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Abstract. In J. Funct. Anal. 257 (2009) 1092-1132, Dykema and Skripka showed
the existence of higher order spectral shift functions when the unperturbed self-adjoint
operator is bounded and the perturbation is Hilbert—Schmidt. In this article, we give a
different proof for the existence of spectral shift function for the third order when the
unperturbed operator is self-adjoint (bounded or unbounded, but bounded below).

Keywords. Trace formula; spectral shift function; perturbations of self-adjoint
operators.

1. Introduction

Notations. Here, H will denote the separable Hilbert space we work in; B(H), B,(H)
[p = 1], the set of bounded, Schatten p-class operators in H respectively with || ][, ||.][, as
the associated norms. In particular, B (H) and B, () are known as the set of trace class
and Hilbert—Schmidt class operators in 4. Let A be a self-adjoint operator in H with o (A)
as the spectra and E 4 (1) the spectral family. The symbols Dom(A), Ker(A), Ran(A) and
TrA denote the domain, kernel, range and trace of the operator A respectively.

Let A (possibly unbounded) and V be two self-adjoint operators in 4 such that V €
B (H). Then Krein [10,11] proved that there exists a unique real-valued L! (R)-function
& with support in the interval [a, b] (where a = min{info (A 4+ V), info(A)} and b =
max{supo (A + V), supo (A)}) such that

b
Trp(A+V)—d(A)] = / ¢’ (ME()dA, (1.1

for a large class of functions ¢. The function & is known as Krein’s spectral shift function
and the relation (1.1) is called Krein’s trace formula. In 1985, Voiculescu approached
the trace formula (1.1) from a different direction. Later Voiculescu [18], and Sinha and
Mohapatra [13,14] proved that

Tri¢p(A+V) = ¢ (A)]

Jim Try (¢ ((A + V) — ¢ (An)]

/ @' (MEG)AA, (1.2)
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by adapting the Weyl-von Neumann’s theorem (where ¢ (.) is a suitable function and
(A + V),, A, are finite dimensional approximations of (A + V) and A respectively and
Tr, is the associated finite dimensional trace). In [9], Koplienko considers instead ¢ (A +
V)—¢(A)— D(l)qﬁ(A)(V), where D(1)¢(A) denotes the first-order Fréchet derivative of
¢ at A [2] and found a trace formula for this expression. If V € B,(#H), then Koplienko’s
formula asserts that there exists a unique function € L!(R) such that

Tr{gp (A + V) — ¢(A) — DDp(A)(V)) = f ¢" ()n(h)da (1.3)

for rational functions ¢ with poles off R. In [5,16], Koplienko’s trace formula was derived
using finite dimensional approximation method, while Dykema and Skripka [6] obtained
the formula (1.3) in the semi-finite von Neumann algebra setting and also studied the
existence of higher order spectral shift functions. In Theorem 5.1 of [6], Dykema and
Skripka showed that for a self-adjoint operator A (possibly unbounded) and a self-adjoint
operator V € By (), the following assertions hold:

(1) There is a unique finite real-valued measure v3 on R such that the trace formula
1
Tr{¢(A + V) = ¢(A) = DVG(A)V) = 3DDH(A)V, V)
o0
= / ¢" (M)dvz (A), (1.4)
—0oQ

holds for suitable functions ¢, where D@ ¢ (A) is the second order Fréchet derivative
of ¢ at A [2]. The total variation of v3 is bounded by % I VI|§.
(1) If, in addition, A is bounded, then v3 is absolutely continuous.

It is to be noted that the main results of this article (Theorems 2.6 and 3.3) have been
obtained in [12], under the condition that V € B3(#) and with more general setting.
However, the method employed here seems to be simpler and moreover, we get more
explicit expressions for the shift function.

This paper is organized as follows. In § 2, we establish the formula (1.4) for bounded
self-adjoint case and § 3 is devoted to the unbounded self-adjoint case.

2. Bounded case

The next three lemmas are preparatory for the proof of the main theorem of this section,
Theorem 2.6.

Lemma 2.1. Let, for a givenn € N, {ak}Z;é be a sequence of complex numbers such that
ay_j—1 = ay. Then

n

~

Z ar + Zak:(n+l)2ak.

1 n—j—1 n j—1 n—1
0 k= j=1 k=0 k=0

(=}

J
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Proof. By changing the indices of summation and using the fact that a,_x—1 = ay,
we get

1 n j—1 J

—j—
> a+ a = Zank1+z >

j=0 k=0 j=1 k=0 =0 k=0

3
|
-

—_

=~
~
Il

(=]

=
—_

J

-3 FarL Ta

=0 j=0 k=0

~.

n—1 n—1

= Za,+z > a

j=0 k=0
n—1 n—1

- Sy
j=0 k=0

n—1

= (n+1 Zak.
k=0

O

Lemma 2.2. Let A and V be two bounded self-adjoint operators in an infinite dimensional
Hilbert space H such that V € B3(H). Let p(A) = A7 (r = 0). Then

Tr [(A + V)Y — A" —DWA(V) - 2D(2)(A’)(V V)}

1 K
:}'Z/ ds/ dr Te[VAL =2y Ak — v Ar=k=2y Ak, (2.1)

where Ay = A+ tVand) <t < 1.
Proof. For X € B(H), p(A+ X) — p(A) = Z;;})(A + X)"~/=1X A/ and hence
r—1

p(A+X)—p(A) = A~I7IxAl
j=0

[\

r=2 r—j-
< Z 1A+ X1 F 2 x AL IX AN,
j k=0

proving that DM (A”)(X) = z;;g ATImIX AT,
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Again for X, Y € B(H),

DY A+ X)")(¥) — DV (A")(Y)
r—1
=Y A+X) @A+ x)) =y ATy Al
Jj=0 =
r—1
=D A+ ATy (A + X
j=0
r—1
+ ) ATTIYIA+ X)) — A)
j=0
j—2
Z (A4 X)) T7*F2x ARy (A + X)/
=0

[\S)

r— r—

0

=

J
r—1 j—1

+ Z ZA”J’IY(A—i—X)kXAJ’k’],
j=1 k=0

leading to the estimate

DA+ X))(¥) — DV(A")(Y)

r—=2 r—j— r—1 j—1
j=0 k=0 j=1 k=0
=OUXI?,
for || X|| < 1, proving that
r=2 r—j=2
DP(ANX,Y) = > AT 2 x Aky Al
j=0 k=0
r—1 j—1 '
+ ATTITy Ak x AT R (2.2)
j=1 k=0

Recall that Ay = A+ sV € B, (H) (0 < s < 1), and a similar calculation shows that
the map [0, 1] > s —— AY is continuously differentiable in norm-topology and

d r—1 o ) r—1 ) o
a(A§)=ZA§ lval =3 alvarih

j=0
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Hence

1
d
(A+V) —A" = DDA (V) = / ds (A7) = DDA V)
0 S
1 r—1 ) ) ‘ -
:/ ds Y Ay val —armimlv Al
0 —0

1 r—1 s d
=/ d dr— (A" Iy A)),
/ ;)/0 ATV AD

which by an application of Leibnitz’s rule reduces to

r—=2 r—j=2

1 K
/ ds / dr
0 0 X

+

—j—k=21, Ak vy AJ
ATTITR=2y ARy Al

]

=0 k

~.
|
=)

r—1 j—1

—j=1y Ak 4j—k—1
ATty ARy Al
0

j=1

»
Il

and using (2.2), we get

A+ V) —A" — DDA (V) - %D@(Ar)(v, V)

1 s r=2 r—j=2
=/ ds/ dt{ Do) Arivatval

0 0 Z0 =0
r—1 j—1 r—2 r—j—2

+ Y Y arittvakvalTet - ATy ARy AT
j=1 k=0 j=0 k=0
r—1 j—1 ‘ -

— ZA’—J—IVA"VAJ—"—1 } (2.3)
j=1 k=0

r—2 r—j=2
B —j—k=2y Akys AJ “ikzy kv Al
I = [TV AL VA — ATTEEVATV AT
j=0 k=0
r=2 r—j=2
= [ALI7k=2 _Ar=imk =21y ARy Al
j=0 k=0
r=2 r—j=2
£y S ARy Ak - ARy Al
j=0 k=0
r=2 r—j—2
n Ar—‘/—k—2vAkV[A-é —_ A/] € B] (H),
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since V € B3(H) and AX — A¥ € B3(H) VT € [0, 1]and k € {0, 1,2,3,...}. Thus by the
cyclicity of trace, we have that

r—2 r—j—2
Tr(;) = Z Z Tr[ AL %22y ARy — AT=h=2y Ak v,
j=0 k=0

Again if we set the sum of the second and fourth term inside the integral in (2.3) to be

1

-
[ATI =1y ARy A =k=1  qr=i=ly aky Al k=1 € B (H),

~.

r

I

1 k&

Il
=}

J
a similar calculation shows that

r—1 j—1
Tr(l,) = Z Z Tr[AL %2y Aky — Ar=k=2y Aky ),
j=1 k=0

By applying Lemma 2.1 with n = r — 1 and ay = Tr[A" ¥ 2V AV — AT—k=2y Aky]
and using the cyclicity of trace, we conclude that

r—2
r Z Tr[AF =2y Aky — Ar=k=2y Aky)
k=0

Tr(l;) + Tr(Ip)

r—2
r Z Te[VALF 22y Ak — v AT =h=2y 4K, (2.4)
k=0

Hence combining (2.3) and (2.4), we get the required expression (2.1). O

Remark 2.3. Though the expressions for Fréchet derivatives of a class of functions were
derived in [1] in terms of divided differences, here the expression for the trace of the
remainder term in (2.1) is different and simpler.

Lemma 2.4. Let B be a bounded operator in an infinite dimensional Hilbert space H (i.e.
B € B(H)). Define Mp : By(H) —> Ba(H) (looking upon Br(H) = H as a Hilbert
space with inner product given by trace i.e. (X, Y)y = Te{X*Y} for X, Y € By(H)) by
Mp(X) = BX — XB; X € Bo(H). Then

(i) Mp is a bounded operator on H (i.e. M € B(H)) with M*, = Mp-.

(ii) Ker (M p) and its orthogonal complement Ran (M g+) in H are left invariant by left
and right multiplication by B" and (B*)" (n = 1, 2, 3, ...) respectively.

(iii) H = Ker (Mp) @ Ran (Mp+); Bo(H) > X = X1 @ X», where X| € Ker (Mp)
and X, € Ran (M px).

(iv) If Ker (Mp) = Ker (M p=), then Ker (M p) and Ran (M p) are generated by their
self-adjoint elements and for X € H, we have (X*); = X{ and (X*), = X3, where
X = X1 ® Xz and X* = (X*) @ (X*), are the respective decompositions of X and
X*inH.
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(v) If Ker (Mp) = Ker (Mpx), then for X = X* € H, X = X, ® X» with X, and X»
both self-adjoint.

(vi) (a) For B = B* € B(H), M3 is self-adjoint in H and for X = X* € H, we have
X1 = XT and X, = X*
(b) For B = (A +1)~ 1 (where A is an unbounded self-adjoint operator in H), Mp
is bounded normal in H and for X = X* € H, we have X| = X7 and X, = X3,
where X = X1 @ X» is the decomposition of X in H.

(vii) (a) Let [0,1] > 1 —> A; € B, 4(H) (set of bounded self-adjoint operators in H)
be holomorphic in operator norm, and let > X =Xi:® Xor be the self-adjoint
decomposition with respect to A;. Then t —> X1, X2r € H are continuous.

(b) Let {Ar}zel0,1] be a family of unbounded self-adjoint operators in H such that
0,137 — (A + i) is holomorphic in operator norm. Then the conclusions
of (vii)(a) are valid for the decomposition of H with respect to By = (A; +1)7\.

Proof. The proofs of (i) to (iii) are standard and for (iv), we note that since Ker (M p) =
Ker (Mpx), X € Ker(Mp) if and only if X* € Ker (Mp) and hence for any X €

Ker (M p) can be written as X = X+_X*> +1i (XEIX*), proving that Ker (Mp) is gen-

2
erated by its self-adjoint elements. Similarly, by a similar argument we conclude that
Ran (M p) is also generated by its self-adjoint elements.
Let X € #,and X = X; @ X5 and X* = (X*); @ (X*), be the corresponding
decompositions of X and X* in #{. Then for any Y| = Y| € Ker (Mp),

(X, Y1)2 = (X1, Y1)2 = Te{XTY1} = Te{Y1 X7} = (Y1, X])2 = (X}, Y1)2.

But on the other hand,

(X, Y1) =Tr{X"Y1} = Tr{(Y1 X)"} = Tr{Y1 X} = (X*, Y1)2 = ((X*)1, 11)2

and hence ((X*); — X7, Y1)2 =0V Y, = Y} € Ker (Mp), which implies that ((X*);—
X7, Y)2 = 0V Y € Ker(Mp), proving that (X*); = X7. Similarly, by the same
argument we conclude that (X*), = XJ.

The results (v) and (vi(a)) follow from (iv) and (v) respectively. For (vi(b)), it suffices
to note that any X € B> (#) commuting with (A +1)~! commutes with the spectral family
EA() of A.

For (vii(a)), since the map [0, 1] > t — My, is holomorphic, (using Theorem 1.8,
page 370 of [8]) we conclude that the map [0, 1] > t —> Pp(r) (where Py(t) is the
projection onto Ker(M y4,)) is continuous and since X, = Py(r)X we get that the map
[0, 1] > T —> X, is continuous. Similarly, since the map [0, 1] > 7 —> I — Py(7) is
continuous and X,; = (I — Pp(r))X we conclude that the map [0, 1] > T —> X»p; is
also continuous.

Conclusions of (vii(b)) follow immediately from (vii(a)) since the map [0, 1] > 7 —>
M(Ar_,'_i)—l is holomorphic, and since M(Ar_,'_i)—l is normal for each 7. O
Remark 2.5. Let A and V be two bounded self-adjoint operators in an infinite dimensional
Hilbert space H such that V € By(H) andlet A, = A+ tV (0 < v < 1). Then by
Lemma 2.4 with B = A and A; respectively to get V = V] & Vo, = Vi & Vo, with
Vi and Vj; (j = 1,2) self-adjoint and therefore | V|3 = [[Vi]3 + [IV2l3 = Vil +
IV 3V0 <7 <1



554 Arup Chattopadhyay and Kalyan B Sinha

Theorem 2.6. Let A and V be two bounded self-adjoint operators in an infinite dimen-
sional Hilbert space H such that V € By(H). Then there exists a unique real-valued
function n € L'([a, b]) such that

Tr [p(A + V) = p(A) — DV pA) (V) — %D@pm)(v, V)]

b
= / p" G)n(hyda, (2.5)
where p(.) is a polynomial in [a, b], a = [info (A)]— ||V, b= [supa(A)] + |V and
[P nodn = LTe(v3).

Remark 2.7. Ttis noted that while in [12,15,17], the method of multiple operator integrals
is used to establish the formula (2.5), here we derive n as an L'-limit of a sequence {n,}
which has an explicit expression in terms of A and V, with V € B, (). For this Lemma
2.4 plays a crucial role.

Proof of Theorem 2.6. It will be sufficient to prove the theorem for p(X) = A" (r > 0).
Note that for » = 0, 1 or 2, both sides of (2.5) are identically zero. We set A, = A+ tV
and 0 < t < 1. Then by Lemma 2.2, we have that

Tr|(A+ V) — A" — DDA (V) — %D(z)(A’)(V, V)}

1

r

=r

-2 1 K
/ ds/ dr Ti[VAL K2y Ak — v AT=F=2y AR
k=0 *0 0
1 s
=r(r—1) /O ds /O de Tr[VE AL — VEA™2]
r=2 .1 s
+ry. / ds / de Tr[Va, AT K2y AR vy AT 22048, (2.6)
0 0
k=0

where we have also noted the invariance, orthogonality and continuity properties in
Lemma 2.4(ii)—(vii) and set V = Vi @ Vo, = V| @ Vo, € Bo(H) as in Remark 2.5. Using
the spectral families E;(.) and E(.) of the self-adjoint operators A; and A respectively
and integrating by parts, the first term of the expression (2.6) is equal to

r(r — 1)/01 ds /Os dr /b A T2 Te[VE Er(dA) — VEE (V)]
=r(r—1 /01 ds /Os dr {,\rz TrVEE: (V) — VEEMWIS_,
- / b(r — DA T T VE E- () — va(,\)]dx}
— (= D2 /01 ds /O dr TH[VE — V2]

1 K b
+r(r—D(r — 2)/ ds/ dr/ N TVEEQ) — V& E-(A)]dA.
0 0 a
(2.7
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Since V, € Ran(M ), there exists a sequence {Vz(")} C Ran(M) such that ||V2(") -
Vallp — 0asn — oo and V2(") = AYén) - YO(")A, for a sequence {YO(")} C By(H).
Similarly, for every T € (0, 1], there exists a sequence {Vz(iZ )} C Ran(My,) such that
||V2(f) — Varlla — 0 point-wise as n —> oo and Vz(f) = A, Y™ — Y A_ for some
sequence {Y ™} C B,(#H). Observe that Yé") and Y™ must be skew-adjoint for each n,

since Vz(") and Vz(f ) can be chosen to be self-adjoint. Furthermore, by Lemma 2.4(vii)(a),
the map [0, 1] > T —> Vi, V2 are continuous.
Hence the second term of the expression (2.6) is equal to

/ ds / dr lim ZTr{VzTA;—k—2v2(j)A’;—var—k—sz(”)Ak}

n— 00

1 s r=2 .b b P
=r ds/ dr lim / / AT
/O 0 n—00 ; a Ja

X Tr{Vag E(d2) Vyr' E¢ (dp) — V2E(dW)Vy" E(dp))

1 s b rb
=r/ ds/ dr lim / / oA, 1)
0 0 =0 Jg Ja
X Tr{Var Er (W) VS E (dp) — V2E(d) V" E(dp)),
where ¢ (A, ) = r_)\—ﬂl if A % ;= (r — A"~ 2if A = u, and where the interchange

of the limit and the integration is justified by an application of the bounded conver-
gence theorem. Furthermore using the representation of Vz(f ) € Ran(My,), the above

reduces to
1 s b b
r/ ds/ dt limf / d(h, 1)
0 0 =00 Ja Ja

X Tr{Var Er (dW)[A, Y™ — YD A TE, (dw)

—VEAWAY" — Y{" AJE(dp))

1 K b prb
=r/ ds/ dr lim / / o h
0 0 =00 Ja Ja

X Tr{Var Er ()Y " Er(dp) — V2 E(d2)Yy" E(d)

1 K b
=rf dsf dr lim Al
0 0 n—oo a

X Tr{Var [E- (dA), Y] — Vo[ E(dh), Y1) (2.8)
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Again by twice integrating by parts, the expression in (2.8) is equal to
/ds/ dr lim {,\’—1 Tr(Var [E- (M), YO 1= VA[EGL), Y DIE_,
f (r = DA Te(Vag [E- (), Y1 = V2[EQV), Y“”])dx}

= —r(r — 1)[ ds[ dr lim x’—z
n—0oo

X Tr{Vac[E- (W), Y1 = Va[E(L), Y"1} di

A
=—r(r— 1)/ dv/ dr lim {/\r_2 (/ Tr(Vae[E- (1), Y™

— ValE(u), Yo(")])du>}

1 K b
~|—r(r—1)/ ds/ dr lim / (r—2)2" 73
0 0 n—>0oo a

A
x ( / Tr(Var[E- (), Y ™1 = Va[E(), Yg"n)du) da

a

=—r(r—1b"~ 2/ ds/ dr lim Tr(Vgr[Er(M),Y(")]

n— 00

1 s b
— ValE(w), Y Ddp + r(r — D(r —2)/ ds/ dr lim [ A3
0 0

n— oo a
g (n)
X ( / Tr(Vae [ Ec (). Y = I E(W), Yy ])du> di. (2.9)
a
Next we note that by integration by parts,
Te(V) — V) = Tim Tr(Va v — vy

= lim Tr(Vac[Ag, Y1 = Vo[A, Y]

n—oo

b
= lim [ uTr(VarlEc(dp), Y1 = ValE(dpa), Y§")

— 00
n a

= lim_ [uTr(vzt[E,(m,Y“)]— ValE (), Y DI,

b
—~ / Te(Vae[E- (1), Y = Va[E(w), Yé”)])du] :
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The boundary term above vanishes and substituting the above in the first expression in
(2.9), we get that the right-hand side of (2.9) is

1 K
r(r — 1)b’*2/ ds/ de Tr(V3, — V3)
0 0

1 s b
+r(r— 1)(r—2)/ dsf dr lim / A3 da,
0 0 n—oo a

where nS” (1) = [} Tr(Vag [E- (), Y1 = V2 E(u), Y dp.
Hence

r—2 1 s
ry. / ds / dr Tr[Va, AL 5725, AF — vy A77F2y, AF)
0 0
k=0

1 K
=r(r— 1)bf—2/ ds/ dr Tr(VE — V)
0 0
1 K b
+rr— 1D —2) f ds f dr lim [ 27358 Goda. (2.10)
0 0

n—00 a

Combining (2.7) and (2.10) and since ||V ||5 = Tr(VZ, + V3 ) = Tr(V7+V3), we conclude
that

Tr [(A + V)Y — A" = DDATY(V) - %D@(Ar)(v, V)}
1 s b
=rr— D@ — 2)/ ds/ dr/ N3 T VEE() — V2 Er (L)]dA
0 0 a
1 K b
+ r(r— D(r —2)/ ds/ dr lim / 27308 )da
0 0 n—0oo a

1 K b
=r(r— 1)(r—2)/ dsf dr lim / A3 M Gda
0 0 n— oo a

b

= lim ()" ™ Godr,
n—0o0 a
where
1 s
M) = /ds/dr ™ (1)
0 0
and

1) = [T VEEQR) — VEE:()) + 152 (W],

The interchange of limit and the 7- and s-integrals are justified by an easy application of
bounded convergence theorem. Note that 7 is a real-valued function V 7.
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Next we want to show that {7} is Cauchy in L!([a, b]) and we follow the idea from
[7]. For that let f € L ([a, b]). Define g() = [ f(1)dt and h(%) = [ g(1)dy, then
g' (M) = f(A) ae.and 1/ (L) = g(A). Now consider the expression

b
f FOIMP ) — ™ ()1dx
b
= / OIS 0 — ™ (3)1dA
b A
:/ h”(x)dk([ Tr(Vae[Ex (), Y — Yy

— ValE(w), Y — Yé’")])du> ,

which on integration by parts twice and on observing that the boundary term for A = a
vanishes, leads to

b
K (b) / Tr(Vae[Er (), Y — Y] = Vo[ E(u), YV = Y™ Ddp
- {h(MTr(vzf[ET W), Y? — Y™ EG), Y — YD,

b
- / hO)Tr(Vag [E- (dA), Y — Y] — Vo[ E(dh), Y — YO('")])}

a

b
= 1'(b) / Te(Vae[E- (1), YO — Y™ Vo [E), ¥ — Y™ Ddu

b
+ / hOOTr(Vag [E- (d2), Y® — Y™ Vo[E@n), Y — v{™)).
‘ @2.11)

Next we use the identity

b
Te(Var V2 = VaV,) = — / Tr(Var[Er (w), Y]

a

—ValE(w), Y Ndu

to reduce the above expression in (2.11) to

gD Tr(Va[ V™ — V™| — Vo [V — vy

FTe(Vac[h(Ar), YO — Y] — a[h(A), Y = v{™)). (2.12)
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But on the other hand,
h(L h
[h(A), Y] = / / @)~ (“ ) E( M)V E(dp)

and

Te(Valh(A), Y\ — ™)
b
/ / h®) = hw) h(“ ) Tr(VaE@M)IV," — V™ 1E(dp)) (2.13)

and hence as in [3,4] and in [5],

A

ITr(Valh(A), Y2 = YD1 < hlluipl Valla VR = V™ il

IA

b =) flloolV IV = V11
and hence

L2 FOom () = ™ G)1dAl
feL([a,b]) I flloo

<26 = )IVILUVS” = Vo + 1TV = V1)

ie [ =0 < 20— a)IVIRAY,"Y = V3™ T2 + I1Vse = Varlll2), which
converges to O asn,m — ooandV 7 € [0, 1]. A similar computation also shows that
IIn(”)IILI < 2(b — a)||V||3. Therefore {fo ds [y dr 7™ (1) = n™ ()} is also Cauchy in
L'([a, b)) and thus there exists a function € L'([a, b]) such that ||n™ — nllgr — Oas
n —> 00, by the bounded convergence theorem and hence also [|n|[;1 < (b —a)|| V||%.
Therefore,

b b
lim A 3™ yda = / AT 3 (0dA

n—o00 a a

and hence

Tr [(A+V)’ — A" = DDA (V) - 2D@(Af)(v V)}

b
=r(r =10 — 2)/ A3 (0)da.
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For uniqueness, let us assume that there exists 11, 172 € L' ([a, b]) such that
1
Tr [p(A +V) = p(4) = DV p(A)(V) = 5DP p(A)(V, V)]

b
- / P (Wn; (A,

where p(-) is a polynomial and j = 1, 2. Therefore

b
/ p" (M) n(A) di=0 V polynomials p(-) and n=n;—neL'([a, b)),

a

which together with the fact that fab n(A) da = fah n2(A) dA = LTr(V3) (which one can

easily arrive at by setting p(,) = A> in the above formula), implies that f ab A'n()da =
0 V r > 0. Hence by an application of Fubini’s theorem, we get that

S o 1 [
00 =0 n. —00

Hence

m .
/ e ) dr=0 VteR.

—00

Therefore 7 is an L! (la, b])-function whose Fourier transform 7(¢) vanishes identically,
implying that n = 0 or n; = 1, a.e. O

COROLLARY 2.8

Let A and V be two bounded self-adjoint operators in an infinite dimensional Hilbert
space H such that V € Ba(H). Then the function n € L' ([a, b]) obtained as in Theorem
2.6 satisfies the following equation:

/f(k)n(k)dx /dS/ //h(/\) h(w)

XTr[VE.(d\)VE. (du) — VEMNVE(uw)],
where f (L), g(A) and h()) are as in the proof of the Theorem 2.6.

Proof. By Fubini’s theorem we have that

b 1 K b
/ FOn™ dr = / ds/ dr/ o
a 0 0 a

X[ Te{VEE() — VA E:(M)) 4+ 15 ()]1dA.
But

b
f FO) THVEEQ) — V& E-(0)}dA

b
= / §OTIVEEQM) — V& E-(W)]1dA,
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which by integrating by parts leads to
b
g(b) e[V — Vi1 + / gOVTHVE E-(dA) — VEE(dV)]
a

= g(b) Ti[VE = VE1+ Te[VE K (Ay) — VR (A)]

h(x) —h
— o(b) TV — V2] // ) — (,u)

X Tr[Vig E(dM) Vi Ec(dp) — VIE(dM) Vi E(dw)]. (2.14)

Again by repeating the above calculations to get (2.12) and (2.13) as in the proof of the
Theorem 2.6, we conclude that

f FonSdr = gb) TiVa V™ — Vo Vi)

/ /b h(}) — h(u)

X Tr[ Vag E; (dX) vz‘f) E(dp)— V2 E(dW) V" E(dp)].
(2.15)

Combining (2.14) and (2.15) we have

b
f FOIN® (R

1 K
:/ ds/ dt g(0) Tr[(VE 4+ VaVi™) — (V& + Vo V)]
0 0

/dS/ //bh(m h(p)

X Tr[V E< (d0) (Vie @ Va2 ) Ec(dp) — VE(A) (Vi & V3" E(dp)].
(2.16)

But by definition Vz("), Vz(f ) converges to V2, Vo, respectively in ||.||2 and we have already
proved that " converges to i in L' ([a, b]). Hence by taking limit on both sides of (2.16)
we get that

b
/f(k)n()»)d)» /ds/ //h()») h(w)

XTr[VE.(dM)VE;(du) — VEWAMNVE@w)]. 2.17)
In the right-hand side of (2.17) we have used the fact that

Var(GY” —Go) < [V 2 (1VSY = Varlla+ V2= Vi [[) —> 0 as n —> oo,
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where G(A x 8) = TrVE(A)(Vi; ® Vi )E-(8) — VE(A)(Vi & Vy")E(®)]

and Gr(A x 8) = Tr[VE.(A)VE;(8§) — VE(A)VE(S)] are complex measures
on R? and Var(gén) — Gp) is the variation of (gé”) — G2) and also that ||kl <
b =) flloo- o

3. Unbounded case

Theorem 3.1. Let A be an unboAunded self-adjoint operator in a Hilbert space H and let
¢ : R —> C be such that ffooo lp()| (14 1)) dt < oo, where ¢ is the Fourier transform

of . Then ¢(A), DV p(A), DD (A) exist and
00 t
[DV(A)I(X) = if é(r)dt/ dp P4 xeit-H)A
. 0

and

o t B . ) .
[DP¢p(A)(X,Y) = i / d()dr / d,B{ / dy e xel (B Ayit=HA
—00 0 0
—p
+/ dy elfA YeivAXei(tfﬁfv)A}7
0

where X, Y € By(H).

Proof. That ¢(A) and the expressions on the right-hand side above exist in B(#) are
consequences of the functional calculus and the assumption on ¢. Next

P(A+X)—¢p(A) = /OO p()[e ATH) — e dr

t
[oo q@(t)dtf dB eP A0 xelt=PA
—o0 0
Therefore
o R t ) )
(A+X)—¢p(A) —i (t)dr | dp ePAxelt=PA
] ¢ é
NS 0
o0 n t . ) ) '
= i/ ¢(t)dt/ dp [el,B(A+X)Xel(l*/3)A _ elﬂAXel(tfﬁ)A].
—o 0

Using the interpolation inequality
e PATH — A <2079 (IB[IIXIDT (0 <e < D),

we get that

0o t
H¢(A +X) —¢(A) - i/ é&(r)dt/ dB e xelt—PA
—00 0

2479 e+ [T e+2
< X lp@)] (1 + [2)*" dr,
e+1 —o
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which by virtue of the assumption on ¢3 implies that DW g (A) exists and that
oo t . .
(DD (A)(X) =i/ ¢>(t)dt/ dB elPA xelt=P4,
—00 0
Similarly for X, Y € B(H),
(DD (A + X)1(Y) — DV (A)](Y)
0 t B . . .
_ iz/ gb(t)dt/ B { / dy elVA+X) y i (B—1)A y oi(t—B)(A+X)
—00 0 0
=B . . .
+/ dv e1/‘3AYelv(A+X)Xel(tfﬁfv)A}
0
and one can verify as before that
H (DD (A + X)1(Y) — DV (A)](Y)
o 1 B . . .
—i? f H(1)dr f dp { f dv el xelB— Ay it=HA
—00 0 0
t—p
+/ dv eiﬂAYeivAXei(t—/S—u)A} H
0
* 2 2
< KIIXIIGHIIYII/ ()] (1+ e+ dr
—0o0

(for some ¢ > 0 and some constant K = K(€)), proving the expression for
[D@¢(AIX, Y). O

Theorem 3.2. Let A be an unbounded self-adjoint operator in a Hilbert space H, V be a
self-adjoint operator such that V € B3(H) and furthermore let ¢ € S(R) (the Schwartz
class of smooth functions of rapid decrease). Then

1
P(A+V) —¢(A) — [DDp(A)(V) - 5[D<2>¢<A>](v, V) e Bi(H)

and

1
Tr [¢>(A + V) —¢(A) — [DPp(MV) — E[D(%(A)uv, V)]

0o R t 1 K
=/ i2t¢(t)dt/ dv/ ds/ dr
—00 0 0 0
X Tr[Vei(t—U)Ar VeiUA-[ _ Vei([—v)A VelUA],

where Ay = A+tVand0 <71 <1.
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Proof. Since [0, 1] 3 s —> el'4s is B3 (#H)-continuously differentiable, uniformly in z,
P(A+ V) —¢(A) — [DDp(A)I(V)

= / d(r) de[e"ATY) — et — DDy (A (V)

R ! d . 0o t . .
/ o) df/ ds—(e‘“*‘)—i/ o (1) dt/ dp efAyeit=Ha
—00 0 ds o 0
o R 1 t ) ‘
= / ¢(t) dt / ds / dB efAsiyelt—PAs
o o o
1 t
—i/ ds/ dp eiﬂAvei(f—ﬂ)A:|
o Jo

= / ip(r) dr f ds / dp[ePAs Vel =PAs _ eifAyeili=Fay
0 0

—00

= / i (r) Q(r) dr,

—00

where Q1) = / ds / d[ePAs vell=PAs _ (iBAyeit=HA) (37
0 0

As before, T € [0, 1] —> ePArVell=PAr ¢ By(H) is B3 (H)-continuously differen-
tiable, uniformly with respect to 8. Then

1 t K d . .
/ ds / dp / dr — (ePAr vl =P Ay
0 0 o dr

1 t B
i f ds f Cdar / dp { / dvelVAr yel BV Ac el =FA
0 0 0 0
-

+/ dveiﬂArVeivA,Vei(tﬁv)A,}’
0

()

where Fubini’s theorem has been used to interchange the order of integration. Hence

1
A+ V) —¢(A) — [DDp(A)I(V) — 5[D<2>¢>(A>]<v, V)

© 1 K t B . . .
= / $(1)dt / ds / dr f d,B{ / e A
—00 0 0 0 0

=B
_ eivAVei(ﬁ—v)AVei(t—ﬁ)A]+/ du[eifAr Vel Ar yeilt—F—1)Ac
0

_ iBAyeiva Vei(tﬂv)A]}. 3.2)
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Though each of the four individual terms in the integral in (3.2) belongs to B 3 (H), each
of the differences in parenthesis [.] belongs to B (#), e.g.

[V Ar ViB—0Ac yoit=B)Ar _ (ivAy i(B—) Ay it—pAy
= [elVAr — eV A Y i(B—Ar it—B)Ar
1 eVAY[ei(B-Ar _ gi(B—0)Ar|yeit—F)A:
+ el(B—1)Ac V[ei(l*ﬂ)/‘r _ ei(t*ﬂ)Ar] € Bi(H),
anditsnorm ||[-]]|; < |7] ||V||_§ {lv]+1B —v| 41|t — B}, where we have used the estimate

”ei"AT —elvA ”3 < |vt|||V|i3. Hence by the hypothesis on ¢A>,

1
P(A+ V) —¢(A) — [DDp(A)(V) - 5[D<2>¢(A>](v, V) e Bi(H)

and

N
I

1
Tr [¢<A + V) —¢(A) — [DDp(A)](V) - §[D<2>¢(A)]<v, m}

00 1 N t B
/ i%(z)drf ds/ dr/ dp {/ dv
—0 0 0 0 0

x Tr[eV A Vel B0 Ar yeit=FAc _ (ivAyi(B=)A yoi=p)A)

[_
n / ; dUTr[eiPAr VelvAr it —F—nAc _ifAy iva Vei(t—ﬁ—v)A]} .
0
(3.3)

Again by the cyclicity of trace and a change of variable, the first integral in {.} in (3.3) is
equal to

/ﬁ dv Tr[el A Ayl (B-0Acy _ Gi—p0 Ay ci(B-0ay)
0

- / ! dv Tr[Vell ™ Ar yelvAr _ yeilt=vAyeiva (3.4)
0
Similarly, the second integral in {.} in (3.3) is equal to

/t_ﬂ dv Tr[Vell W AryelvAr _ yelt=nAyeivay (3.5)

0
Combining (3.4) and (3.5), we conclude that
00 R 1 K t B
z =/ iz¢(t)dt/ ds/ dr/d,B {/ dv
—00 0 0 0 0
X Tr[vei(t—\))A-[ VeiUAr _ Vel(t—V)A Vell)A]

t—p . . . .
+ / dv Tr[ Vel Aryelvar _ Vel([_”)AVe“’A]} ) (3.6)
0
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By a change of variable and the cyclicity of trace, we get that

t
t/ dv Tr[Vel(l‘fv)AT Veil}Af _ Vel(l‘*V)A VelvA]
0
t B
:'/ dﬁ {/ dv Tr[Vei(tfv)A-[ VeiVA-[ _ Vei([*\))A VelUA]
0 0

t_
N / B dv Ti[Vel (A yeivAc _ yeit=—1A VeiuA]} ’
0

using which in (3.6) we are lead to the equation

00 R t 1 K
Z = / i? t¢(t)dt/ dv/ ds/ dr
—00 0 0 0

X Tr[vei(l‘—\))A-[ VeiUAr _ Vel(t—V)A Vell)A]’ (3.7)
by an application of Fubini’s theorem. O

Theorem 3.3. Let A be an unbounded self-adjoint operator in a Hilbert space H with
o0 (A) C [b, 00) for some b € R and V be a self-adjoint operator such that V. € By (H).

Then there exists a unique real-valued function n € L' (R ) (for some € > 0)
such that for every ¢ € S(R) (the Schwartz class of smooth functions of rapid decrease)

di
’ (1+A2)l+5

1
Tr [qs(A + V) —¢(A) — [DDp(A)](V) — E[D(%(A)](v, V)]

— / ¢" (L ()da.

Proof. Equation (3.7), after an application of Fubini’s theorem, yields

Z

1
Tr [qs(A + V) —¢(A) — [DDp(A)I(V) - §[D<2>¢(A>]<v, V)}

1 s 00 R t
/ ds/ dtf i2 tqb(t)dtf dv
0 0 —00 0

x Tr[Vell ™V AryelvAr _ yellt=nAyivay (3.8)

Now

t
/ dv Tr[Vei(t—U)A-[ VeiUA-[ _ Vei([—U)A VelUA]
0

t o0 o0 . .
= / dv / f el "V VI Ty [V EL (dA)V E (dp)
0 a a

—VE@M@MNVE(p)], (3.9)

where @ = min{b, info (A;) [0 < T < 1]} and E;(.) and E(.) are the spectral families
of the operators A; and A respectively and the measure G : A x § € Borel(R?) —
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Tr[VE.(A)VE.(§) — VE(A)VE(S)] is a complex measure with total variation <
2|1V ||% and hence by Fubini’s theorem the right-hand side expression in (3.8) is equal to

/lds / dr /OO 2 té&(r)dr/oo /Oo /tdv etk givi
0 0 —00 a a 0
X Tr[VE,(d0)V E; (dp) — VE(dA)V E(djw)]
:/lds/Sdr/oo i2t<;3(t)dt/oofoo e
0 0 —00 a a (A —p)
x Tr[V Er(dM)V E,(dp) — VE(A)VEWw)]

1 s 00 . 0o
=/ ds/ dr/ i? t¢(t)dt/ rel*
0 0 —00 a

x Tr[VE E-(dA) — VEE(d)]

1tk 1tp.
/ds/ dr/ i tqb(t)dt/ / 1(}\ o

X Tr[Var Er (M) Var E- (dp) — V2E(dM) V2 E(dp)], (3.10)

where we have set V. = V| & Vo, = Vi @ Vo, € By(H) as in Lemma 2.4 vi(b). Applying
Fubini’s theorem in the first expression in the right hand side of (3.10), we conclude that

1 K [ee) 00
/ ds / dr / 2 td(1)dt / e Tr[VE E,(d)) — VZE(dM)]
0 0 —00 a
1 K 00
= / ds / dr / ¢" () Te[VE E.(dr) — VEE(dA))
0 0 a

1 K 00
= / ds / dr / ¢" (M) T VEE(L) — VE E-(M)]dA,
0 0 a

where we have integrated by parts and observed that the boundary term vanishes. Thus
the first term in (3.10) is equal to

1 K 00
/ ds / dr f " (1) 1z (0) da.,
0 0 a

where  n1,(A) = Tr[VEE(L) — VE E; (V). (3.11)

Now consider the second expression in the right-hand side of (3.10):

1tA elm
d d d
oo ae [Zeon [T "G5

X Tr[Var E< (d2) Var E¢ (dp) — V2 E(dA) V2 E(dp)]. (3.12)

Since Vo, € [Ker(M(AIH)q)]J‘ = Ran(/\/l’(“Ar+i)_1) = Ran(M(Arfi)fl) , there

exists a sequence {Vz(f)} C Ran(M, ;1) ie. Vz(?) = (A, —D7lymw —
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Y™ (A, —1)~! for some Y™ € B,(H) such that V(”) —> Vo in ||.||2. Similarly, there
exists a sequence {V(")} C Ran(M, ;1) ie. V(") (A—1)~! Y(;") — Yé") (A—1D7!
for Yén) € By(H) such that V2(") —> V3 in |.||2. Furthermore, it is easy to see that

T —> (A 4+ tV +1)~! is holomorphic and therefore by Lemma 2.4 (vii)(b), the map
[0, 1] > T — Vi, Vo, are continuous. Thus the expression in (3.12) is equal to

1tk 1tu
/ ds/ dr/ i t¢(t)dt/ / - n%ngo

X Tr[Var B¢ (d2) Vyr) Ec(dp) — V2E(dA) Vs E(dp)]

1tA elm
d d d 1
/ s/ ‘L'/ i2 td)(t) t lim / / 1(A o

X Tr[Var E- (W) VP E(dp) — V2E(@W) VSV E(dp)], (3.13)

since Var(G5" — G2) < [Vacll2 V52 = Vaclla + [V ll2 V2 = V3" || — Oas n —> oo,
where G2(A x §) = Tr[Var E- (A)Var E£ (8) — V2E(A)V2E(8)] and gé") (A x §) is the
same expression with second V,-terms replaced by Vz("). These are complex measures on

R? and Var(gén) — G,) is the variation of (gé") — G,). Note that
Tr(Var E7 (A1) V" E (dp))
= Tr(Var E; dM[(A; = 1) ' Y™ — Y™ (A, — )" NE (dp))

s )
(=D —i)

and since ffooo |t<$(t)|dt < oo and the other functions are bounded, the right-hand side
expression in (3.13) is equal to

1tk _ itu —(}» _ M)
/ ds/ dr hm i t¢(t)dt/ / |: : ; ]
- iA=—p) LA=Dp—10

X Te{Vag E(d0)Y ™ E¢ (du) — V2 E(A) V5" E(dw))

R o0 o0 i X
/ ds/ dr lim —itc/)(t)dt/ / [e* — el
n—o0 a a

x Tr{Var Er (dA) (A; — )71 Y™ (A, —i)~ ' E (dp)

Tr(Vae E- (dA\)Y ™ E-(d))

—V2E@0) (A — D)7 Y (A — )7 Edp))

0 .
/ ds/ dr hm —1t¢(t)dt/ et
— 00

% Tr(Vay [Eo(dA), 71 — V[E(dR), Yo ™), (3.14)
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where Y™ = (A, — i)' Y™ (4, — i)~  and %" = (A — i)' ¥ (A —i)~". Again
by applying Fubini’s theorem the right-hand side in (3.14) is equal to

1 s 00
f ds / dr lim / —¢' () Te(Vae [ Ec(dh), PP=Va[E(dh), Yo ™D,
0 0 n—oo a

and by integrating by parts twice and on observing that the boundary term vanishes, this
reduces to

1 K
/ ds/ dr lim _{‘ﬁ/(’\)Tr(Vzr[Er()»),?(")]—V2[E()\),f0(n)]) 2,
0 O n—0o0

— f —¢" () Te(Vag [E- (1), T = Vy[E(L), Yo' ])dx}

/ ds/ dr 11m ¢”(A)

x Tr(Var[Er (A, 17(”)] — VRLE(), Yo' Ddx

/ ds / dr lim {q&”(k) / ' Tr(Var[Ex (), Y]
— VLEW, Yo" D du 52,

- / T80 ( / e Var B (), 7]

— VIEW. Y")) du) dx}

/ds/ dr hm / ¢ (L)

x ( / Te(VALE (), To™ 1 = Vae[Ex (1), Y(")])du>

1 K 00
- / ds / dr lim / ¢"' (W) 1S (v da, (3.15)
0 0 n— 00 a

where {7 (1) = [ Tr(ValE (), Yo "1 — Vac[Ex (), V) Ddpa.

Here it is worth observing that the hypothesis that A is bounded below is used for
the first time, only for performing the second integration by parts. Combining (3.11) and
(3.15), we conclude that

1
Tr [¢<A + V) —¢(A) — [DPp(AI(V) — 5[D<2>¢(A)]<v, V)}

/ ds / dr lim_ / ¢ () 1 (1) da, (3.16)



570 Arup Chattopadhyay and Kalyan B Sinha

where 7Y () = (V) + ng? (). We claim that {n\} is a Cauchy sequence in
L! (R, ﬁ) (¢ > 0) and we follow the idea from [7]. First note that L°°(R, dA) =
L*® (R, ¥ (A)d)), where (L) =
let f € L°°(R, dA) and define

W since the two measures are equivalent. Next,

gl = /Oo fOY(@)dt for A € R.
A

Then g is absolutely continuous with g’(A) = —f(A)y (L) ae. and that |g(h)| <

const. ———— (for some ¢’ > 0) for A — oo and bounded. Next consider the
(]+)»2)7+€

expression

/ FOOYMMD G — n™ 1)1dx
= / FOPMMSY ) — i ()1da

© * S s m)
=/ —g(x)dx(/ Tr(VALE(), To™ — %o ™

— Var[Er (), Y — W’")Ddu) ,

which on integration by parts and on observing that the boundary term vanishes, leads to

) Ve [Er (), T™ — 7™ ])da,

(3.17)

/ GWTEVAIEG), Fo™ — Yo

Define
X
h(A):/ g(®)dt for X € [a, o).

Then £ is bounded, differentiable on [a, o) with 2/(A) = g(A) ¥V A € [a, 00). Hence by
integrating by parts and observing that the boundary term vanishes, the right-hand side in
(3.17) is equal to

/ W OOTe(VALEG), Yo — o™ 1 = Vag[E. (1), 7™ — 7™M yda

a
~ ) ~ ) ~ ~
= 1) TIVALE(), Yo" — o™ 1= Vae [E< (0, 7™ — 7wy |22

- / ROOTr(VA[E (L), Yo — o™

— Var[Ec(d), Y — 7]

o0
= / () Tr(Var[Ec(dh), T — 7™y EdA), Yo" — %™
a

= Te(Var[h(Ag), T — ] — vy[n(a), %™ — 7™ . (3.18)
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But on the other hand,

[h(A), Yo™]

_ / / [h(3) — hGOIE@D) o™ E(dp)

/ / () — hIC — D~ (i — D E@n) Y Edw)

hQ) = hu) N DR )
/ / ()\—i)—l_(M_i)—lo‘ DT (=1 EW@MNV, E(dp)

and hence
[h(A), Yo" / / hm h(“) E@)VE(dp).
Therefore

Tr(Valh(A), Yo = Yo / / > h@) h(u)

X Tr(V2E( W[V — Vi 1Edw)) (3.19)

and hence as in [3,4] and in [5],

~ (n) 5 (m)
ITr(Valh(A), Yo ' — Yo " DI < I flloo 11l VIRV = V™10

and hence
%0 7O O 0 = 1™ (15
sup
feL>®(R) Il flloo
<l IVI2 AV = VTl 4+ 1V = v 1),
i.e.

() _

198 = 0 L1 g yany

<1l IVI2 AV = VTl 4+ 1V = v )l),

which converges to 0 as m,n —> oo and V 7 € [0, 1]. A similar computation also
shows that ||n7(7n)||Ll(R,1/f()»)dk) < 2||¢||L1||V||%, independent of 7 and n. Therefore

{fo ds [ dr n(")(k) = ™ (1)} is also Cauchy in L' (R, ¥ (1)dA) and thus there exists
a function € L'(R, ¥ (1)dA) such that ||n™ — Nl ®,yoyany —> 0asn —> oo, by

the bounded convergence theorem and also |7l 1w,y (3yan) < 1V 111V ||%. Therefore by
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using the dominated convergence theorem as well as Fubini’s theorem, from (3.16) we
conclude that

1
Tr [¢(A + V) —¢(A) — [DDp(A)](V) — 5[D<2>¢<A)]<v, V)]
= f ¢" (Mn(h)da.
O

The proof of the uniqueness and the real-valued nature of 7 is postponed till after
Corollary 3.4.

COROLLARY 3.4

Let A be an unbounded self-adjoint operator in a Hilbert space H with o (A) C [b, 00)
Sfor some b € R and V be a self-adjoint operator such that V € By(H). Then the function
n € L'(R, ¥ (L)dA) obtained as in Theorem 3.3 satisfies the following equation

/ J Y @R)n()da

/ds/ dr/ / h(k) h(M)

x Tr[VE(dA)VE(dw)
—VE.(dV)VE (du)], (3.20)

where f (1), g(X), h(X) and ¥ (L) are as in the proof of Theorem 3.3.

Proof. By Fubini’s theorem we have that
o
/ FOY ™ (yda
/ as [Car [T oot + 1 o,
But
/ F )Y M)ni- (R)dr = / —¢ WTI Vi E() — Vi, E-(M)]dA
a a
which by integrating by parts and observing that the boundary terms vanishes, leads to
o
/ ¢TI VZE(dA) — V2 E-(dA)] = Tr[ VR (A) — VER (AL)],
a
which by Lemma 2.4(ii) is equal to

/ / h(“ h(“ ) Te Vi E@0)VI E(p) — Vie Ex (@1 Vie Ex (di)].
3.21)
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Again by repeating the same calculations as in the proof of Theorem 3.3, we conclude that

f SO NS (L)dr

/ / h(/\) h(M)

X T V2 E(@M)V," E(dp) — Var Er(dW) VY E (dp)]. (3.22)

Combining (3.21) and (3.22) we have

/ FOIY ™ ()dx

/ds/ dr/ / h(?») h(u)

x Tr[(Vi @ V) E(AW)(V; & v;"’)E«w)
— (Vie ® Vo) Ec(dW) (Vi © V) E (dp)]. (3.23)

But by definition Vz("), Vz(f ) converges to V2, Vo respectively in ||.||2» and we have already
proved that n™ converges to  in L' (R, v (1)d)). Hence by taking limit on both sides of
(3.23) we get that

f FOYY m()dn

/ds/ dr/ / h()») h(M)

x Tr[VEW@MVE(p) — VE(dMVE.(dw)], (3.24)

where we have used the fact that Var(G” — G2) < IVI2(IVa” — Vaclo + (V2 —
V1) — 0, and that |2 llLip < llgllee < Il fllollW i1 O

Proof of uniqueness and real-valued property of n. For uniqueness in Theorem 3.3, let
us assume that there exists 1y, 72 € LY(R, Y (A)dA) such that

1
Tr [¢(A + V) —¢(A) — [DDp(A)(V) — 5[D<2>¢<A)]<v, w]

= / ¢"" (M ()da
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for j = 1, 2. Then using Corollary 3.4 we conclude that

h(A) —h
/f()»)llf(k)n,()»)d)»_/ ds/ dr/ / () (M)

x Tr[VEWAMVE(du) — VE.(dA)VE (du)],
for j = 1,2 and for all f € L°°(R). Hence

/Rf()\) YA ) dr=0, V f €L®®), (3.25)

where n(1) = 71 (L) — m () € LY (R, ¥ (1)dAr). Since (3.25) is true for all f € L®(R),
in particular it is true for all real-valued f € L>*(R), i.e.

f F)YO)n(A) dr =0, Vreal valued f € L®(R). (3.26)
R

Let n(A) = nRrel(A)+i n1mg (1), where 1Re1(4) and nyme (1) are real valued L (R, Y (A)dAr)-
function. Hence from (3.26), we conclude that

/Rf(/\) V(1) 1Rel(2) dA =0

= / F) Y Q) nimg(A) da, V real valued f € L*(R).
R
(3.27)

In particular if we consider f(A) = sgn nre1(1), where sgn nrei(A) = 0, V A such that
nRel(A) = 0; sgn nrei(A) = 1, V A such that nrei(A) > 0; sgn nre1(A) = —1, V A such
that nre1(A) < 0. Then f = sgn nrel € L°°(R) and hence

/R IRl M| [ (M)] dA = /ngn NRel(A) NRel(A) ¥ (M)dA = 0,

which implies that |grej(A)| [ (A)] = 0 a.e. and hence nrej(A) = 0 a.e. Similarly by
the same above argument we conclude that nimg(A) = 0 a.e. and hence n(A) = 0
a.e. Therefore n;(1) = n2(X) a.e. Again, since the right-hand side of (3.20) is real for
all real-valued f € L°°(R), by a similar argument as above, it follows that 7 is real
valued.
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