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Abstract. This paper deals with the variational and Nehari manifold method for
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1. Introduction

The study of differential equations and variational problems with variable exponent has
been a new and interesting topic. Its interest is widely justified with many physical exam-
ples, such as nonlinear elasticity theory, electrorheological fluids, etc. (see [21, 22]). It
also has wide applications in different research fields, such as image processing model
(see e.g. [5, 13]), stationary thermorheological viscous flows (see [2]) and the mathe-
matical description of the processes filtration of an idea barotropic gas through a porous
medium (see [3]).

The study on variable exponent problems is attracting more and more interest in
recent years, for example, there have been many contributions to nonlinear elliptic prob-
lems associated with the p(x)-Laplacian (see [14] for a thorough overview of the recent
advantages) from various view points.

In this paper, we investigate the following Dirichlet problem of p(x)-Laplacian{ −div(|∇u|p(x)−2∇u) = f (x, u), in �,

u = 0, on ∂�,
(P)

where � is a bounded domain of RN with smooth boundary, p(x) ∈ C(�̄) with 1 <

p− := min
x∈�̄

p(x) ≤ p+ := max
x∈�̄

p(x) < +∞, f (x, u) : � × R → R is a Caratheodory

function satisfying the conditions given in § 3.
The operator −�p(x) is called p(x)-Laplacian, which becomes p-Laplacian when

p(x) ≡ p (a constant). The solvability of problem (P) can be studied by several
approaches, for example, variational method [11, 15, 16, 20], topological method [4, 16],
sub-supersolution method [9], Nehari manifold method [18] and monotone mapping the-
ory [19]. The goal of this paper is to give existence of sign changing solutions for (P) using
variational and Nehari manifold method, which is a new research topic. And under some
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assumptions, there exist three different nontrivial solutions of (P). Moreover, these solu-
tions are one positive, one negative and the other one has non-constant sign. The results
obtained are generalizations of well-known results for p-Laplacian problems.

This paper is composed of three sections. In § 2, we recall the definition of variable
exponent Lebesgue spaces, L p(x)(�), as well as Sobolev spaces, W 1,p(x)(�). Moreover,
some properties of these spaces will be also exhibited to be used later. In § 3, we prove the
existence of positive and negative solutions withour Ambrosetti–Rabinowitz condition.
Moreover, we also give the existence of a sign-changing solution having exactly two nodal
domain which are new results.

2. Preliminary results

Here, we introduce some definitions and results which will be used in the next section.
Firstly, we introduce some theories of the Lebesgue–Sobolev space with variable

exponent. The detailed can be found in [6–8, 10, 12, 17].
Set C+(�̄) = {h ∈ C(�̄) : h(x) > 1 for any x ∈ �̄}. In this paper, for any h ∈ C+(�̄),

we will denote

h− = min
x∈�̄

h(x), h+ = max
x∈�̄

h(x)

and denote by h1 	 h2 the fact that infx∈�(h2(x) − h1(x)) > 0.
For p(x) ∈ C+(�̄), we define the variable exponent Lebesgue space:
L p(x)(�) = {u : u is a measurable real value function

∫
�

|u(x)|p(x)dx < +∞},
with the norm |u|L p(x)(�) = |u|p(x) =inf{λ > 0 : ∫

�
| u(x)

λ
|p(x)dx ≤ 1},

and define the variable exponent Sobolev space

W 1,p(x)(�) = {u ∈ L p(x)(�) : |∇u| ∈ L p(x)(�)},
with the norm ‖u‖ = ‖u‖W 1,p(x)(�) = |u|p(x) + |∇u|p(x).

We remember that spaces L p(x)(�) and W 1,p(x)(�) are separable and reflexive Banach
spaces. Denote by W 1,p(x)

0 (�) the closure of C∞
0 (�) in W 1,p(x)(�).

Denote by Lq(x)(�) the conjugate space of L p(x)(�) with 1
p(x)

+ 1
q(x)

= 1. Then the
Hölder type inequality

∫
�

|uv|dx ≤
(

1

p− + 1

q−

)
|u|L p(x)(�)|v|Lq(x)(�), u ∈ L p(x)(�), v ∈ Lq(x)(�)

(1)

holds. Furthermore, define the mapping � : W 1,p(x) → R by

�(u) =
∫

�

(|∇u|p(x) + |u|p(x))dx .

Then the following relations hold:

‖u‖ < 1(= 1,> 1) ⇔ �(u) < 1(= 1,> 1), (2)

‖u‖ > 1 ⇒ ‖u‖p− ≤ �(u) ≤ ‖u‖p+
, (3)
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‖u‖ < 1 ⇒ ‖u‖p+ ≤ �(u) ≤ ‖u‖p−
. (4)

Remark 2.1. If h ∈ C+(�̄) and h(x) ≤ p∗(x) for any x ∈ �̄, by Theorem 2.3 in [17],
we deduce that W 1,p(x)

0 (�) is continuously embedded in Lh(x)(�). When h(x) < p∗(x),
the embedding is compact.

3. The main results and proof of the theorem

In this section we will discuss the existence of weak solutions of (P).

DEFINITION 3.1

We say that u ∈ W 1,p(x)

0 (�) is a weak solution of (P), if∫
�

|∇u|p(x)−2∇u∇vdx =
∫

�

f (x, u)vdx,

for every v ∈ W 1,p(x)

0 (�).
Define

�(u) =
∫

�

1

p(x)
|∇u|p(x)dx, �(u) =

∫
�

F(x, u)dx,

where F(x, u) = ∫ u
0 f (x, t)dt . The energy functional ϕ = � − � : W 1,p(x)

0 (�) →
R associated with problem (P) is well defined. Then it is easy to see that ϕ ∈
C1(W 1,p(x)

0 (�)) is weakly lower semi-continuous and u ∈ W 1,p(x)

0 (�) is a weak solution
of (P) if and only if u is a critical point of ϕ. Indeed, we have

ϕ′(u)v =
∫

�

|∇u|p(x)−2∇u∇vdx −
∫

�

f (x, u)vdx

= �′(u)v − � ′(u)v, ∀u, v ∈ W 1,p(x)

0 (�).

Firstly, we use the Nehari method to study the existence of solutions. Our hypotheses
on nonsmooth potential f (x, t) are as follows:

H(f): f : � × R → R is a continuous function, satisfying

(i) f is C1 in t ;
(ii) f (x, t) = 0(|t |p+−1) as |t | → 0 uniformly in x ;

(iii) there exist μ > p+ and p+ 	 q 	 p∗, such that

lim|t |→∞
F(x, t)

|t |μ = +∞, lim|t |→∞
| f (x, t)|
|t |q(x)−1

= 0

uniformly in x ∈ �, where p∗(x) = N p(x)
N−p(x)

, F(x, t) = ∫ t
0 f (x, s)ds;

(iv) for each x ∈ �, ∂
∂t (

f (x,t)
|t |p+−1

) > 0 for |t | > 0.

Solutions (P) correspond to critical points of the C1 functional

ϕ(u) =
∫

�

1

p(x)
|∇u|p(x)dx −

∫
�

F(x, u)dx, u ∈ W 1,p(x)

0 (�).

For a function u(x) we use u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}.
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Theorem 3.1. If hypotheses H(f) hold, then the problem (P) has a weak solution u ∈
W 1,p(x)

0 (�) such that

ϕ(u) = max
t>0

ϕ(tu) = inf
v∈W 1,p(x)

0 (�)\{0}
max
t>0

ϕ(tv) > 0.

Proof. The proof is divided into the following three steps:

Step 1. We will show that 0 is a strict local minimum of ϕ. By conditions H(f)(i)–(iii), for
any ε > 0, there exists Cε > 0 such that

|F(x, t)| ≤ ε|t |p+ + Cε|t |q(x).

So,

ϕ(u) =
∫

�

1

p(x)
|∇u|p(x)dx −

∫
�

F(x, u)dx

≥ 1

p+

∫
�

|∇u|p(x)dx − ε

∫
�

|u|p+
dx − Cε

∫
�

|u|q(x)dx .

Note that W 1,p(x)

0 (�) ↪→ Lq(x)(�), so there exists a c0 > 0 such that |u|q(x) ≤ c0‖u‖.
Hence, for ‖u‖ = ρ(≤ 1

c0
), we have |u|q(x) < 1,

|u|q+
q(x) ≤

∫
�

|u|q(x)dx ≤ |u|q−
q(x).

Thus,

ϕ(u) ≥ 1

p+

∫
�

|∇u|p(x)dx − ε|u|p+
p+ − Cε‖u‖q−

≥ 1

p+ ‖u‖p+ − c̄ p+
0 ε‖u‖p+ − Cε‖u‖q−

.

Here we used the Sobolev embedding with constant c̄0, choose c̄ p+
0 ε = 1

2p+ , then

ϕ(u) ≥‖u‖p+
(

1

2p+ − Cε‖u‖q−−p+
)

,

which shows that

ϕ(u) > 0 if 0 < ‖u‖ < min

{(
1

2p+Cε

) 1
q−−p+

,
1

c0
, 1

}
.

Step 2. We will show that for any u �= 0, ϕ(tu) → −∞, as t → +∞.
By H(f)(ii)–(iii), there exists l > 0 such that F(x, t) ≥ l|t |μ − C for any x ∈ R

N and
t ∈ R. Hence, for u �= 0,

ϕ(tu) ≤ 1

p−

∫
�

|t |p(x)|∇u|p(x)dx − l
∫

�

tμ|u|μdx − Cmeas(�)

≤ t p+

p−

∫
�

|∇u|p(x)dx − l
∫

�

tμ|u|p+
dx − Cmeas(�)

→ −∞, as t → +∞.
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Thus, by Step 1 and Step 2,

c = inf
v∈W 1,p(x)

0 (�)\{0}
max
t>0

ϕ(tv) > 0

is well-defined. Let {un} be a minimizing sequence of c such that

ϕ(un) = max
t>0

ϕ(tun) → c

as n → ∞. We first prove that {un} is bounded. If not, we consider vn = un‖un‖ . Passing

to a subsequence, we may assume that vn ⇀ v in W 1,p(x)

0 (�), vn → v in L p(x)(�) and
vn(x) → v(x) a.e. x ∈ �.

(ℵ) If v(x) �= 0, we have |un(x)| → +∞ a.e. x ∈ �, then using H(f)(iii), we obtain

F(x, un(x))

|un(x)|μ |vn(x)|μ → +∞ a.e. x ∈ �.

Since ‖un‖ > 1 for n large, then by H(f)(iii) and Fatou’s lemma we have

1

p− ≥ lim
n→∞

1

p−‖un‖p+

(∫
�

|∇un|p(x)dx +
∫

�

|un|p(x)dx

)

≥ lim
n→∞

1

‖un‖p+

∫
�

1

p(x)
|∇un|p(x)dx

≥ lim
n→∞

1

‖un‖μ

∫
�

1

p(x)
|∇un|p(x)dx

= lim
n→∞

1

‖un‖μ

(
ϕ(un) +

∫
�

F(x, un)dx

)

≥
∫

�

lim
n→∞

F(x, un)

|un|μ |vn|μdx − 1

→ + ∞, as n → +∞,

which is impossible.

(ℵℵ) If v(x) = 0, then fixing an R > max{1, (p+c)
1

p− }, we have

c ← ϕ(un) ≥ϕ

(
Run

‖un‖
)

=ϕ(Rvn)

=
∫

�

1

p(x)
|R∇vn|p(x)dx −

∫
�

F(x, Rvn)dx

≥ 1

p+ R p−
∫

�

|∇vn|p(x)dx −
∫

�

F(x, Rvn)dx

= 1

p+ R p− −
∫

�

F(x, Rvn)dx

→ 1

p+ R p−
, as n → +∞.
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So, c ≥ 1
p+ R p− ⇒ R ≤ (p+c)

1
p− , which is impossible. Thus, {un} is bounded. Then

we can assume, without loss, un ⇀ u in W 1,p(x)

0 (�). Since, for some η > 0,

η <

∫
�

|∇u|p(x)dx =
∫

�

un f (x, un)dx →
∫

�

u f (x, u)dx,

as n → ∞, u �= 0. There is s > 0 such that ϕ(su) = maxt>0 ϕ(tu). Then

c ≤ ϕ(su) ≤ lim inf
n→∞ ϕ(sun) ≤ lim inf

n→∞ ϕ(un) = c.

Step 3. We will show that for any u �= 0, ∃!s = su > 0, such that ϕ(su) = maxt>0 ϕ(tu).
Set g(t) = ϕ(tu) for t > 0. We prove next that g(t) has an unique critical point for

t > 0. Consider a critical point

g′(t) =〈ϕ′(tu), u〉
=

∫
�

t p(x)−1|∇u|p(x)dx −
∫

�

f (x, tu)udx

=0.

From H(f)(iv), for all t > 0, we have

t2 f ′(x, t) − (p+ − 1)t f (x, t)

t p++1
> 0,

which implies that

g′′(t) =〈ϕ′′(tu), u〉
=

∫
�

(p(x) − 1)t p(x)−2|∇u|p(x)dx −
∫

�

f ′(x, tu)u2dx

≤ p+ − 1

t

∫
�

t p(x)−1|∇u|p(x)dx −
∫

�

f ′(x, tu)u2dx

= p+ − 1

t

∫
�

f (x, tu)udx −
∫

�

f ′(x, tu)u2dx

= p+ − 1

t2

∫
�

( f (x, tu)tu − f ′(x, tu)(tu)2)dx

<0,

i.e. if t is a critical point g, then it must be a strict local maximum. This implies the
uniqueness.

Step 4. We will show that su is a critical point ϕ.
Since maxt>0 ϕ(tu) is achieved at only one point t = s, it is also the unique point

at which 〈ϕ′(su), u〉 = 0. Next we claim that su is a critical point ϕ. Without loss of
generality, we can assume that s = 1. If u is not a critical point, then there is v ∈ C∞

0 (�)

such that 〈ϕ′(u), v〉 = −2. There is ε0 > 0 such that

〈ϕ′(tu + εv), v〉 ≤ −1,

for |t − 1| + |ε| ≤ ε0.
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Consider the two dimensional plane spanned by u and v. For ε > 0 small, let tε > 0
be the unique number such that maxt>0 ϕ(t (u + εv)) = ϕ(tε(u + εv)). Then tε → 1 as
ε → 0. For ε small such that |tε − 1| + tεε ≤ ε0, we have a contradiction as follows.

On the one hand,

ϕ(tε(u + εv)) ≥ c.

On the other hand,

ϕ(tε(u + εv)) = ϕ(tεu) +
∫ 1

0
〈ϕ′(tε(u + stεεv)), tεεv〉ds ≤ c − tεε < c.

�

Theorem 3.2. If hypotheses H(f) hold, then the problem (P) has a weak sign-changing
solution w ∈ W 1,p(x)

0 (�) such that w has exactly two nodal domains and

ϕ(w) = max
t>0

ϕ(tw+)+max
t>0

ϕ(tw−) = inf
v±�=0

{max
t>0

ϕ(tv+)+max
t>0

ϕ(tv−)} > 0.

Proof. It is easy to see that

c1 � inf
v±�=0

{
max
t>0

ϕ(tv+), max
t>0

ϕ(tv−)

}
≥ 2c > 0.

Let {un} be a minimizing sequence for c1 such that limn→∞ ϕ(un) = c1 and

ϕ((un)+) = max
t>0

{ϕ(t (un)+)}, ϕ((un)−) = max
t>0

{ϕ(t (un)−)}.

We can prove as in the proof of Theorem 3.1 that {un} is bounded. Then for a subsequence

un ⇀ u, (un)+ ⇀ u+ and (un)− ⇀ u−.

Then using the weakly semi-continuity of ϕ we show that there are a > 0 and b > 0
such that

ϕ(au+ + bu−) = max
t>0

ϕ(tau+) + max
t>0

ϕ(tbu−) = c1.

Let w = au+ + bu−. Next we show that w is the solution desired. If w is not a critical
point, there is η ∈ C∞

0 (RN ) such that 〈ϕ′(w), η〉 = −2. Then there is a δ > 0 such that if
|t − 1| + |s − 1| ≤ δ and 0 ≤ ε ≤ δ,

〈ϕ′(tw+ + sw− + εη), η〉 ≤ −1 (5)

holds.
Let D = {(t, s) ∈ R

2 : |t − 1| ≤ δ, |s − 1| ≤ δ)}. Choose a continuous function
h : D → [0, 1] such that

h(t, s) =

⎧⎪⎨
⎪⎩

1, if |t − 1| ≤ δ

4
, |s − 1| ≤ δ

4
,

0, if |t − 1| ≥ δ

2
, |s − 1| ≥ δ

2
.

Denote, for (t, s) ∈ D,

G(t, s) = tw+ + sw− + δh(t, s)η.
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Then G ∈ C(D, W 1,p(x)

0 (�)). Define H : D → R
2 as

H(t, s) = (K ([G(t, s)]+), K ([G(t, s)]−)),

where K (u) =< ϕ′(u), u > for u ∈ W 1,p(x)

0 (�). Thus, H ∈ C(D,R2).
If |t − 1| = δ or |s − 1| = δ, h(t, s) = 0, therefore H(t, s) = (K (tw+), K (tw−)) �=

(0, 0). As a consequence, the degree deg(H, int(D), 0) is well defined and deg(H,

int(D), 0) = 1. Thus there is a (t, s) ∈ int(D) such that H(t, s) = 0. In the following we
fix (t, s). Then we have

ϕ(G(t, s)) ≥ c1.

On the other hand, from (5) we arrive at

ϕ(G(t, s)) =ϕ(tw+ + sw−)

+
∫ 1

0
〈ϕ′(tw+ + sw− + θδh(t, s)η, δh(t, s)η)〉dθ

≤ ϕ(tw+) + ϕ(tw−) − δh(t, s).

If t or s is not equal to 1 we have the right-hand side strictly less than c1. If t = s = 1,
by h(t, s) = 1 we also have a contradiction. Thus w is a weak solution of (P).

If w has more than two nodal domain, say, there are �i for i = 1, 2, 3, open sets made
up from nodal domain. Let wi = w|�i and assume w1 ≥ 0, w2 ≤ 0 and w3 ≤ 0. Then
we may consider v = w1 + w2 and v± �= 0. But maxt>0 ϕ(tv+) + maxt>0 ϕ(tv−) =
ϕ(w1 + w2) < ϕ(w) = c1, a contradiction. The proof is complete. �

COROLLARY 3.1

If hypotheses H(f) hold, then the problem (P) has at least three solutions: one positive,
one negative, and one sign-changing solution having exactly two nodal domains.

Specially, when p(x) = p, problem (P) reduces to the following nonlinear problem:{ −div(|∇u|p−2∇u) = f (x, u), in �,

u = 0, on ∂�.
(P1)

The next theorem concerns problems where the potential is only a Caratheodory function.
The hypotheses on the potential function are as follows:

H(f)1: f : � × R → R is a Caratheodory function, satisfying

(i) f (x, t) = 0(|t |p−1) as |t | → 0 uniformly in x ;
(ii) there exist μ > p+ and p+ < q < p∗, such that

lim|t |→∞
F(x, t)

|t |μ = +∞, lim|t |→∞
| f (x, t)|
|t |q−1

= 0

uniformly in x ∈ �, where p∗ = N p
N−p , F(x, t) = ∫ t

0 f (x, s)ds;
(iii) f (x, t)t − pF(x, t) is nondecreasing in |t | and increasing for |t | > 0 small.

Theorem 3.3. If hypotheses H(f)1 hold, then the problem (P1) has at least three solu-
tions: one positive, one negative, and one sign-changing solution having exactly two nodal
domains.
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Proof. The steps are similar to those of Theorem 3.1. In fact, we only need to modify
Step 3 as follows:

Step 3′. We show that for any u �= 0, ∃!s = su > 0, such that ϕ(su) = maxt>0 ϕ(tu)

under the condition H(f)1(iii). Then from Steps 1, 2, 3′, 4 above, the problem (P1) has at
least three solutions.

Set g(s) = ϕ(su) for s > 0. Assume g(s) has max at t , so g′(t) = 0, that is,

g′(t) =〈ϕ′(tu), u〉
=

∫
�

t p(x)−1|∇u|p(x)dx −
∫

�

f (x, tu)udx

=0.

Let c = g(t) be the max value. c = 1
p [∫

�
( f (x, su)su − pF(x, su))dx] when s = t

and the right hand side is monotone increasing in s. So there is only one t .

COROLLARY 3.2

If hypotheses H(f)(i), (ii), (iii) and the following condition (iv)′ hold, then the problem (P1)
has at least three solutions: one positive, one negative, and one sign-changing solution
having exactly two nodal domains.

Step iv′. For each x ∈ �, ∂
∂t (

f (x,t)
|t |p−1 ) > 0 for |t | > 0.

Remark 3.1. It is easy to see our arguments generalize to the following nonlinear
Schrödinger equations in the entire space when the potential functions possess a certain
compactness condition{ −div(|∇u|p(x)−2∇u) + V (x)|u|p(x)−2u = f (x, u),

u ∈ W 1,p(x)(RN ).

Here we always assume that

(V ) V ∈ C(RN ), V− := inf
RN

V (x) > 0 and

μ({x ∈ R
N : V (x) ≤ M}) < +∞

for all M > 0. Here μ denotes the Lebesque measure in R
N . Note that if V ∈ C(RN ,

(0,+∞)) is coercive, namely

lim|x |→∞ V (x) = +∞,

then V is satisfied.

In the case, E :=
{

u ∈ W 1,p(x)(RN )

∣∣∣∣ ∫RN (|∇u|p(x) + V (x)|u|p(x))dx < +∞
}

is

compactly embedded into Lq(x)(RN ) with p < q 	 p∗ (see Lemma 2.6 of [1]). Again,
we get a version of the above main theorems for this case.
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