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Abstract. Let G be a finite group, and n(G) be the set of the number of subgroups
of possible order of G. We investigate the structure of G satisfying that n(G) = {1, m}
for any positive integer m > 1. At first, we prove that the nilpotent length of G is less
than 2. Secondly, we investigate nilpotent groups with m = p + 1 or p2 + p + 1 (p is
a prime), and we get the classification of such kinds of groups. At last, we investigate
non-nilpotent groups with m = p + 1 and get the classification of the groups under
consideration.
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1. Introduction

Throughout this paper, groups mentioned are finite and p is a prime. An important topic
in the group theory is to investigate the number of subgroups of possible order, and con-
versely it is also an important subject to determine the structure of a finite group by
considering the number of its subgroups of possible orders. In the theory of p-groups,
many classical counting theorems of the number of subgroups of possible orders found.
For example, the following propositions are famous.

PROPOSITION 1.1

Let G be a group of order pn and sk(G) be the number of subgroups of order pk of G,
0 ≤ k ≤ n. Then sk(G) ≡ 1(mod p) (see [1]).

PROPOSITION 1.2

Assume that G is a non-cyclic group of order pn, p > 2. If 1 ≤ k ≤ n − 1, then
sk(G) ≡ 1 + p(mod p2) (see [5]).

PROPOSITION 1.3

Assume that G is a group of order pn, 0 ≤ k ≤ n. If s1(G) = 1, then G is a cyclic group,
or a general quaternion group (see [1]).
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PROPOSITION 1.4

Assume that G is a group of order pn, 0 ≤ k ≤ n. If sk(G) = 1, 2 ≤ k ≤ n − 1, then G
is a cyclic group (see [1]).

By Propositions 1.3 and 1.4, we see that the structure of a p-group is strictly determined
by the number of its subgroups of possible orders. Hence it is a meaningful topic to study
the structure of a group with given numbers of subgroups of possible orders. In fact, a lot
of research have been done in this topic. For example, if a group G has exactly one Sylow
subgroup for every prime, then G is nilpotent. More generally, if G has only one Sylow
p-subgroup for a prime p, then G is p-closed. Zhang [10] investigated the structure of
group by Sylow number. Naoki in [6] proved a conjecture of Huppert [4] which shows
the relationship of Sylow number and p-nilpotence. Chen and Cao [2] classified the p-
groups in which the number of subgroups of possible order is less than or equal to p + 1.
Qu et al. [7] classified the p-groups in which the number of subgroups of possible
order is less than or equal to 2p2 + p + 1. Recently, Chen et al. [3] determined the
groups in which the number of subgroups of possible order is less than or equal to 3, but
there exist some gaps in the proof of their theorem. If we denote by n(G) the set of the
number of subgroups of possible order of a group G, then we can investigate the structure
of G by n(G). Obviously, it follows that |n(G)| = 1 if and only if G is cyclic. What
follows is to studying the structure of G satisfying |n(G)| = 2. Note that 1 must belong
to n(G), and that there exists only one number not equal to 1 in n(G) in this case. In
this paper, we focus on groups G with n(G) = {1, m} for any positive integer m > 1 and
investigate the structures of groups under consideration. In § 2, we show that the nilpo-
tent length of G is less than 2. Furthermore, we obtain that G is solvable. In § 3, we
investigate the nilpotent groups G and prove that m = p + 1 or p2 + p + 1, and then
classify these groups, where p is a prime. In § 4, we classify the non-nilpotent groups G
with m = p + 1.

Let G be a group. For convenience, we use π(n) to denote the set of prime divisors of
a positive number n and let π(G) = π(|G|), sk(G) denotes the number of subgroups of
order pk of a p-group G, n p(G) denotes the number of the Sylow p-subgroups of G, Z pn

denotes the cyclic group of order pn , d(G) denotes the minimal number of generators of
G, �(G) denotes the Frattini subgroup of G, F(G) denotes the Fitting subgroup of G,
�i (G) = 〈g ∈ G|g pi = 1〉, H ∗ K denotes the central products H and K , nl(G) denotes
the nilpotent length of G, n(G) denotes the set of the number of subgroups of possible
order of G.

In addition, let F0(G)=1. For the positive integer i , Fi (G)/Fi−1(G) = F(G/Fi−1(G)).

A group G is said to be of nilpotent length nl(G)=n if Fn−1(G) < G and Fn(G) = G.
Other notations and terminologies are standard and the reader is referred to [9] if

necessary.

2. The nilpotency of groups G with n(G) = {1, m}
Lemma 2.1. Let N � G and Ḡ = G/N . Then for any subgroup K of G,

|Ḡ : NḠ(K̄ )|∣∣|G : NG(K )|,
especially, for any p ∈ π(G), n p(Ḡ)

∣
∣n p(G).
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Proof. It follows from (b) of Lemma 1 of [8].

Theorem 2.1. Let G be a group with n(G) = {1, m} and M the product of all nor-
mal Sylow subgroups of G. Then π(m) ⊆ π(M), and nl(G) ≤ 2. Furthermore, G is
solvable.

Proof. At first, we assert that for any r ∈ π(m), the Sylow r -subgroup of G is normal.
Otherwise, by Sylow theorem, nr (G) = m ≡ 1(mod r), a contradiction to r |m. Hence
π(m) ⊆ π(M).

Secondly, we assert that nl(G) ≤ 2. By Zassenhaus theorem, there exists a complement
subgroup H of M in G such that Ḡ = G/M ∼= H and π(H) = π(G) \ π(M).

If π(H) = ∅, then H = 1, and thus all the Sylow subgroups of G are normal. It follows
that G is nilpotent and nl(G) = 1.

If π(H) �= ∅, then for any p ∈ π(H), the Sylow p-subgroup is not normal in G. Thus,
by Lemma 2.1, we have that n p(Ḡ)

∣
∣n p(G) = m. But n p(Ḡ)

∣
∣|Ḡ|, and so n p(Ḡ)|(m, |Ḡ|).

Recall that π(m) ⊆ π(M) and (|M |, |Ḡ|) = 1. Then (m, |Ḡ|) = 1. Hence n p(Ḡ) = 1
for any p ∈ π(H). It follows that all the Sylow subgroups of Ḡ are normal, and so Ḡ is a
nilpotent group. Therefore, G has a normal series 1 � M � G such that M and G/M are
nilpotent, and so nl(G) ≤ 2.

3. The classification of nilpotent groups G with n(G) = {1, m}
First, we give some lemmas, which are necessary for our classification.

Lemma 3.1. Let G be a p-group, and N � G. If there exists a positive integer t such that
sk(G) ≤ t holds for every positive integer k, then sk(G/N ) ≤ t .

Proof. This follows from Lemma 2.4 of [7].

Lemma 3.2. Let G be a group of order pn , and n is a positive integer. If sk(G) is
invariable for any integer 1 ≤ k < n, then d(G) ≤ 3.

Proof. Assume that d(G) > 3. Then pd(G) − 1 > p2 − 1, and G/�(G) is an elementary
abelian p-group of order pd(G). By hypothesis, for an integer 1 ≤ k < n,

sk(G) = sn−1(G) = sd(G)−1(G/�(G)) = pd(G)−1 + · · · + p + 1.

Therefore, by Lemma 3.1, for an integer 1 ≤ k ≤ d(G),

sk(G/�(G)) ≤ pd(G)−1 + · · · + p + 1.

Recall that pd(G) − 1 > p2 − 1. Then

s2(G/�(G)) = (pd(G) − 1)(pd(G)−1 − 1)

(p2 − 1)(p − 1)
>

pd(G) − 1

p − 1
= sn−1(G),

a contradiction. Hence d(G) ≤ 3, as desired.
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Lemma 3.3. Let G be a nilpotent group, and n(G) = {1, m}. Then there exists some
prime p in π(G) such that m = p + 1 or p2 + p + 1.

Proof. We divide the proof into two cases according to whether G is a group of prime
power order or not.

Case 1. Assume that G is a p-group of order pn, n ≥ 2. By hypothesis, we have that G
is not a cyclic group, and so d(G) > 1.

We assert that sk(G) = m for any positive k, n > k ≥ 2. Otherwise, G is cyclic by
Proposition 1.4, a contradiction.

If s1(G) = 1, then, by Proposition 1.3, G is a generalized quaternion group. Hence G
must be isomorphic to quaternion group Q8 by Theorem 1 of [4]. It follows that p = 2
and m = 3, as desired.

If the number of nontrivial subgroups of possible order of G is equal to m, then

m = sn−1(G) = pd(G)−1 + · · · + p + 1.

Therefore, by Lemma 3.2, d(G) = 2 or 3, which implies that m = p + 1 or p2 + p + 1,
as claimed.

Case 2. Assume that G is not a prime power group. By hypothesis, we have that all Sylow
subgroups of G are normal, and there exists at least one Sylow subgroup of G which is not
cyclic. Without loss of generality, let the p-Sylow subgroup is non-cyclic, then it follows
that there exists a possible order t of subgroup of P such that P has at least 2 subgroups
of order t , which implies by the hypothesis that the number of subgroups of order t is m,
so n(P) = {1, m}. By Case 1, m = p + 1 or p2 + p + 1.

COROLLARY 3.1

If G is a p-group except the quaternion group Q8, and n(G) = {1, m}, then the number
of every nontrivially subgroup of possible order is equal to m.

Proof. It follows from the proof of Lemma 3.3.

Theorem 3.1. Assume G is a nilpotent group, and n(G) = {1, p + 1}, where p ∈ π(G).

(I) G is a group of prime power order if and only if G is one of the following groups:

(1) Quaternion group: Q8;
(2) Z pn−1 × Z p, where n ≥ 2;

(3) 〈a, b| a pn−1 = 1, bp = 1, b−1ab = a1+pn−2〉, where p is an odd prime and
n ≥ 3;

(4) 〈a, b| a2n−1 = 1, b2 = 1, b−1ab = a1+2n−2〉, where p = 2 and n ≥ 4.

(II) G is not a prime power order group if and only if G = P × 〈u〉, where P ∈
Sylp(G), p � |u|, and P is isomorphic to a group in Case I.

Proof. Case I follows from Theorem 3.1 of [5]. Now we assume that G is not a prime
power order group. By hypothesis, for some q ∈ π(G), we have that there exists a Sylow
q-subgroup Q of order qn satisfying n(Q) = {1, p + 1}, where q ∈ π(G) and n ≥ 2. By
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Lemma 3.3, it follows that p + 1 = q + 1 or q2 + q + 1, and thus q = p, which means
that all Sylow subgroups of G are cyclic except the Sylow p-subgroup. Therefore, Q is a
group in Case I, and Case II follows by checking trivially.

Theorem 3.2. Assume that G is a nilpotent group, and n(G) = {1, p2 + p + 1}.
(I) G is a group of prime power order if and only if G is one of the following groups:

(1) Z p × Z p × Z p;

(2) 〈a, b, c| a p2 = bp = cp = 1, [b, c] = a p, [a, b] = [a, c] = 1〉.
(II) G is not a prime power order group if and only if G = P × 〈v〉, where P ∈

Sylp(G), p � |v|, and P is isomorphic to a group in Case I.

Proof. Case I is Corollary 2.2 of [6], if G is not a prime power order group. Similar to
Theorem 3.1, for some q ∈ π(G), G has a Sylow q-subgroup Q with |Q| = qn satisfying
n(Q) = {1, p2 + p +1}. By Lemma 3.3, it follows that p2 + p +1 = q +1 or q2 +q +1.
Since both q and p are primes, we can easily get p = q. Thus all Sylow subgroups of G
are cyclic except Sylow p-subgroup. It follows that Q is a group in Case I, and Case II
follows by easily checking.

By Theorems 3.1 and 3.2, we can get the following corollary immediately.

COROLLARY 3.2

Let G be a p-group of order pn, n ≥ 1. If sk(G) = m, where 1 ≤ k < n and 1 ≤ m < 11,
then G is isomorphic to one of the following groups:

(1) Z pn , n ≥ 1;
(2) Z pn−1 × Z p, where p = 2, 3, 5, 7 and n ≥ 2;

(3) 〈a, b|a2n−1 = 1, b2 = 1, b−1ab = a1+2n−2〉, where p = 2 and n ≥ 4;
(4) 〈a, b|a pn−1 = 1, bp = 1, b−1ab = a1+pn−2〉, where p = 3, 5, 7 and n ≥ 3;
(5) Z2 × Z2 × Z2;
(6) Q8 ∗ Z4.

4. The classification of non-nilpotent groups G with n(G) = {1, p + 1}
To draw a conclusion, we list the following lemmas, which are all from [9].

Lemma 4.1. Assume G is not an abelian group and all its Sylow subgroups are
cyclic. Then

G = 〈a, b〉, am = bn = 1, b−1ab = ar , ((r − 1)n, m) = 1, rn ≡ 1(mod m),

where m, n and r are positive integers.

Lemma 4.2. Let G be a group, and n p(G) �≡ 1(mod p2). Then there exist two different
Sylow p-subgroups P1 and P2 of G such that |P1 : P1 ∩ P2| = p.

Lemma 4.3. Let G be a p-group and let σ be a p′-automorphism of G. If σ acts trivially
on �1(G) (�2(G) if p = 2), then σ is the identity.



496 Yanheng Chen and Guiyun Chen

Theorem 4.1. Let G be a non-nilpotent group. Then n(G) = {1, p+1} if and only if G =
H ×〈w〉, (6, |w|) = 1, and H is either S3 or Q12, where S3 and Q12 denote the symmetric
group of degree 3 and the generalized quaternion group of order 12, respectively.

Proof. By hypothesis, there exists a Sylow subgroup of G which is not normal, and so
for some prime q ∈ π(G), G has p + 1 Sylow q-subgroups. By Sylow theorem, we
have q = p, and thus all Sylow subgroups of G are normal except Sylow p-subgroup.
Therefore, G is a p-nilpotent group. Let G = P � T , where P is a Sylow p-subgroup of
G of order pn, n ≥ 1, and T is the normal p-complement and

T = P1 × P2 × · · · × Pt , t ≥ 1,

where Pi is a Sylow pi -subgroup of G, and pi is a prime different from p for i =
1, 2, . . . , t . Assume that P acts nontrivially on P1. Then 〈P, P1〉 = P � P1 has at least
p + 1 Sylow p-subgroups. By n p(G) = p + 1, we have that n p(P � P1) = p + 1, and
thus (p + 1)

∣
∣|P1|. Hence we get the following two cases, i.e., P1 is a Sylow 3-subgroup

of G while p = 2, and P1 is a Sylow 2-subgroup of G while p �= 2.
We assert that all the Sylow subgroups of G are cyclic.
At first, we show that every normal Sylow subgroup of G is cyclic. Otherwise, suppose

that the normal Sylow q-subgroup Q is not cyclic for some prime q ∈ π(G)\{p}, and
then n(Q) = {1, p + 1}. It follows that q = p, a contradiction. Hence all the normal
Sylow subgroups of G are cyclic.

Secondly, we prove that each Sylow p-subgroup of G is cyclic. Otherwise, every Sylow
p-subgroup of G is non-normal and non-cyclic. Assume that all the Sylow p-subgroups
of G are P1, P2, . . . and Pp+1. Since sn−1(Pi ) = kp + 1 = 1 or p + 1 by hypothesis, we
have that k = 0, 1.

If k = 0, then sn−1(Pi ) = 1, and thus Pi is cyclic for i = 1, . . . , p + 1, as desired.
If k = 1, then sn−1(Pi ) = p + 1 for i = 1, 2, . . . , p + 1. By n(G) = {1, p + 1}, we get

that the subgroups of order pn−1 of P1, P2, . . . and Pp+1 are identical, which concludes
that P1 = P2 = · · · = Pp+1. Therefore all the Sylow p-subgroups of G are cyclic, which
implies that every Sylow subgroup of G is cyclic.

We assert that P1 is not a Sylow 2-subgroup of G. Otherwise, if P1 is a normal and
cyclic Sylow 2-subgroup, then G has a normal 2-complement, and so P1 acts trivially
on P , a contradiction. It follows that P and P1 are a Sylow 2-subgroup and a Sylow 3-
subgroup of G, respectively. Furthermore, P just acts nontrivially on P1, and trivially on
P2, . . . , Pt , which means that

G = (P � P1) × P2 × · · · × Pt .

Now, consider the structure of P � P1, which satisfies that

n(P � P1) = {1, 3}.
For convenience, let

H = P � P1, P = 〈a〉, P1 = 〈b〉,
where |a| = 2n, |b| = 3m, n, m ≥ 1. Obviously, it follows that

a−1ba = br , r �≡ 1(mod 3m).



Finite groups 497

Recall that n2(H) = 3. We have that

|H : NH (P)| = 3,

and so

|NH (P)| = 2n3m−1,

which implies that

NH (P) = P × 〈b3〉.
We assert that m = 1. Otherwise if m > 1, then

b3 = a−1b3a = (a−1ba)
3 = b3r ,

which means that b3(r−1) = 1. Therefore,

r ≡ 1(mod 3m−1).

By Lemma 3.1, we have that

((r − 1)2n, 3m) = 1.

Hence m = 1, a contradiction.
Now we claim that r = −1. Since r �≡ 1(mod 3), we get that

r ≡ 0 or − 1(mod 3).

If r ≡ 0(mod 3), then a−1ba = br = 1, a contradiction. Therefore,

r ≡ −1(mod 3),

and so we can choose that r = −1.
We assert that n ≤ 2. According to arguments above, we have

H = 〈a, b| a2n = 1, b3 = 1, a−1ba = b−1, n ≥ 1〉.
Since

n2(H) = 3 �≡ 1(mod 22),

by Lemma 3.2, there exists two different Sylow 2-subgroups Q1 and Q2 such that

|Q1 : Q1 ∩ Q2| = 2.

Let D = Q1 ∩ Q2, then D is a normal subgroup of Q1 and Q2. It follows that D is
a normal subgroup of all Sylow 2-subgroups of H and |NH (D)| = |H |, and so H =
NH (D). Hence D � H and b acts trivially on D = 〈a2〉. Suppose that n ≥ 3, we have that
|D| ≥ 22 and �2(〈a〉) ≤ D. It follows that b acts trivially on �2(〈a〉). By Lemma 4.3,
we have that b acts trivially on 〈a〉, a contradiction. Therefore, n ≤ 2.

If n = 1, then H is a non-abelian group of order 6, and thus H ∼= S3.
If n = 2, then H is a non-abelian group of order 12 with an element of order 4, and

then H ∼= Q12.
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Since Pi (2≤ i ≤ t) are cyclic and normal subgroups of G, T is cyclic. Let T = 〈w〉,
then G = H × 〈w〉, where (6, |w|) = 1, and H is either S3 or Q12, as desired.

We can easily check that all groups in this theorem are non-nilpotent and satisfy n(G) =
{1, p + 1} for some p ∈ π(G).

Remark 4.1. Let G be a non-nilpotent group, and n(G) = {1, p + 1}. In the proof of
Theorem 4.1, we have that p = 2, and thus n(G) = {1, p + 1} and n(G) = {1, 3} are
equivalent. Under the condition n(G) = {1, 3}, some results have been obtained in [8],
but some gaps in the proofs. We overcome the gaps in the proof of Theorem 4.1.
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