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Abstract. We consider a class of nonlinear viscous Cahn–Hilliard equations with
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1. Introduction

In this paper, we investigate the global existence of weak solutions to the following initial
boundary value problem for the viscous Cahn–Hilliard equation in one spatial dimension

∂u

∂t
+ k1 D4u − k2

∂ D2u

∂t
− Dφ(Du)+ A(u)=0, (x, t)∈(0, 1) × (0,+∞)

(1.1)

u(0, t) = u(1, t) = D2u(0, t) = D2u(1, t) = 0, t ∈ (0,+∞), (1.2)

u(x, 0) = u0(x), x ∈ (0, 1), (1.3)

where the mobility k1 and the viscosity k2 are positive constants, u0(0) = u0(1) =
D2u0(0) = D2u0(1) = 0 and u0(x) �≡ 0. Throughout this paper, we assume that

φ(s) = −γ1|s|p−2s + γ2s, A(s) = −γ3|s|q−2s + γ4s (1.4)

with p > 2, q > 2 and γi , i = 1, 2, 3, 4 being constants.
Equation (1.1) includes many models. For example, if k1 = 0, k2 > 0, (1.1) reduces

to the nonlinear Sobolev–Galpern equations which appear in the study of various prob-
lems of biodynamics, thermodynamics and filtration theory (see [4,16,18]). Besides, when
γ3 = γ4 = 0, Liu and Wang in [14] proved that when φ′(s) has a lower bound, there exists
a unique global generalized solution. Subsequently, Shang [17] investigated the case of
φ(s) = a|s|p−1s + bs and demonstrated that the solution would blow up in a finite time
provided that p > 1 and a < 0.
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If k1 > 0, k2 = 0, (1.1) becomes the Cahn–Hilliard type equation with gradient depen-
dent potentials and sources for modelling the epitaxial growth of nanoscale thin films
[13], in which, King et al. studied the following equation:

∂u

∂t
+ �2u − div(φ(∇u)) = g(x, t),

where reasonable choice of φ(s) is φ(s) = |s|p−2 −s. They proved the existence, unique-
ness and regularity of solutions in an appropriate function space for initial-boundary value
problem. Recently, problems (1.1)–(1.3) with k2 = 0 have been considered in [12] and the
global existence and uniqueness of classical solutions under some conditions were given.
Further, Jin and Yin [12] pointed out that while the global existence conditions can not be
satisfied, the solution will blow up in a finite time.

When k1 > 0 and k2 > 0, (1.1) reduces to a viscous Cahn–Hilliard equation which
can be briefly derived from modeling cell growth with u(x, t) being the concentration of
density of the cell at point x and time t . Basic balance law gives

∂u

∂t
= −∇ · j + g,

where j and g represent the diffusion flux and the reaction source, respectively. When
the concentration or density is small (dilute system), then the flux is concentration and
gradient dependent, i.e. j = −m(u)φ(∇u), namely diffusion is a local or short range
effect. However, when the cell densities are relatively high, a nonlocal or long range diffu-
sion should be included. One available choice is substituting the average density in some
neighborhoods of the point x for u(x, t) and taking the form of the flux as

j = −m(u)(φ(∇u) − k1∇(∇2u)).

Further, in some special cases, it seems plausible that there should be microforces whose
working accompanies changes in u. Gurtin in [11] describes this working through terms
of the form ∂u/∂t , thus the microforces are scalar quantities and the flux

j = −m(u)(φ(∇u) − k1∇(∇2u)) − k2∇ut .

Recently, a lot of attention has been paid to the viscous Canh–Hilliard equations. In [2]
and [7], the authors proved the existence of the semigroups and the upper and lower
semicontinuity of the global attractor for a viscous Cahn–Hilliard equation. However, the
lower semicontinuity they obtained was proved under the assumption that all stationary
solutions were hyperbolic and this assumption was relaxed in [6]. For more and deeper
investigations of the stable analysis (as t → ∞) and the asymptotic behavior of viscous
Cahn–Hilliard models and perturbed viscous Cahn–Hilliard models, we refer readers to
[3,5,9,10,15,22] and the references therein.

The purpose of the present paper is devoted to investigating the global existence of solu-
tions for (1.1)–(1.3). By a Galerkin approximation scheme combined with the potential
well method used in [19,20,21,8], it will be shown that, there exist global weak solutions
if one of the following conditions hold:
(I) γ1 < 0, γ3 > 0 with p > q,
(II) γ1 < 0, γ3 > 0 with p < q and |γ1| being appropriately large,
(III) γ1 > 0, γ3 < 0 with γ1 being appropriately small,
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(IV) γ1 >0, γ3 >0

{
γ2 >0, γ4 > 0 with γ1 and γ3 being appropriately small,
γ2 <0, γ4 < 0 with γ1, |γ2|, γ3 and |γ4| being appropriately small.

Actually, the results we obtained may further explain that there are some restricted rela-
tionships between the gradient dependent potential φ(s) and the reaction term A(s). If
only the reaction term is dominant, i.e. γ3 > 0, then we need either p > q or |γ1| being
large enough to strengthen the effect of the gradient dependent potential, such that the
solution will exist globally, e.g. (I) and (II); while if the gradient dependent potential is
dominant, i.e. γ1 > 0, then we can only set both γ1 and γ3 small enough to lower their
effect to confirm the global existence, e.g. (III) and (IV).

This paper is arranged as follows: Section 2 is devoted to some preliminaries and the
main results, and subsequently, the global existence of weak solutions is studied in §3.

2. Statement of main results

Before going further, we first introduce some notations which will be used throughout this
paper,

L p = L p(0, 1), W m,p = W m,p(0, 1), W m,p
0 = W m,p

0 (0, 1),

Hm = W m,2, Hm
0 = W m,2

0 , ‖ · ‖p = ‖ · ‖L p , ‖ · ‖2 = ‖ · ‖L2 ,

where p ≥ 1, m ∈ R are real numbers. The symbol (·, ·) stands for the L2-inner product.
Denote by E the reasonable weak solutions space, namely

E = {u ∈ L∞([0, T ]; W 1,p
0 ) ∩ L∞([0, T ]; W 2,2

0 ) ∩ L∞([0, T ]; Lq);
ut ∈ L2([0, T ]; H1

0 )}.
Now we state the main results of this paper.

Theorem 2.1. Assume u0 ∈ H2
0 . Let γ1 < 0, γ3 > 0. Then for any T > 0, the problem

(1.1)–(1.3) admits a weak solution u ∈ E , provided that p < q and |γ1| is large enough,
or p > q.

Theorem 2.2. Assume u0 ∈ H2
0 . Let γ1 > 0, γ3 > 0. If further γ2 > 0, γ4 > 0, then for

any T > 0, the problem (1.1)–(1.3) admits a weak solution u ∈ E , provided that γ1, γ3
are small enough; while if γ2 < 0, γ4 < 0, then for any T > 0, the problem (1.1)–(1.3)
admits a weak solution, provided that γ1, |γ2|, γ3, |γ4| are small enough.

Theorem 2.3. Assume u0 ∈ H2
0 . Let γ1 > 0, γ3 < 0. Then for any T > 0, the problem

(1.1)–(1.3) admits a weak solution u ∈ E , provided that γ1 is small enough.

3. Global existence

In this section, we establish the global existence of weak solutions of the problem (1.1)–
(1.3) following the Galerkin’s method and the potential well method used in [19,20,21].

Set u0(x) =
∑∞

i=1
ciωi (x) and let

um(x, t) =
m∑

i=1

cm
i (t)ωi (x), um

0 =
m∑

i=1

ciωi (x),
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where {ω j (x)}∞i=1 is the standard orthogonal basis in H2
0 , also in L2, and the coefficients

{cm
i (t)}m

i=1 satisfy cm
i (t) = (um, ωi ) with

(um
t , ωi ) + k1(D2um, D2ωi ) + k2(Dum

t , Dωi ) + (φ(Dum), Dωi )

+ (A(um), ωi ) = 0, t > 0, i = 1, 2, . . . , m, (3.1)

um(x, 0) = um
0 → u0 strongly in H2

0 as m → ∞. (3.2)

From the standard theory, the problem (3.1), (3.2) admits a solution on some inter-
val (0, Tm) for each m. And the estimates we show allow taking Tm = T for all m.
Multiplying (3.1) by d/dt(cm

i (t)) and then summing on i from 1 up to m yields

‖um
t ‖2

2 + k2‖Dum
t ‖2

2 + d

dt
Bm(t) = 0, (3.3)

where

Bm(t) = k1

2
‖D2um‖2

2 +
∫ 1

0

∫ Dum

0
φ(s)dsdx +

∫ 1

0

∫ um

0
A(s)dsdx, (3.4)

with

Bm(0) = k1

2
‖D2um

0 ‖2
2 +

∫ 1

0

∫ Dum
0

0
φ(s)dsdx +

∫ 1

0

∫ um
0

0
A(s)dsdx . (3.5)

Proof of Theorem 2.1. We first consider the case p < q and |γ1| is large enough. For
φ(s) = −γ1|s|p−2s + γ2s, it is obvious that

φ(s) ≥ −γ1

2
|s|p−1 with s > 0 and γ2 > 0, or |s| ≥

∣∣∣∣2γ2

γ1

∣∣∣∣
1/(p−2)

and γ2 < 0,

−φ(s)≥−γ1

2
|s|p−1 with s < 0 and γ2 > 0, or |s|≥

∣∣∣∣2γ2

γ1

∣∣∣∣
1/(p−2)

and γ2 <0,

which leads to

|s|p−1 ≤ 2φ(s)

−γ1
+

∣∣∣∣2γ2

γ1

∣∣∣∣
(p−1)/(p−2)

with s ≥ 0;

|s|p−1 ≤ 2φ(s)

γ1
+

∣∣∣∣2γ2

γ1

∣∣∣∣
(p−1)/(p−2)

with s < 0.

Hence for any s ∈ R, by using the Young inequality, we have

|s|p

p
=

∣∣∣∣
∫ s

0
|τ |p−1dτ

∣∣∣∣ ≤ − 2

γ1

∫ s

0
φ(τ)dτ +

∣∣∣∣2γ2

γ1

∣∣∣∣
(p−1)/(p−2)

|s|

≤ − 2

γ1

∫ s

0
φ(τ)dτ + |s|p

2p

+ 21/(p−1)(p − 1)

p

∣∣∣∣2γ2

γ1

∣∣∣∣
p/(p−2)

,
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which implies that∫ 1

0

∫ Dum

0
φ(s)ds ≥ −γ1

4p
‖Dum‖p

p − C1, (3.6)

where C1 = −γ121/(p−1)(p − 1)

2p

∣∣∣∣2γ2

γ1

∣∣∣∣
p/(p−2)

. As for A(s) = −γ3|s|q−2s + γ4s, by the

Young inequality, there holds∫ 1

0

∫ um

0
A(s)dsdx = −γ3

q

∫ 1

0
|um |qdx + γ4

2

∫ 1

0
|um |2dx

≥ −
(

γ3

q
+ |γ4|

2

)
‖um‖q

q − C2, (3.7)

where C2 = (q − 2)|γ4|
2q

22/(q−2). Substituting (3.6) and (3.7) into (3.4), we get

Bm(t) ≥ k1

2

∫ 1

0
|D2um |2dx + J (um) − C1 − C2, (3.8)

where

J (um) =
√|γ1|

4p

√|γ1|‖Dum‖p
p −

(
1

q
+ |γ4|

2qγ3

)
γ3‖um‖q

q

= E2 I (um) + (E1 − E2)
√|γ1|‖Dum‖p

p,

with

I (um) = √|γ1|‖Dum‖p
p − γ3‖um‖q

q , E1 =
√|γ1|

4p
,

E2 =
(

1

q
+ |γ4|

2qγ3

)
.

By the assumption that |γ1| is large enough, we have that d = E1 − E2 =
√|γ1|

4p
−(

1

q
+ |γ4|

2qγ3

)
> 0.

Integrating (3.3) from 0 to t and substituting (3.8) into the resulting expression, we
arrive at ∫ t

0

∫ 1

0
|um

t |2dxdt + k2

∫ t

0

∫ 1

0
|Dum

t |2dxdt

+ k1

2

∫ 1

0
|D2um |2dx + J (um) − C1 − C2 ≤ Bm(0). (3.9)

By the integral mean value theorem, the Hölder inequality and (1.4), we have∣∣∣∣∣
∫ 1

0

∫ Dum
0

0
φ(s)dsdx−

∫ 1

0

∫ Du0

0
φ(s)dsdx

∣∣∣∣∣=
∣∣∣∣∣
∫ 1

0
φ(ξ)(Dum

0 −Du0)dx

∣∣∣∣∣
≤

(∫ 1

0
(|γ1| + |γ2|)2(1 + |ξ |p−1)dx

)1/2

‖Dum
0 − Du0‖2, (3.10)
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∣∣∣∣∣
∫ 1

0

∫ um
0

0
A(s)dsdx −

∫ 1

0

∫ u0

0
A(s)dsdx

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0
A(η)(um

0 − u0)dx

∣∣∣∣∣

≤
(∫ 1

0
(|γ3| + |γ4|)2(1 + |η|q−1)dx

)1/2

‖um
0 − u0‖2, (3.11)

where ξ = Du0 + θ(Dum
0 − Du0), 0 < θ < 1, η = u0 + θ̄ (um

0 − u0), 0 < θ̄ < 1.
Therefore, combining (3.10) and (3.11) with (3.2) leads to Bm(0) → B(0) as m → ∞,
where

B(0) = k1

2

∫ 1

0
|D2u0|2dx +

∫ 1

0

∫ Du0

0
φ(s)dsdx +

∫ 1

0

∫ u0

0
A(s)dsdx

= k1

2

∫ 1

0
|D2u0|2dx +

∫ 1

0

−γ1

p
|Du0|pdx +

∫ 1

0

γ2

2
|Du0|2dx

−
∫ 1

0

γ3

q
|u0|qdx +

∫ 1

0

γ4

2
|u0|2dx .

Since |γ1| is large enough, there holds B(0) > 0. Without loss of generality, we suppose
Bm(0) < 2B(0) for all m. Thus (3.9) implies that, for all m,

∫ t

0

∫ 1

0
(|um

t |2 + k2|Dum
t |2)dxdt + k1

2

∫ 1

0
|D2um |2dx

+E2 I (um) + d
√|γ1|‖Dum‖p

p < 2B(0) + C1 + C2. (3.12)

Define the potential well

W = {u ∈ W 1,p
0 ∩ H2

0 |I (u) = √|γ1|‖Du‖p
p − γ3‖u‖q

q > 0} ∪ {0},
and choose |γ1| large enough such that u0 ∈ W and I (u0) > 0. By (3.2), we have
I (um

0 ) → I (u0) as m → ∞. Without loss of generality, let I (um
0 ) > 0 and um

0 ∈ W for
all m. We deduce that for all m, um(t) ∈ W and I (um(t)) > 0, t > 0. If there exists a
T > 0 such that um(t) ∈ W , t ∈ [0, T ), while um(T ) ∈ ∂W , namely I (um(T )) = 0 for
some m, then by (3.12), we have

d
√|γ1|‖Dum‖p

p < 2B(0) + C1 + C2, t ∈ [0, T ],
d

2
(
√|γ1|‖Dum‖p

p + γ3‖um‖q
q) < 2B(0) + C1 + C2, t ∈ [0, T ].

If we choose |γ1| large enough such that

B(0) <

(√|γ1|
γ3C∗

)p/(q−p) d
√|γ1|

4
− C1

2
− C2

2
, t ∈ [0, T ],

where C∗ is the constant in the Sobolev imbedding theorem, then from the Sobolev
imbedding theorem, we have

γ3‖um‖q
q ≤ γ3C∗‖Dum‖q−p

p ‖Dum‖p
p <

2C∗
d
√|γ1|

× (2B(0) + C1 + C2)
(q−p)/p‖Dum‖p

p <
√|γ1|‖Dum‖p

p, t ∈ [0, T ]
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which indicates that

I (um(T )) > 0. (3.13)

That is a contradiction.
Hence, it follows from (3.12) and (3.13) that

∫ t

0

∫ 1

0
(|um

t |2 + k2|Dum
t |2)dxdt + k1

2

∫ 1

0
|D2um |dx

+ d

2

(√|γ1|‖Dum‖p
p + γ3‖um‖q

q
)

< 2B(0) + C1 + C2,

from which we can deduce that the solution um of (3.1), (3.2) exists on [0, T ] for each m
and we can extract a subsequence from {um}, supposed to be {um} itself, and a function
u ∈ E , such that for any T > 0,

um → u weakly * in L∞([0, T ]; W 1,p
0 ) ∩ L∞([0, T ]; W 2,2

0 ),

um → u weakly * in L∞([0, T ]; Lq),

um
t → ut weakly in L2([0, T ]; H1

0 ),

D2um → D2u weakly * in L∞([0, T ]; L2),

um → u weakly * in L∞([0, T ]; L p),

Dum → Du weakly * in L∞([0, T ]; L p),

um → u strongly in L∞([0, T ]; L2),

Dum → Du strongly in L∞([0, T ]; L2).

By the Sobolev imbedding theorem (see Theorem 4.12 of [1]), we know that um and u
belong to L∞ ([0, T ]; C1

B(0, 1)), where C j
B(0, 1) is defined to consist of those functions

f ∈ C j (0, 1) for which Dα f is bounded on (0, 1) for 0 ≤ |α| ≤ j . C j
B(0, 1) is a Banach

space with norm given by

‖ f ‖
C j

B
= max

0≤|α|≤ j
sup
x∈�

|Dα f |.

From the continuity of φ(s) and A(s), we further have

∫ 1

0
|φ(Dum) − φ(Du)|2dx

=
∫ 1

0
| − γ1(|Dum |p−2 Dum − |Du|p−2 Du) + γ2(Dum − Du)|2dx

≤ 2γ 2
1

∫ 1

0
||Dum |p−2 Dum −|Du|p−2 Du|2dx+2γ 2

2

∫ 1

0
|Dum −Du|2dx

= 2γ 2
1

∫ 1

0
(p − 1)2|ρ1 Dum + (1 − ρ1)Du|2(p−2)|Dum − Du|2dx

+ 2γ 2
2

∫ 1

0
|Dum − Du|2dx

≤ C
∫ 1

0
|Dum − Du|2dx
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and ∫ 1

0
|A(um) − A(u)|2dx

=
∫ 1

0
| − γ3(|um |q−2um − |u|q−2u) + γ4(u

m − u)|2dx

≤ 2γ 2
3

∫ 1

0
||um |q−2um − |u|q−2u|2dx + 2γ 2

4

∫ 1

0
|um − u|2dx

= 2γ 2
3

∫ 1

0
(q − 1)2|ρ2um + (1 − ρ2)u|2(q−2)|um − u|2dx

+ 2γ 2
4

∫ 1

0
|um − u|2dx

≤ C
∫ 1

0
|um − u|2dx,

where ρ1 and ρ2 are constants in [0, 1], C is a constant which depends on γ1, γ2, γ3, γ4,
p, q and ‖um‖L∞([0,T ];C1

B ), ‖u‖L∞([0,T ];C1
B ). Thus we can deduce that

φ(Dum) → φ(Du) strongly in L∞([0, T ]; L2),

A(um) → A(u) strongly in L∞([0, T ]; L2).

Letting m → ∞, we deduce from the density of {ωi (x)}k
i=1 that u is a global weak

solution of the problem (1.1)–(1.3).
In the following, we prove the case p > q, for which we consider the equivalent

equation

∂u

∂t
+ k1 D4u − k2

∂ D2u

∂t
− Dφ̃(Du) − K0 D2u + A(u) = 0, (3.14)

where φ̃(s) = φ(s)− K0s with K0 ≤ γ2 such that φ̃′(s) = −γ1(p−1)|s|p−2 +γ2 − K0 ≥
0. Similar as above, here we need to do some a priori estimates for the following equation:

‖um
t ‖2

2 + k2‖Dum
t ‖2

2 + d

dt
B̃m(t) = 0, (3.15)

where

B̃m(t) = k1

2
‖D2um‖2

2 + K0‖Dum‖2
2 +

∫ 1

0

∫ Dum

0
φ̃(s)dsdx

+
∫ 1

0

∫ um

0
A(s)dsdx .

For φ̃(s) = −γ1|s|p−2s + γ2s − K0s, after some simple calculations, we find

|φ̃(s)| ≤ C3(1 + |s|p−1), where C3 = |γ1| + |γ2| + |K0|, (3.16)

|φ̃(s)|≥−γ1

4
|s|p−1, if |s|≥ M1 =max

{∣∣∣∣2γ2

γ1

∣∣∣∣
1/(p−2)

,

∣∣∣∣4K0

γ1

∣∣∣∣
1/(p−2)

}
.

(3.17)
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Therefore |s|p−1 ≤ − 4

γ1
|φ̃(s)| + M p−1

1 for s ∈ R, which implies that when s < 0,

|s|p−1 ≤ − 4

γ1
φ̃(s) + M p−1

1 and

∫ 0

s
|τ |p−1dτ ≤ 4

γ1

∫ s

0
φ̃(s)dτ + M p−1

1 |s|.

Using the Young inequality, we have, for any s ∈ R,

|s|p

p
≤ 4

γ1

∫ s

0
φ̃(τ )dτ + |s|p

2p
+ 21/(p−1)(p−1)

p
M p−1

1 . (3.18)

Using the Poincaré inequality and the Young inequality, we get

∫ 1

0

∫ Dum

0
φ̃(s)dsdx ≥

∫ 1

0

γ1

8p
|Dum |pdx − 21/(p−1)(p−1)

4p
γ1 M p−1

1

≥ C4‖um‖p
1,p − C5, (3.19)

∫ 1

0

∫ Dum
0

0
φ̃(s)dsdx ≤

∫ 1

0

∫ Dum
0

0
C3(1 + |s|p−1)dsdx

≤
∫ 1

0

(
C3|Dum

0 |p

2p
+ 21/(p−1)(p − 1)C3

p

+ C3

p
|Dum

0 |p
)

dx,

≤ C6(1 + ‖um
0 ‖p

1,p), (3.20)

where C4 = γ1

8p
, C5 = 21/(p−1)(p−1)

4p
γ1 M p−1

1 , C6 = max

{
3C3

2p
,

2p/(p−1)(p − 1)C3

p

}
.

For A(s) = −γ3|s|q−2s + γ4s, since A(s) ≥ −C7(1 + |s|q−1), where C7 = |γ3| + |γ4|,
then by the Young inequality, we have

∫ 1

0

∫ um

0
A(s)dsdx ≥ −

∫ 1

0

∫ um

0
C7(1 + |s|q−1)dsdx

≥ −C7

∫ 1

0

[
2ε1

p
|um |p + p − 1

p
ε
−1/(p−1)

1

+ p − q

pq
ε
−q/(p−q)

1

]
dx

≥ −C4

2
‖um‖p

1,p − C8, (3.21)
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where C8 = C7

[
p − 1

p
ε
−1/(p−1)

1 + p − q

pq
ε
−q/(p−q)

1

]
and ε1 is small enough such that

2C7ε1

p
<

C4

2
. Further, the Young inequality also leads to

∫ t

0

d

dt

∫ 1

0

−K0

2
|Dum |2dxdt = −K0

2

∫ 1

0
|Dum |2dx + K0

2

∫ 1

0
|Dum

0 |2dx

≤
∣∣∣∣ K0ε2

p

∣∣∣∣ ‖um‖p
1,p+ |K0|(p − 2)

4
ε
−4/(p(p−2))

2

+ |K0|
2

‖Dun
0‖2

2.

Set C9 =
∣∣∣∣ K0ε2

p

∣∣∣∣, C10 = |K0|(p − 2)

4
ε
−4/(p(p−2))

1 + |K0|
2

‖Dun
0‖2

2. Then integrating

(3.15) over (0, t) and substituting (3.19)–(3.21) into the resulting expression, we have
∫ t

0

∫ 1

0
|um

t |2dxdt + k2

∫ t

0

∫ 1

0
|Dum

t |2dxdt

+ k1

2

∫ 1

0
|D2um |2dx + C4‖um‖p

1,p − C5 − C4

2
‖um‖p

1,p − C8

≤ C6(1 + ‖um‖p
1,p) +

∫ 1

0

∫ um
0

0
A(s)dsdx + C9‖um‖p

1,p + C10

+ k1

2
‖D2um

0 ‖2
2,

which indicates the following if choosing ε2 small enough such that C9 = C4

4
,

∫ t

0

∫ 1

0
|um

t |2dxdt+k2

∫ t

0

∫ 1

0
|Dum

t |2dxdt+ k1

2

∫ 1

0
|D2um |2dx+ C4

8
‖um‖p

1,p

≤ C6(1 + ‖u‖p
1,p)+

∫ 1

0

∫ um
0

0
A(s)dsdx + C10+ k1

2
‖D2um

0 ‖2
2 + C5+C8.

Actually, since p > q, we can choose ε1 small enough such that
∫ 1

0

∫ um
0

0
A(s)dsdx +

C8 > 0. Thus, there exist a subsequence of {um}, supposed to be {um} itself, and a function
u ∈ E such that

um → u weakly * in L∞([0, T ]; W 1,p
0 ) ∩ L∞([0, T ]; W 2,2

0 ),

um
t → ut weakly in L2([0, T ]; H1

0 ),

D2um → D2u weakly * in L∞([0, T ]; L2),

um → u weakly * in L∞([0, T ]; L p),

Dum → Du weakly * in L∞([0, T ]; L p),

um → u strongly in L∞([0, T ]; L2),

Dum → Du strongly in L∞([0, T ]; L2),

φ̃(Dum) → φ̃(Du) strongly in L∞([0, T ]; L2),

A(um) → A(u) strongly in L∞([0, T ]; L2).
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Let m → ∞ and use the density of {ωi (x)}k
i=1. Then u is a global weak solution of the

problem (1.1)–(1.3). �
Proof of Theorem 2.2. First we consider the case γ1 > 0, γ3 > 0, γ2 < 0 and γ4 < 0.
After a simple calculation, we have that

Bm(t) ≥ k1

2

∫ 1

0
|D2um |2dx − M2(‖Dum‖p

p + 2‖Dum‖2
2 + ‖Dum‖q

q),

where M2 = max

{
γ1

p
,
|γ2|

2
,
γ3

q
,
|γ4|

2

}
. Set

J (um) = k1

4
‖D2um‖2

2 − M1−a
2 Ma

2 (‖Dum‖p
p + 2‖Dum‖2

2 + ‖Dum‖q
q)

= E4 I (um) + (E3 − E4)‖D2um‖2
2

with

I (um) = ‖D2um‖2
2 − Ma

2 (‖Dum‖p
p + 2‖Dum‖2

2 + ‖Dum‖q
q),

where E3 = k1

4
, E4 = M1−a

2 , a ∈ (0, 1). Since now γ1, |γ2|, γ3, |γ4| are small enough,

then we can suppose that B(0) > 0 and d = E3 − E4 > 0. As mentioned in the proof of
Theorem 2.1, here u satisfies

∫ t

0

∫ 1

0
(|um

t |2 + k2|Dum
t |2)dxdt + k1

2

∫ 1

0
|D2um |2dx

+ E4 I (um) + d‖D2um‖2
2 < 2B(0). (3.22)

The main purpose of the following is to prove that for all t > 0, um belongs to the set

W = {
u ∈ W 1,p

0 ∩ H2
0 |I (u) = ‖D2u‖2

2

− Ma
2 (‖Du‖p

p + 2‖Du‖2
2 + ‖Du‖q

q) > 0} ∪ {0}
,

which already contains u0 and um
0 if γ1, |γ2|, γ3, |γ4| are small enough. If not, namely

there exists a T > 0 such that for some m, I (um(T )) = 0. Then from (3.22), we have

Ma
2 (‖Dum‖p

p + 2‖Dum‖2
2 + ‖Dum‖q

q) ≤ ‖D2um‖2
2 <

2

d
B(0), t ∈ [0, T ],

from which and the Sobolev imbedding theorem, we have

Ma
2 ‖Dum‖p

p ≤ C Ma
2 (‖D2um‖2

2 + ‖Dum‖2
2)

p/2

≤ C Ma
2 (1 + M−a

2 )p/2
(

2

d
B(0)

)(p−2)/2

‖D2um‖2
2.

In the same way, we have

Ma
2 ‖Dum‖q

q ≤ C Ma
2 (1 + M−a

2 )q/2
(

2

d
B(0)

)(q−2)/2

‖D2um‖2
2.
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Then choosing γ1, |γ2|, γ3, |γ4| small enough, such that

C Ma
2 (1 + M−a

2 )p/2
(

2

d
B(0)

)(p−2)/2

+ C Ma
2 (1 + M−a

2 )q/2
(

2

d
B(0)

)(q−2)/2

+ 2Ma
2 < 1,

we have that I (um(T )) > 0, which is a contradiction. Via the same process of the proof
of Theorem 2.1, there exists a global weak solution.

When γ1 > 0, γ3 > 0, γ2 > 0 and γ4 > 0, then set

J (um) = M3(‖D2um‖2
2 + ‖Dum‖2

2 + ‖um‖2
2)

− M1−a
4 Ma

4 (‖Dum‖p
p + ‖Dum‖q

q)

= E5 I (um) + (E5 − E6)(‖D2um‖2
2 + ‖Dum‖2

2 + ‖um‖2
2),

where M3 = min

{
k1

4
,
γ2

2
,
γ4

2

}
, M4 = max

{
γ1

p
,
γ3

q

}
, E5 = min

{
k1

4
,
γ2

2
,
γ4

2

}
, E6 =

M1−a
4 , 0 < a < 1 and

I (um) = ‖D2um‖2
2 + ‖Dum‖2

2 + ‖um‖2
2 − Ma

4 (‖Dum‖p
p + ‖Dum‖q

q).

Since now γ1 and γ3 are small enough, then B(0) > 0 and d = E5 − E6 > 0. At this
time, u satisfies

∫ t

0

∫ 1

0
(|um

t |2 + k2|Dum
t |2)dxdt + k1

2

∫ 1

0
|D2um |2dx

+E5 I (um) + d(‖D2um‖2
2 + ‖Dum‖2

2 + ‖um‖2
2) < 2B(0). (3.23)

We deduce that for all t > 0, um belongs to the set

W = {
u ∈ W 1,p

0 ∩ H2
0 |I (u) = ‖D2u‖2

2 + ‖Du‖2
2 + ‖u‖2

2

−Ma
4 (‖Du‖p

p + ‖Du‖q
q) > 0

} ∪ {0},
which already contains u0 and um

0 if γ1 and γ3 are small enough. If not, namely there
exists a T > 0 such that for some m, I (um(T )) = 0. Then from (3.23), we have

‖D2um‖2
2 + ‖Dum‖2

2 + ‖um‖2
2 <

2

d
B(0),

which together with the Sobolev imbedding theorem leads to

Ma
4 ‖D2um‖p

p ≤ C Ma
4

(
2

d
B(0)

)(p−2)/2

(‖D2um‖2
2 + ‖Dum‖2

2),

Ma
4 ‖D2um‖q

q ≤ C Ma
4

(
2

d
B(0)

)(q−2)/2

(‖D2um‖2
2 + ‖Dum‖2

2).

Then choosing γ1 and γ3 small enough, such that

C Ma
4

(
2

d
B(0)

)(p−2)/2

+ C Ma
4

(
2

d
B(0)

)(q−2)/2

< 1,
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we have that I (um(T )) > 0, which is a contradiction. Via the same process of the proof
of Theorem 2.1, there exists a global weak solution. �

Proof of Theorem 2.3. Integrating (3.3) from 0 to t , we arrive at

∫ t

0

∫ 1

0
|um

t |2dxdt + k2

∫ t

0

∫ 1

0
|Dum

t |2dxdt + Bm(t) = Bm(0), (3.24)

where Bm(t) and Bm(0) are as in (3.4) and (3.5). In what follows, we estimate Bm(t).
First we have

∫ 1

0

∫ um

0
A(s)dsdx ≥

∫ 1

0

−γ3

q
|um |qdx −

∫ 1

0

|γ4|
2

|um |2dx

≥
∫ 1

0

(−γ3

q
− ε3|γ4|

q

)
|um |qdx − (q − 2)|γ4|

2qε
2/(q−2)

3

(3.25)

and

∫ 1

0

∫ Dum

0
φ(s)ds ≥

∫ 1

0

(−γ1

p
|Dum |p −

∣∣∣γ2

2

∣∣∣ |Dum |2
)

dx

≥
∫ 1

0

(−γ1

p
− 2ε4

p

∣∣∣γ2

2

∣∣∣
)

|Dum |pdx − |γ2|(p − 2)

2pε
2/(p−2)

4

,

(3.26)

where ε3 and ε4 are constants small enough. By the Sobolev imbedding theorem and the
Young inequality, we have

∫ 1

0
|Dum |pdx ≤ C

∫ 1

0
(|D2um |2 + |Dum |2)dx

≤ C

(∫ 1

0
|D2um |2dx + 2ε4

p
|Dum |p + p − 2

pε
2/(p−2)

4

)
,

which leads to
∫ 1

0
|Dum |pdx ≤ Cp

p − 2Cε4

(∫ 1

0
|D2um |2dx + p − 2

pε
2/(p−2)

4

)
. (3.27)

Combining (3.26) with (3.27), we arrive at

∫ 1

0

∫ Dum

0
φ(s)ds ≥ C(−γ1 − ε4 |γ2|)

p − 2Cε4

∫ 1

0
|D2um |2dx

+ C(−γ1 − ε4 |γ2|)
p − 2Cε4

p − 2

pε
2/(p−2)

4

− |γ2|(p − 2)

2pε
2/(p−2)

4

.

(3.28)
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Since γ1 is small enough, B(0) > 0 and we suppose Bm(0) < 2B(0). Then it follows
from (3.24), (3.25) and (3.28) that

∫ t

0

∫ 1

0
|um

t |2dxdt + k2

∫ t

0

∫ 1

0
|Dum

t |2dxdt

+
[

k1

2
− C(γ1 + ε4 |γ2|)

p − 2Cε4

] ∫ 1

0
|D2um |2dx

+ C(−γ1 − ε4 |γ2|)
p − 2Cε4

p − 2

pε
2/(p−2)

4

− |γ2|(p − 2)

2pε
2/(p−2)

4

+
∫ 1

0

(−γ3

q
− ε3|γ4|

q

)
|um |qdx − (q − 2)|γ4|

2qε
2/(q−2)

3

< 2B(0).

Since γ1 > 0, ε3 > 0 and ε4 > 0 are small enough and γ3 < 0, we can choose appropriate
coefficients such that

k1

2
− C(γ1 + ε4 |γ2|)

p − 2Cε4
> 0,

−γ3

q
− ε3|γ4|

q
> 0.

Via the same process of the proof of Theorem 2.1, there exists a global weak solution. �
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