaps if and only if a1(x0) = a2(x0) · · · =
ap(x0). Hence if there is a gap in σe(A(0)), then ai(0) < ai+1(0) for some i. Using the
continuity of ai and ai+1, we can find a δ > 0 such that ai(x) < ai+1(x) for all x with
|x| < δ. Hence there is a gap for A(x) for all such x.

Using Theorems 3.1 and 3.10, we arrive at the following conclusions. The gap predic-
tions that we have done for a single operator will remain valid for a family of operators.
The advantage is that we can predict gaps of a family of operators, with assumptions only
on the unperturbed operator. We give the precise statement below.

COROLLARY 3.13

Let A(x) be a norm continuous family of operators with A(0) = A, and λn1(An) ≥
λn2(An) ≥ · · · ≥ λnn(An) be the eigenvalues of An arranged in decreasing order. For
each positive integer n, let an = ∑n

k=1 wnkλnk be the convex combination of eigenvalues
of An. If there exists a δ > 0 and K > 0 such that

#{λnj ; |an − λnj | < δ} < K,

and σe(A) coincides with σ(A), then σe(A(x)) has a gap for each x in a sufficiently small
neighborhood of 0.

Proof. By Theorem 3.1, A(0) has a spectral gap. By Theorem 3.10, there exists a
neighborhood of 0, and A(x) has gaps for all x in the neighborhood. Hence the proof. �

Remark 3.14. In the above case, we considered perturbation of operators and not the per-
turbations of their truncations. In Example 3.12 also the perturbed symbol is directly
related to the perturbation of operators. The perturbation of truncations and their link with
the spectrum of the original operator is another problem yet to be handled.

Remark 3.15. The stability of the predictions of gaps under the stronger assumptions such
as Lipschitz continuous or holomorphic perturbations is another question to be addressed.
We expect that Theorem 3.10 can be made better under such stronger conditions. If the
perturbation is Lipschitz continuous, then the number δ that appears in Theorem 3.10
can be estimated sharply. If the perturbation is holomorphic, not only that it is Lipschitz
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continuous, but one may also get better information regarding the changes in the discrete
spectrum inside the gaps (see, for instance, [18]).

For the sake of completion, definitions of holomorphic and Lipschitz continuous
perturbations are given below.

DEFINITION 3.16

A family of operators A(x), with complex domain D0 is holomorphic if there exists a
family of operators A

′
(x) such that for each y ∈ D0, the following limit

lim
x→y

∥∥∥∥A(x)− A(y)

|x − y| − A
′
(y)

∥∥∥∥
should exist and must be zero.

DEFINITION 3.17

A family of operators A(x), with complex domain D0 is Lipschitz continuous if there
exists a M > 0, such that

‖A(x)− A(y)‖ ≤ M|x − y|, for all x, y ∈ D0.

4. Gap issues of block Toeplitz–Laurent operators

In this section, we look at the spectral gap issues of some block Toeplitz–Laurent oper-
ators. The operators under our concern are some perturbations of discrete Schrödinger
operator on l2(Z).

The classical Borg’s theorem states that the Schrödinger operator with periodic poten-
tial has a connected essential spectrum, if and only if the periodic potential reduces to
a constant [8, 24]. The discretized version of this theorem can be found in [14], and a
pure linear algebraic proof in [16]. Here we extend the result into the case of some per-
turbation of discrete Schrödinger operator with periodic potential. We refer to [16] for a
detailed description of the discretization of Schrödinger operator and formulating the dis-
crete version in terms of block Toeplitz–Laurent operators and the matrix valued symbol.

Theorem 4.1. Let A be the bounded operator defined by the block Toeplitz–Laurent
matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . A0 A−1 A−2 . . . A−N . . .

A1 A0 A−1 A−2 . . . A−N . . .

A2 A1 A0 A−1 A−2 . . . A−N . . .

A2 A1 A0 A−1 A−2 . . . A−N

. . . AN . . . A2 A1 A0 A−1 A−2
. . . AN . . . A2 A1 A0 A−1 A−2

. . . AN . . . A2 A1 A0 A−1 A−2

. . . AN . . . A2 A1 A0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 1 a0
1 b2 1

1 . .

. . .

. . 1
a0 1 bp

⎤
⎥⎥⎥⎥⎥⎥⎦
, Ak =

⎡
⎢⎢⎢⎢⎢⎢⎣

ak
⎤
⎥⎥⎥⎥⎥⎥⎦

= A−k
T ,

such that b1 ≤ b2 ≤ · · · ≤ bp and
∑

k |ak| < ∞. If A has connected essential spectrum,
then b1 = b2 = · · · = bp.

Proof. The matrix-valued symbol associated with the block Toeplitz–Laurent operator
A is

f̃ (θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 1 f (θ)

1 b2 1
1 . .

. . .

. . 1
¯f (θ) 1 bp

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where f (θ) = ∑
k akeikθ . Therefore from [3] we have

σe(A) =
p⋃

j=1

[
inf
θ
(λj (f̃ (θ)), sup

θ

(λj (f̃ (θ))

]
. (4.1)

Now consider the sub matrices

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 1
1 b2 1

1 . .

. . .

. . 1
1 bp−1

⎤
⎥⎥⎥⎥⎥⎥⎦
, P2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

b2 1
1 b3 1

1 . .

. . .

. . 1
1 bp

⎤
⎥⎥⎥⎥⎥⎥⎦
.

If any of their eigenvalues are different, say λj (P1) < λj (P2), then by Cauchy interlacing
theorem, λj (f̃ (θ)) ≤ λj (P1) < λj (P2) ≤ λj+1(f̃ (θ)), for all θ . But from (4.1), this
will give us the contradiction that essential spectrum of A is not connected. Hence all the
eigenvalues of P1 and P2 are the same. Therefore

trace(P1)− trace(P2) = b1 − bp = 0.

Hence b1 = b2 = · · · = bp. �
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Remark 4.2. The converse of the above assertion is in general not true. We may have gaps
even if the diagonal entries of the block Toeplitz–Laurent operator are the same. For, if A
is the block Toeplitz–Laurent operator arising from the matrix valued symbol,

f̃ (θ) =
[

b 1 + f (θ)

1 + ¯f (θ) b

]
,

where f is a non negative function. Then the eigenvalue functions of f̃ (θ) are

λ1(θ) = b − 1 − f (θ), λ2(θ) = b + 1 + f (θ).

Hence spectrum of A will have a gap, since f is non negative.

Remark 4.3. We remark that the diagonal entries correspond to the periodic potential of
the discrete Schrödinger operator. Hence we have proved the discrete Borg-type theorem
for a perturbed operator with some extra assumptions on the potential.

Example 4.4. The assumption b1 ≤ b2 ≤ · · · ≤ bp can not be dropped in the above
theorem, if p > 2. For, if we consider the block Toeplitz–Laurent operator arising from
the matrix-valued symbol,

f̃ (θ) =

⎡
⎢⎢⎣

1 1 0 10 cos(θ)
1 2 1 0
0 1 2 1

10 cos(θ) 0 1 1

⎤
⎥⎥⎦ .

The eigenvalue functions of f̃ (θ) are

λ1,2(θ) = 2 + 5 cos(θ)±
√

25 cos2(θ)− 10 cos(θ)+ 2,

λ3,4(θ) = 1 − 5 cos(θ)±
√

25 cos2(θ)+ 1.

We list the values of these functions at certain points in the table below.

θ λ1(θ) λ2(θ) λ3(θ) λ4(θ)

0 11.123 2.877 1.099 −9.099
π 3.083 −9.083 11.099 0.901

From the table, it is clear that the ranges of the above continuous functions intersect.
Hence their union is a connected interval. Therefore the essential spectrum of the operator
has no gaps, even the periodic potential does not reduce to a constant.

4.1 Perturbation of matrices

Finally we use some known results on the bounds for the eigenvalues of perturbed
matrices (see [2, 20] and references therein) to strengthen our results by viewing the
matrix-valued symbol as a perturbation of some constant matrix.
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Lemma 4.5. Let H =
(
H1 E

E∗ H1

)
and H̃ =

(
H1 0
0 H1

)
, λ1 ≥ λ2 ≥ · · · ≥ λp and

λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃p be the eigenvalues respectively. Then

|λj − λ̃j | ≤ ‖E‖ . (4.2)

Theorem 4.6. Let A be the operator considered in Theorem 4.1. If λ1 ≥ λ2 ≥ · · · ≥ λp
are eigenvalues of the matrix⎡

⎢⎢⎢⎢⎢⎢⎣

b1 1
1 b2 1

1 . .

. . .

. . 1
1 bp

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and σe(A) has no gap, then |λj−λj+1| ≤ 2 ‖f ‖∞ for all j=1, 2, . . . , p−1. In addition,
if we assume that b1 ≤ b2 ≤ · · · ≤ bp, then |λj − λj | ≤ 2 for all j = 1, 2, . . . , p.

Proof. Apply the above lemma with

H(·) =

⎡
⎢⎢⎢⎢⎢⎣

b1 1 f (θ)
1 b2 1

1 . .
. . .

. . 1
¯f (θ) 1 bp

⎤
⎥⎥⎥⎥⎥⎦
, H̃ =

⎡
⎢⎢⎢⎢⎣

b1 1
1 b2 1

1 . .
. . .

. . 1
1 bp

⎤
⎥⎥⎥⎥⎦

and

E =

⎡
⎢⎢⎢⎢⎣

f (θ) ⎤
⎥⎥⎥⎥⎦ .

Then we get

|λj − ˜λj (θ)| ≤ ‖E‖ = ‖f ‖∞
by (4.2). Combining with (4.1), we get

σe(A)=
p⋃

j=1

[
inf
θ
(λj (fs(θ))), sup

θ

(λj (fs(θ)))

]
⊆

p⋃
j=1

[λj−‖f ‖∞ , λj+‖f ‖∞].

Therefore if |λj − λj+1| > 2 ‖f ‖∞ for some j . Then there exists a gap in the essential
spectrum. Hence we proved the first assertion. Now in addition, if we assume that b1 ≤
b2 ≤ · · · ≤ bp, then since the essential spectrum of A is connected, by Theorem 4.1, b1 =
b2 = · · · = bp. This implies that H is a tridiagonal Toeplitz matrix with b1 on diagonal
and 1 as off-diagonal entries. The eigenvalues of such matrices are explicitly known and

they are b1 + 2 cos
(

πk
p+1

)
. So the second assertion follows by a simple computation. �

Remark 4.7. Using the last theorem, we can predict the nature of spectrum of the operator
A by only looking at the eigenvalues of the p × p matrix H̃ .
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4.2 Jacobi matrices

We can apply the same technique in the case of the periodic Jacobi matrices (see sections
2, 3 in [13] and references therein) to predict gaps in the essential spectrum.

Define a double infinite, p-periodic, p ≥ 2, real Jacobi matrix by

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . b1 a1
a1 b2 a2

. . .
. . .

. . .

. . . bp ap

ap b1
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, an+p = an > 0; bn+p = bn, (4.3)

following the standard convention an > 0. An important observation is that J is the block
Toeplitz–Laurent operator, where in the case p ≥ 3, the symbols are given by

fk(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

bk+1 ak+1 0 eiθ ak+p−1
ak+1 bk+2 ak+2 0

0 ak+2 . .

. . .

. . ak+p−1

e−iθ ak+p−1 0 ak+p−1 bk+p

⎤
⎥⎥⎥⎥⎥⎥⎦
,

k = 0, 1, . . . , p − 1.

Also the spectrum of J is given by the following identity:

σ(J ) =
p⋃

j=1

[min
θ

λj (fk(θ)),max
θ

λj (fk(θ))]. (4.4)

COROLLARY 4.8

Let J be the Jacobi matrix defined by (4.3) and λ1 ≥ λ2 ≥ · · · ≥ λp eigenvalues of the
matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 a1
a1 b2 a2

a2 . .

. . .

. . ap−1
ap−1 bp

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then σe(J ) has a gap, if |λj − λj+1| > 2|ap−1| for some j.



222 K Kumar et al.

Proof. The proof is an imitation of the proof of Theorem 4.6, however all the details are
provided here. Apply Lemma 4.5 with

H(.) =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 a1 ap−1eiθ

a1 b2 a2
a2 . .

. . .

. . ap−1

ap−1e−iθ ap−1 bp

⎤
⎥⎥⎥⎥⎥⎥⎦
,

H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 a1
a1 b2 a2

a2 . .

. . .

. . ap−1
ap−1 bp

⎤
⎥⎥⎥⎥⎥⎥⎦

and

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

ap−1eiθ
⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then we get

|λj − λj (H(θ)| ≤ ‖E‖ = ‖ap−1eiθ‖∞ = |ap−1| by (4.2).

Combining with (4.4), we get

σe(J )=
p⋃

j=1

[
inf
θ
(λj (H(θ))), sup

θ

(λj (H(θ)))

]
⊆

p⋃
j=1

[λj−|ap−1|, λj+|ap−1|].

Therefore if |λj − λj+1| > 2|ap−1| for some j , then there exists a gap in the essential
spectrum. Hence the proof. �

Remark 4.9. The last couple of theorems help us to reduce the computations in predicting
spectral gaps, for operators arising from the matrix valued symbols. We need to check
only the eigenvalues of a matrix with constant entries. The proof also gives us the spectral
inclusion

σe(A) ⊆
p⋃

j=1

[λj − ‖f ‖∞ , λj + ‖f ‖∞]

which is very important, since the right-hand side includes only the eigenvalues of a
constant matrix. Whether equality holds in this inclusion, is still not clear to us.
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5. Concluding remarks

We conclude this note by listing down some remarks and future problems:

• Using Theorem 3.1 and the special choice I, we could predict the existence of spectral
gaps from the finite matrix entries. Theorem 4.6 and its corollary can be used to predict
the spectral gaps of the corresponding operators, by looking at the eigenvalues of a
finite matrix with constant entries.

• The Borg’s theorem is a classical theorem in inverse spectral theory. The discrete
versions are also folklore [14]. The techniques of the proof here are adapted from [16].

• The discrete spectral values lying between a gap in the essential spectrum can be com-
puted using linear algebraic techniques. To see this, let (a, b) be a gap in the essential
spectrum of A. Let λ0 = (a + b)/2. Since λ0 is in the gap f (λ0) > 0, where f (λ0) is
the lower bound of the essential spectrum of (A− λ0I )

2, all the discrete spectral val-
ues below that can be computed with the use of truncations by Theorem 1.1. If β is an
eigenvalue in the gap, (β − λ0)

2 will be an eigenvalue lying below the lower bound of
the essential spectrum of (A− λ0I)

2. From these we can compute β.
Looking at these observations under a holomorphic perturbation is an interesting

problem.
• Also under compact perturbation, though the spectral gaps remain the same, discrete

eigenvalues may appear or disappear inside such gaps. Another problem is to handle
such situations linear algebraically.

• Another scope is to carry over these results to the case of unbounded operators. In
particular, one may think of estimating the spectrum and spectral gaps of Schrödinger
operators by the eigenvalues of its truncations.
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