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Abstract. Let A be a Banach algebra. It is obtained a necessary and sufficient con-
dition for the complete continuity and also weak complete continuity of symmetric
abstract Segal algebras with respect to A, under the condition of the existence of an
approximate identity for B, bounded in A. In addition, a necessary condition for the
weak complete continuity of A is given. Moreover, the applications of these results
about some group algebras on locally compact groups are obtained.
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1. Introduction

Let A be a Banach algebra. A bounded operator T : A → A is called a right (left) multi-
plier if T (ab) = aT (b) (T(ab) = T(a)b) for all a, b ∈ A. Recall that a ∈ A is called a right
completely continuous (right weakly completely continuous, respectively) element of A
if the operator ρa of right multiplication by a is compact (weakly compact, respectively).
An algebra A is called right completely continuous (right weakly completely continuous)
if any element a ∈ A is right completely continuous (right weakly completely con-
tinuous, respectively). Left completely continuous (left weakly completely continuous)
elements and left completely continuous (weakly completely continuous) Banach alge-
bras are defined in a similar way, via the compactness (weakly compactness) of operators
λa of left multiplication by a. An algebra A is called completely continuous (weakly com-
pletely continuous) if it is both left and right completely continuous (weakly completely
continuous).

The set of all right (resp. left) completely continuous elements of A will be denoted by
RCC(A) (resp. LCC(A)). We use the notation RWCC(A) (resp. LWCC(A)) for weakly
right (resp. left) completely continuous elements of A. These sets are in fact norm closed
subspaces of A.

For a Banach algebra A, let S, T ⊆ A, and U ⊆ A∗. Set S·T = {st : s ∈ S , t ∈ T },
S ·U = {s · f : s ∈ S , f ∈ U } and U · S = { f · s : s ∈ S , f ∈ U }, where the functionals
s · f and f · s are defined by the formulas 〈s · f, a〉 = 〈 f, as〉 and 〈 f ·s, a〉 = 〈 f, sa〉, for
each a ∈ A.

A functional f ∈ A∗ is said to be weakly almost periodic if the set

{a · f : a ∈ A , ‖a‖ ≤ 1}
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is relatively weakly compact in A∗. We denote the set of all weakly almost periodic func-
tionals on A by WAP(A), that is in fact a norm closed two-sided Banach A-submodule
of A∗.

The second dual space A∗∗ of A can be equipped with two multiplications, denoted by
� and ♦, which makes A∗∗ a Banach algebra. Indeed, for all �,� ∈ A∗∗ and f ∈ A∗, put

〈���, f 〉 = 〈�,� · f 〉 and 〈�♦�, f 〉 = 〈�, f ·�〉,

where � · f, f · � ∈ A∗ are defined by the equalities

〈� · f, a〉 = 〈�, f · a〉 and 〈 f ·�, a〉 = 〈�, a · f 〉,

for each a ∈ A. One can consider A as a subalgebra of (A∗∗,�) and also (A∗∗,♦). More
importantly

a �� = a ♦� and �� a = �♦ a,

for each a ∈ A and � ∈ A∗∗ (see [4], for more information in this field). It is a known
result that the algebra A is weakly completely continuous if and only if it is an ideal in
A∗∗ (Lemma 3 of [5]).

An algebra A is said to be Arens regular if these two multiplications coincide. As an
important result, it is remarkable to note that an algebra A is Arens regular if and only if
WAP(A) = A∗ (see [5]).

The aim of the present work is to establish the relations between (weakly) completely
continuous elements of a Banach algebra A and symmetric abstract Segal algebras B with
respect to A, in the case where B admits an approximate identity, bounded in A. It is in
fact a generalization of the results connected to symmetric Segal algebras, given in §6
of [10]. Also it is given a necessary condition for the weak complete continuity of A,
not necessarily with an approximate identity, which makes a new proof for the result due
to Ghahramani [8]. Moreover, some applications of these results in group algebras are
presented.

2. Main results

Let (A, ‖ · ‖A) be a Banach algebra. A Banach algebra (B, ‖ · ‖B) is called a symmetric
abstract Segal algebra with respect to A if the following conditions are satisfied (see [3]
for more details).

(1) B is a dense two-sided ideal of A.
(2) There exists M > 0 such that ‖b‖A ≤ M‖b‖B, for each b ∈ B.
(3) There exists C > 0 such that ‖ab‖B ≤ C‖a‖A‖b‖B and ‖ba‖B ≤ C‖a‖A‖b‖B, for

each a ∈ A and b ∈ B.

As the main results, we show that (weak) complete continuity of A is equivalent to the
(weak) complete continuity of B, provided with the existence of an approximate identity
for B, which is bounded in A. Note that RCCA(B) (resp. RWCCA(B)) is the set of all
a ∈ A such that Pa : B → B is compact (resp. weakly compact.) We also use the
notations LCCA(B) and LWCCA(B) in a similar way.
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PROPOSITION 2.1

Let A be a Banach algebra and B be a symmetric abstract Segal algebra with respect to
A. Then

(i) B · LCC (A) ⊆ LCC(B).
(ii) LCCA(B) ·B ⊆ LCC(A).

(iii) RCC(A) ·B ⊆ RCC(B).
(iv) B · RCCA(B) ⊆ RCC(A).

Proof.

(i) Let a ∈ LCC(A), b ∈ B and (b j ) j∈I be a bounded net in B. Thus (b j ) j∈I is bounded
in A, as well and by the left complete continuity of a, there exist a subnet (b jk ) of
(b j ) j∈I and c ∈ A such that ‖ab jk − c‖A → 0. Hence ‖bab jk − bc‖B → 0. It
follows that ba ∈ LCC(B).

(ii) Let b ∈ LCCA(B), c ∈ B and (a j ) j∈I be a bounded net in A. Thus (ca j ) j∈I is
bounded in B. By the left complete continuity of b, there exist a subnet (a jk ) of
(a j ) j∈I and d ∈ B such that ‖bca jk − d‖B → 0. Hence ‖bca jk − d‖A → 0. It
follows that bc ∈ LCC(A).

(iii) and (iv) follow from similar arguments to the proof of parts (i) and (ii). �

Let (ei )i∈I be an approximate identity for (B, ‖.‖B) which is bounded in A. In this
case, density B in A implies that (ei )i∈I is also a bounded approximate identity for A.
Moreover, Cohen factorization theorem [13] implies that B = A ·B = B ·A. A result
due to Burnham [3] implies that for a proper subset B of A, (ei )i∈I is not bounded in
(B, ‖ ·‖B).

Theorem 2.2. Let A be a Banach algebra and B be a symmetric abstract Segal algebra
with respect to A with an approximate identity which is bounded in A. Then A is left
(right) completely continuous if and only if B is left (right) completely continuous.

Proof. Let A be left completely continuous and b ∈ B. By the explanation preceding the
theorem, b = ca, for some c ∈ B and a ∈ A. Suppose that (b j ) j∈I is a bounded net in
B. Since A is left completely continuous then a ∈ LCC(A). Thus ‖ab jk − d‖A → 0,
for a subnet (b jk ) of (b j ) j∈I and some d ∈ A. Consequently ‖cab jk − cd‖B → 0
and so ‖bb jk − cd‖B → 0, which implies that b ∈ LCC(B). It follows that B is left
completely continuous. For the converse, we first show that LCCA(B) = A. Let (ei )i∈I
be an approximate identity for B which is bounded in A and a ∈ A. Since aei ∈ B, for
all ei , by the hypothesis λaei : B → B is compact. Moreover

‖λaei − λa‖ = sup
‖c‖B≤1

‖λaei (c) − λa(c)‖B
≤ ‖aei − a‖A
→ 0.

Since the set of compact operators is closed under the operator norm, it follows that
λa : B → B is compact and so a ∈ LCCA(B). It follows that LCCA(B) = A. Now
Proposition 2.1 implies that

B = A · B = LCCA(B) · B ⊆ LCC(A).
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Since B is dense in A and LCC(A) is a norm closed subspace of A, the result is ful-
filled automatically. One can easily get the same result for the case of right complete
continuity. �

One can easily prove the following proposition with similar arguments given in the
proof of Proposition 2.1. Some other relations and properties can be found in [18].

PROPOSITION 2.3

Let A be a Banach algebra and B be a symmetric abstract Segal algebra with respect to
A. Then

(i) B · LWCC(A) ⊆ LWCC(B).
(ii) LWCCA(B) · B ⊆ LWCC(A).

(iii) RWCC(A) · B ⊆ RWCC(B).
(iv) B · RWCCA(B) ⊆ RWCC(A).

Theorem 2.4. Let A be a Banach algebra and B be a symmetric abstract Segal algebra
with respect to A with an approximate identity which is bounded in A. Then A is left
(right) weakly completely continuous if and only if B is left (right) weakly completely
continuous.

Proof. Let A be left weakly completely continuous and b ∈ B and (b j ) j∈I be a bounded
net in B. The hypothesis implies that b = da, for some d ∈ B and a ∈ A. Since (b j ) j∈I is
also bounded in A, there exists a subnet (b jk ) of (b j ) j∈I such that (ab jk ) j∈I is convergent
to c ∈ A in the weak topology of A. Hence for each f ∈ B∗,

f (dab jk ) → f (dc)

and so (dab jk ) is convergent to dc in the weak topology of B. It follows that b = da ∈
LWCC(B) and thus B is left weakly completely continuous.

For the converse, first by a similar argument to the proof of Theorem 2.2, one can easily
show that LWCCA(B) = A. Now Proposition 2.3 concludes that

B = A ·B = LWCCA(B) ·B ⊆ LWCC(A).

Since B is dense in A and LWCC(A) is a norm closed subspace of A, it follows that
A = LWCC(A) and so A is left weakly completely continuous. One can easily get the
same result for the case of right (resp. two-sided) weak complete continuity. �

As a consequence of Theorem 2.4 and also [5], the next result is obtained. It also has
been pointed out in [16].

COROLLARY 2.5

Let A be a Banach algebra and B be a symmetric abstract Segal algebra with respect to
A with an approximate identity which is bounded in A. Then A is a left (right, two-sided)
ideal in A∗∗ if and only if B is a left (right, two-sided) ideal in B∗∗.

We end this section by giving a necessary condition for the weak complete continuity of
a Banach algebra. This result has been proved also in [6], with the assumption of existence
of an approximate identity for A. We get the same result without this assumption.
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Theorem 2.6. Let A be a Banach algebra. If A is weakly completely continuous, then
A ·A∗ ·A ⊆ WAP(A).

Proof. Let a, b ∈ A, f ∈ A∗ and (xi )i∈I be a bounded net in A. We show that the net
(xi a · f ·b) has a subnet that is convergent in the weak topology of A∗. Since a is a right
weakly completely continuous element of A, then (xi a) admits a subnet (xi j a) that is
weakly convergent in A. Define the complex-valued function g on A by

g(x) = lim
j

〈 f · x, xi j a〉.

It is clear that g ∈ A∗. Since A is weakly completely continuous, A is an ideal in A∗∗ by
Lemma 3 of [5]. Consequently for each F ∈ A∗∗, we have b� F ∈ A and

〈F, g · b〉 = 〈b♦ F, g〉 = 〈g, b� F〉 = lim
j

〈 f ·(b� F), xi j a〉
= lim

j
〈b � F, xi j a · f 〉.

Furthermore,

lim
j

〈b � F, xi j a · f 〉 = lim
j

〈b ♦ F, xi j a · f 〉 = lim
j

〈 F, xi j a · f ·b〉.

It follows that (xi j a · f · b) is convergent to g · b, in the weak topology of A∗. It follows
that a · f · b ∈ WAP(A), as claimed. �

Theorem 2.6 and also [5] yield the next result. Some known results can be proved in
more easier ways, by this result

COROLLARY 2.7

Let A be a Banach algebra. If A is an ideal in A∗∗, then A ·A∗ ·A ⊆ WAP(A).

3. Applications in group algebras

In this section, we investigate the results, given in the previous section, for the group
algebras. Let us repeat and review some terminologies and preliminaries, used in the
present section.

Let G be a locally compact group with a fixed left Haar measure λ. Given a complex-
valued function f on G; the left (resp. right) translation of f by x ∈ G will be denoted by
(x f )(y) = f (x−1 y) (resp. ( fx )(y) = �(x) f (yx), for all y ∈ G. We denote by CB(G)

the space of all bounded continuous complex-valued functions on G with the supremum
norm. Also UC(G) is the subspace of CB(G), consisting of all bounded left and right
uniformly continuous functions on G; i.e. all f ∈ CB(G) such that the maps x �→ x f and
x �→ fx from G into CB(G) are continuous. We also denote by WAP(G), the space of all
bounded continuous weakly almost periodic functions on G; i.e all f ∈ CB(G) such that
{x f : x ∈ G} is relatively weakly compact in CB(G). By Theorem 3.11 of [2], WAP(G)

is a closed subspace of UC(G).
In the beginning of the present section, we investigate some aspects of Theorem 2.6 or

equivalently Corollary 2.7. First, let us recall the basic definition of Segal algebras (see
[17] for complete information).
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A linear subspace S(G) of L1(G) is said to be a Segal algebra, if it satisfies the
following conditions:

(1) S(G) is dense in L1(G).
(2) S(G) is a Banach space under some norm ‖ ·‖s and ‖ f ‖1 ≤ ‖ f ‖s ; for all f ∈ S(G).
(3) S(G) is left translation invariant and the map x �→ x f of G into S(G) is continuous.
(4) ‖x f ‖s = ‖ f ‖s ; for all f ∈ S(G) and x ∈ G.

A Segal algebra S(G) is called symmetric if it is right translation invariant, and for
each f ∈ S(G) and x ∈ G, ‖ fx‖s = ‖ f ‖s , and also the map x �→ fx from G into S(G)

is continuous. Note that every symmetric Segal algebra is in fact a symmetric abstract
Segal algebra with respect to L1(G). Moreover, it has an approximate identity which
held in L1(G) and each term having norm equal to 1 in L1(G)-norm (see [17] for more
information).

Remark 3.1.

(a) It is known that L1(G) is an ideal in its second dual if and only if G is compact. There
are numerous proofs of this fact such as [5] and [12]. Using Theorems 2.4 and 2.6, we
give another proof that is, in our opinion, short. Let L1(G) be an ideal in its second
dual. By [13], we have

L1(G) · L∞(G) · L1(G) = L1(G) ∗ L∞(G) ∗ L1(G)˜= UC(G),

Corollary 1.7 implies that

UC(G) ⊆ WAP(L1(G)).

Since WAP(L1(G)) = WAP(G) [19], it follows that UC(G) = WAP(G). This is
possible only if G is compact [11]. For the converse, let G be a compact group. Thus
for each 1 < p < ∞, the usual Lebesgue space L p(G), defined in [13], is a symmetric
abstract Segal algebra with respect to L1(G) [17] and since L p(G) is reflexive, then
L p(G) is an ideal in its second dual. Now Corollary 2.5 implies that L1(G) is also an
ideal in its second dual.

(b) The converse of Theorem 2.6 is not in general true. For instance, let A be an Arens
regular Banach algebra. Thus WAP(A) = A∗ [5] and so A ·A∗·A ⊆ WAP(A). But
A is not necessarily weakly completely continuous. We provide some examples. Note
that every bounded operator from a C∗-algebra into its dual space is weakly compact
[1]. It follows that all C∗-algebras are Arens regular. It is known that L∞(G) is a C∗-
algebra under pointwise product and so it is Arens regular. But since L∞(G) is unital,
then L∞(G) is weakly completely continuous or equivalently an ideal in its second
dual just whenever G is finite.

The following proposition is a direct consequence of Remark 3.1, Theorems 2.2 and 2.4
and also Corollaries 2.5 and 2.7. It also has been given in Proposition 6.1 of [10] and [15].

PROPOSITION 3.2

Let G be a locally compact group and S(G) be a symmetric Segal algebra in G. Then the
following assertions are equivalent:

(i) S(G) is completely continuous.
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(ii) S(G) is weakly completely continuous.
(iii) S(G) is an ideal in its second dual.
(iv) G is compact.

Ghahramani and Lau defined Lebesgue–Fourier algebra LA(G) [9], and showed that
it is a Segal algebra under convolution product Proposition 2.2 of [9]. Also LA(G) is a
symmetric Segal algebra, whenever G is unimodular. Theorems 2.2 and 2.4 and Corollary
2.5 yield the following result. It has been given in Corollary 6.2 of [10].

COROLLARY 3.3

Let G be a unimodular locally compact group. Then the following assertions are
equivalent:

(i) LA(G) is completely continuous, under convolution product.
(ii) LA(G) is weakly completely continuous, under convolution product.

(iii) LA(G) is an ideal in its second dual.
(iv) G is compact.

Let ω be a submultiplicative weight function on G; i.e. a Borel measurable func-
tion ω : G → (0,∞) with ω(xy) ≤ ω(x)ω(y), for all x, y ∈ G. The space
L p(G, ω) with respect to λ is the set of all complex-valued measurable functions f
on G such that f ω ∈ L p(G), where 1 ≤ p < ∞. Moreover L p(G, ω) is a Banach
space under the norm ‖ f ‖p,ω = ‖ f ω‖p. It is known that for such a weight function,
L1(G, ω) is a Banach algebra under convolution product, with a bounded approximate
identity. In this case, L1(G, ω) is an ideal in its second dual if and only if G is com-
pact [8]. If G is a unimodular locally compact group then L1(G, ω) ∩ L p(G, ω) with the
norm

‖ f ‖s = ‖ f ‖1,ω + ‖ f ‖p,ω, f ∈ L1(G, ω) ∩ L p(G, ω),

is a symmetric abstract Segal algebra with respect to L1(G, ω).
Moreover, every submultiplicative weight function is bounded and bounded away from

zero on compacta (Proposition 1.16 of [7]). Thus if G is compact then L p(G, ω) = L p(G)

with the equivalent norms.
We end the paper with the following result that is obtained from Theorems 2.2 and 2.4,

Corollary 2.5 and Remark 3.1 together with [8]. Note that the usual bounded approximate
identity of L1(G, ω) is also an approximate identity for L1(G, ω) ∩ L p(G, ω); see the
proof of Theorem 4.1 in [14].

PROPOSITION 3.4

Let G be a unimodular locally compact group, ω be a submultiplicative weight function
on G and 1 < p < ∞. Then the following assertions are equivalent:

(i) L1(G, ω) ∩ L p(G, ω) is completely continuous.
(ii) L1(G, ω) ∩ L p(G, ω) is weakly completely continuous.

(iii) L1(G, ω) ∩ L p(G, ω) is an ideal in its second dual.
(iv) G is compact.
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