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1. Introduction

Consider the initial value problem for a semilinear wave equation{
ü − �u + u = g(u) := ug1(|u|2),

(u(0), u̇(0)) = (u0, u1) ∈ (H1 × L2)(R2), (1.1)

where u(t, x) : R × R
2 → R and g1 ∈ C1(R,R+) is a positive real function satisfying

g1(0) = 0.
Before going further, let recall a few historic facts about this problem. We begin with

the monomial defocusing semi-linear wave equation in space dimensions d ≥ 3,

�u + |u|p−1u = 0, p > 1. (1.2)

The well-posedness of (1.2) in the scale of the Sobolev spaces Hs has been widely inves-
tigated (see for instance [3, 4, 6, 10, 23, 24]). It is well-known that the Cauchy problem
associated to 1.2 is locally well-posed in the usual Sobolev space Hs(Rd) if s > d

2 , or
when 1

2 ≤ s < d
2 and p ≤ 1+ 4

d−2s [9, 13, 18]. Moreover if p = 1+ 4
d−2s and 1

2 ≤ s < d
2 ,

then we have global Hs-solutions for small Cauchy data [13, 17].
The global solvability in the energy space (H1 × L2)(Rd) has attracted a great deal of

works. A critical value of the power p appears, namely pc := d+2
d−2 and there are mainly

three cases.
In the subcritical case (p < pc), Ginibre and Velo proved in [4] the global existence

and uniqueness in the energy space.
In the critical case (p = pc), the global existence was first proved by Struwe in the

radially symmetric case [25], then by Grillakis [5] in the general case and later on by
Shatah–Struwe [24] in other dimensions.
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In the supercritical case (p > pc), the question remains open except for some partial
results (see [11, 12]).

In two space dimensions any polynomial nonlinearity is subcritical with respect to the
H1-norm. Hence, it is legitimate to consider an exponential nonlinearity. Moreover, the
choice of an exponential nonlinearity emerges from a possible control of solutions via a
Moser–Trudinger type inequality [1, 16, 19]. In fact, Nakamura and Ozawa [17] proved
global well-posedness and scattering for small Cauchy data in any space dimension
N ≥ 2. Later on, Atallah [2] showed a local existence result to the 2D wave equation

ü − �x u + u eαu2 = 0 (Eα)

for 0 < α < 4π and with radially symmetric initial data (0, u1) having compact support.
Later on, Ibrahim et al. [7] obtained global well-posedness of the previous equation in
the energy space for small data. Recently, Struwe [26, 27] has constructed global solution
for smooth data. In a recent work [14, 15], the authors obtained similar results without
any smallness conditions. In the Schrödinger context, corresponding results hold [20, 21].
They showed global well-posedness and linearization in the energy space.

Our aim is to give a class of blowing up solutions in the focusing case associated to the
equations considered in [7, 15]. The rest of the paper is organized as follows. In §2 we
give some tools needed in the sequel and in §3 we prove the main result about instability
of solution to (1.1).

We mention that C will be used to denote a constant which may vary from line to
line. We also use A � B to denote an estimate of the form A ≤ C B for some absolute
constant C and A ≈ B if A � B and B � A. Finally, we denote the derivative operator
(D f )(x) := x f ′(x).

2. Background material

In this section we give some technical tools needed in the sequel. First, let us fix the set
of nonlinearity considered in this paper. G denotes the primitive of g which vanishes on
zero.

(1) Behavior on zero

g1(0) = g′
1(0) = 0. (2.1)

(2) Subcritical case{
∀ α > 0, ∃ Cα > 0/|g(s)| ≤ Cαeαs2

, ∀ s ∈ R,

(D − 2)G(r) > 0 and (D − 2)2G(r) ≥ 0, ∀ r > 0. (2.2)

(3) Critical case⎧⎪⎪⎨
⎪⎪⎩

lim|u|→∞ GL (u)

uG ′
L (u)

= 0,

∃ κ0 > 0 s.t. lim|u|→∞ G ′′
L(u)e−κ|u|2 = {0 if κ > κ0, ∞ if κ < κ0},

∃ ε>0 s. t. (D−4−ε)G(r)≥0 and (D−2)(D−4−ε)G(r)≥0, ∀ r >0,

(2.3)

where we denote GL(u) := (1 − χ(u))G(u) for some χ ∈ C∞
0 (|x | < 1).
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We will say that the nonlinearty g is subcritical (respectively critical) if it satisfies (2.1)
and (2.2) (respectively (2.1) and (2.3)).

Remark 2.1. We give explicit examples.

(1) Subcritical case: g(u) := u(1 + |u|2)−1
2 (e(1+|u|2) 1

2 − e(1 + |u|2) 1
2 ).

(2) Critical case: g(u) ∈ {u(e|u|2 − 1 − |u|2 − 1
2 |u|4), u(3 + |u|2)|u|4e|u|2}.

Proof.

(1) Take the real function f (x) := ex−1−x− x2

2 . Then f ′(x) = ex−1−x , (D−2) f (x) =
(x−2)ex +x+2 and (D−2)2 f (x) = (x3−3x+4)ex −x−4. Then min((D−2) f (x), (D−
2)2 f (x)) ≥ 0 if x ≥ 0. Let φ(r) := −1+√

1 + r2 and G = f ◦ φ. Then, (D−2)G(r) =
φ(r) f ′(φ(r))

rφ′(r)
φ(r)

− 2 f (φ(r)) ≥ D f (φ(r)) ≥ 0 because rφ′(r)
φ(r)

= r2

1+r2−
√

1+r2
≥ 1.

Moreover, (D−2)2G(r) = r2 f ′′(φ(r))−3r f ′(φ(r))φ′(r)+4 f (φ(r))+r2φ′2(r) f ′′(φ(r))

and (D − 2)2 f (r) = −3r f ′(r) + 4 f (r) + r2 f ′′(r). Since φ′(r) ≤ 1 and f ′′(r) ≥ 0, we
have (D − 2)2G(r) ≥ 0.
(2) See [8]. �

Let us recall a few results about the existence of ground state of the stationary problem
associated to (1.1). Define for φ ∈ H1(R2), (α, β) ∈ R

2+ − {(0, 0)} and c > 0, the
quantities

Kα,β,c(φ) := α‖∇φ‖2
L2 + c(α + β)‖φ‖2

L2

−
∫
R2

(α|φ|g(|φ|) + 2βG(φ)) dx,

M(φ) = 1

2
‖φ‖2

L2 , Sc(φ) := cM(φ) + 1

2
‖∇φ‖2

L2 −
∫
R2

G(φ) dx,

Hα,β(φ) = 1

2(α + β)

[
β‖∇φ‖2

L2 + α

∫
R2

(|φ|g(|φ|) − 2G(φ)) dx

]
,

mc = mα,β,c := inf
0 �=φ∈H1

{Sc(φ), s. t. Kα,β,c(φ) = 0}. (2.4)

The following result is a direct consequence of works [8, 22].

PROPOSITION 2.2

Let c > 0 and two real numbers (α, β) ∈ R
2+ − {(0, 0)}. Then, in the critical case (2.1)

and (2.3) or the subcritical case (2.1) and (2.2),

(1) the following number mc = mα,β,c is nonzero and independent of (α, β),

(2) there is a minimizer of the problem (2.4), which is a solution to

�ψ − cψ + g(ψ) = 0, 0 �= ψ ∈ H1(R2), m = Sc(ψ). (2.5)

ψ is called the ground state.
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Proof. We denote in this proof φλ := φ(λ.). We have ‖∇φλ‖L2 = ‖∇φ‖L2 and ‖φλ‖L2 =
λ−1‖φ‖L2 . Then, for λ > 0,

mc = inf
0 �=φ∈H1

{Sc(φλ), s. t. Kα,β,c(φλ) = 0}. (2.6)

Take λ−2 = c. For g
c rather than g and G

c rather than G, we have

mc = inf
0 �=φ∈H1

{S1(φ) s. t. Kα,β(φ) = 0}. (2.7)

There exists [8, 22] a certain minimizer nonzero ψ , such that �ψλ − ψλ + [ g
c ](ψλ) = 0,

so λ2�ψ(λ.) − ψ(λ.) + [ g
c ](ψ(λ.)) = 0. The proof is achieved since c = λ−2. �

We return to the Klein–Gordon equation (1.1). Take ω ∈ (−1, 1) and (1 −ω2) := a2 ∈
(0, 1). The change v := e−i tωu in (1.1) yields the perturbed Schrödinger equation

v̈ + 2iωv̇ − �v + a2v = g(v). (2.8)

By [7] (respectively [14, 15]), we have local well-posedness of (1.1) in (H1 × L2)(R2)

for the critical case, with small data (respectively subcritical case, for arbitrary data).
Moreover, if we denote

E(u, v) := 1

2

(
‖v‖2

L2 + ‖∇u‖2
L2 + a2‖u‖2

L2 − 2
∫
R2

G(u)dx

)
,

Q(u, v) := ω‖u‖2
L2 + �

(∫
R2

vūdx

)
.

Then, a solution to (2.8) satisfies conservation of the energy and the charge

E(0) = E(t) := E(v, v̇), Q(0) = Q(t) := Q(v, v̇). (2.9)

Let us give some stable sets by the flow of (2.8).

Lemma 2.3. For (0, 0) �= (α, β) ∈ R
2+, the set


α,β := {(u, v) ∈ H1 × L2, s. t. E(u, v) < d and Kα,β,a2(u) < 0} (2.10)

is stable under the flow of (1.1), where d := mc for c = a2.

Proof of Lemma 2.3. With conservation of the energy, E < d. Assume that for some
t0 > 0, we have K (u(t0)) = 0 and K (u(t)) < 0, ∀ t ∈ [0, t0). Since [8, 22]
d = inf0 �=φ∈H1{H(φ), K (φ) ≤ 0}, we have 1

2‖∇u(t)‖2
L2 = H0,1(u(t)) ≥ d > 0

for all t ∈ [0, t0). So K (u(t0)) = 0 and u(t0) �= 0. Then we have the absurdity
inf0 �=φ∈H1{H(φ), K (φ) = 0} = d ≤ Sa2(u(t0)) ≤ E < d. �
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3. Instability for a critical focusing wave equation

The main result of this paper is the following:

Theorem 3.1. For λ > 0, we denote by uλ the solution to (1.1) with data (ψλ, iωψλ)

where ψ is a ground state to (2.5) with c = a2 = 1 − ω2 and ψλ := λψ . Assume that g
satisfies the subcritical or critical case with the supplementary condition

∃ ε0 > 0 s. t.

(
D − 2

[
ε0 + 1 + ω2

1 − ω2

])
G(r) ≥ 0, ∀ r > 0. (3.1)

Then, for λ > max{1, λ0 :=
√

d(1+ε0)
ω‖ψ‖L2

}, uλ blows up in finite time, precisely

lim
t→T ∗ ‖uλ(t)‖L2 = ∞.

Remark 3.2. For ω ∈ (0, 1) small enough, the condition (3.1) is satisfied by the critical
case.

The previous theorem is a direct consequence of the following result.

PROPOSITION 3.3

Take the same hypothesis of the previous theorem. Let vλ be the solution of (2.8) with
data (λψ, 0). Then, for λ > max{1, λ0}, vλ blows up in finite time, precisely

lim
t→T ∗ ‖vλ(t)‖L2 = ∞.

The proof of Proposition 3.3 is based on the following auxiliary result.

Lemma 3.4. Take the same hypothesis of Proposition 3.3. Then, for Iλ(t) := 1
2‖vλ(t)‖2

L2

and λ > max{1, λ0}, a constant aλ > 0 exists such that

I ′′
λ ≥ (2 + ε0)‖v̇λ‖2

L2 + aλ. (3.2)

Proof. With a direct computation, denoting the conserved quantities Qλ := Q(vλ, v̇λ)

and Eλ := E(vλ, v̇λ), we have

I ′′
λ (t) =

[
�

∫
R2

v̇λv̄λ dx

]′

= ‖v̇λ(t)‖2
L2 + �

∫
R2

v̈λv̄λ dx

= ‖v̇λ(t)‖2
L2 − K1,0,a2(vλ) + 2ω�

∫
R2

v̇λv̄λ dx

= ‖v̇λ(t)‖2
L2 − K1,0,a2(vλ) + 2ωQλ − 2ω2‖vλ(t)‖2

L2 .

Now since 2Eλ = ‖v̇λ(t)‖2
L2 + K1,0,a2 + ∫

R2 (|vλ|g(vλ) − 2G(vλ)) dx yields, for any
ε > 0,

I ′′
λ (t) = (2 + ε)‖v̇λ(t)‖2

L2 + εK1,0,a2 − 2(1 + ε)Eλ + 2ωQλ

− 2ω2‖vλ(t)‖2
L2 + (1 + ε)

∫
R2

(|vλ|g(vλ) − 2G(vλ)) dx .
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Since K (ψ) = 0, for λ > 1, we have

K0,1,c(ψλ) = c‖ψλ‖2
L2 − 2

∫
R2

G(ψλ)dx

= λ2
∫
R2

(
|ψ |2 − G(λψ)

λ2

)
dx .

Now, using the fact that (D − 2)G > 0 on R
∗+, the derivative of the real function ζ :

λ �→ ∫
R2

G(λψ)

λ2 dx satisfies ζ ′(λ) = 1
λ3

∫
R2 (λψg(λψ) − 2G(λψ))dx = 1

λ3

∫
R2(D − 2)

G(λψ)dx > 0. Thus, ζ(λ) > ζ(1) = c‖ψ‖2
L2 and K0,1,c(ψλ) < 0. So, by the previous

lemma, for any λ > 1, K0,1(vλ) < 0 and Eλ < d. Then, for any ε > 0, since K1,0 >

− ∫
R2 vλg(vλ), we have

Bε(t) := I ′′
λ (t) − (2 + ε)‖v̇λ(t)‖2

L2

= εK1,0 − (2 + 2ε)Eλ + 2ωQλ − 2ω2‖vλ(t)‖2
L2

+ (1 + ε)

∫
R2

(|vλ|g(vλ) − 2G(vλ))dx

> εK1,0 − (2 + 2ε)Eλ + 2ωQλ − 4
ω2

c

∫
R2

G(vλ)dx

+ (1 + ε)

∫
R2

(|vλ|g(vλ) − 2G(vλ))dx

> εK1,0 − 2(1 + ε)d + 2ωQλ

+ (1 + ε)

∫
R2

(
|vλ|g(vλ) − 2(1 + 2ω2

c(1 + ε)
)G(vλ)

)
dx

> −2(1 + ε)d + 2ωQλ

+
∫
R2

(
|vλ|g(vλ) − 2

[
ε + 1 + ω2

1 − ω2

]
G(vλ)

)
dx

> −2(1 + ε)d + 2ω2λ2‖ψ‖2
L2

+
∫
R2

(
|vλ|g(vλ) − 2

[
ε + 1 + ω2

1 − ω2

]
G(vλ)

)
dx .

It is sufficient to take λ0 :=
√

d(1+ε0)
ω‖ψ‖L2

. �

We are ready to prove the main result.

Proof of Proposition 3.3. With absurdity, assume that the life span of vλ is denoted by
Tλ = ∞. For λ > max{1, λ0} we denote Iλ(t) := 1

2‖vλ(t)‖2
L2 . By the previous lemma,

for some ε > 0,

I ′′
λ Iλ ≥ Iλ(aλ + (2 + ε) ‖v̇λ‖2

L2)

≥ aλ Iλ +
(

1 + ε

2

)
‖vλ‖2

L2‖v̇λ‖2
L2

≥ aλ Iλ +
(

1 + ε

2

)
‖vλv̇λ‖2

L1

≥ aλ Iλ +
(

1 + ε

2

) (
I ′
λ

)2
.
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For α := ε
2 > 0, we have

(I −α
λ )′′ = −α I −α−2

λ (I ′′
λ Iλ − (α + 1)(I ′

λ)
2) < 0. (3.3)

Moreover, since I ′′
λ ≥ aλ > 0, there exists t1 > 0 such that I ′

λ > 0 on (t1,∞). Thus, for
any t > t1,

I −α
λ (t) ≤ I −α

λ (t1) − α I −α−1
λ (t1)I ′

λ(t1)(t − t1)

which implies that for t large enough Iλ(t) < 0. This contradiction achieves the proof. �
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