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Abstract. Let G be a finite group and G∗ be the set of primary, biprimary and tripri-
mary elements of G. We prove that if the conjugacy class sizes of G∗ are {1, m, n, mn}
with positive coprime integers m and n, then G is solvable. This extends a recent result
of Kong (Manatsh. Math. 168(2) (2012) 267–271).
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1. Introduction

Throughout this paper all groups considered are finite and G always denotes a group. A
primary element is an element of prime power order and a biprimary (triprimary) element
is an element whose order is divisible by precisely two (three) distinct primes. We will
denote by xG the conjugacy class of x , its size |xG |, is called the index of x in G. The rest
of the notations and terminologies are standard and readers may refer to [6].

A well-known problem in group theory is to study the influence of conjugacy class sizes
on the structure of a group. For instance, as regards to groups with conjugacy class sizes
{1, m}, Itô [3] proved that G is nilpotent, m = pa for some prime p, and G = P×A, where
P is a Sylow p-subgroup of G. Moreover, A≤ Z(G). Beltrán and Felipe [1, 2] proved that
if the conjugacy class sizes of G are {1, m, n, mn}, where m, n > 1 are coprime integers,
then G is nilpotent. Meanwhile, m = pa and n =qb for distinct primes p and q.

On the other hand, using partial conjugacy class sizes to investigate the structure of a
group is also studied extensively. For instance, in a very recent paper [5], Kong proved that
G is solvable if the conjuagcy class sizes of primary, biprimary and triprimary elements
are {1, pa, n, pan}, where p is a prime, a is an integer and n is a positive integer coprime
to p.

He proposed that at that moment he could not prove that G is solvable when the
conjugacy class sizes of primary, biprimary and triprimary elements of G are exactly
{1, m, n, mn} with (m, n) = 1. In this paper, this problem is solved and our main theorem
is the following:

Main theorem. Let G be a group and G∗ be the set of primary, biprimary and tripri-
mary elements of G. If the conjugacy class sizes of G∗ are {1, m, n, mn}, then G is a
solvable, where m, n are two positive coprime integers.
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2. Preliminaries

In this section we list some basic and known results which will be used in the sequel.

Lemma 2.1. Let G be a group. If x, y ∈ G be such that [x, y] = 1 and (o(x), o(y)) = 1.
Then CG(xy) = CG(x) ∩ CG(y).

Proof. Obviously, CG(x) ∩ CG(y) ⊆ CG(xy). Now we prove another inclusion. Assume
that o(x) = a, o(y) = b. Since (a, b) = 1, there are two integers s, t such that as+bt = 1.
For every v ∈ CG(xy), we have that (xy)v = xv yv . Note that [x, y] = 1, we have that
(xy)as = xas yas = yas . Hence ((xy)as)v = (xas)v(yas)v = (yas)v = (xy)as = yas .
On the other hand, y = yas+bt = yas . Hence yv = (yas)v = yas = y. By the same
reason, we have that xv = x . This shows that v ∈ CG(x) ∩ CG(y). Therefore, CG(xy) =
CG(x) ∩ CG(y). �

Lemma 2.2 (Theorem 5 of [7]). If for some prime p every primary p′-element of
a group G has index prime to p, then the Sylow p-subgroup of G is a direct factor
of G.

Lemma 2.3 (Lemma 2.7 of [4]). If 1 and m > 1 are the only sizes of conjugacy classes
of elements of primary and biprimary orders of a group G, then G = P × A, where
P ∈ Sylp(G) and A is abelian. In particular, m is a power of p.

Lemma 2.4. Suppose that the three smallest non-trivial indices of elements of primary,
biprimary and triprimary elements are a < b < c, with (a, b) = 1 and a2 < c. Then the
set {g ∈ G| |gG | = 1 or a} is a normal subgroup of G.

Proof. The proof is similar to Lemma 2.4 of [8]. �

Lemma 2.5 (Theorem A of [5]). Let G be a finite group and G∗ the set of elements
of primary, biprimary and triprimary order of G. If the sizes of elements of G∗ are
{1, pa, n, pan} with p, n being coprime positive integers, then G is solvable.

Lemma 2.6 (Theorem 8.2.8 of [6]). Let P × Q be the direct product of a p-group P
and a p′-group Q. Suppose that G is a p-group such that CG(P) ≤ CG(Q), then Q acts
trivially on G.

Lemma 2.7. Let G be a π -solvable group with π ⊆ π(G). Then |xG | is a π -number for
every π ′-element x of primary order if and only if G has an abelian Hall π ′-subgroup.

Proof. We only prove the necessity. Without loss of generality, we may assume that
Oπ ′(G) 	= 1 since otherwise, the conclusion holds by an inductive argument on the quo-
tient group G/Oπ (G). Let g ∈ G be an arbitrary π ′-element of primary order. Then there
exists a Hall π ′-subgroup K1 of G such that K1 ≤ CG(g). Therefore,

g ∈ CG(K1) ≤ CG(Oπ ′(G)) ≤ Oπ ′(G),

which follows that Oπ ′(G) is an abelian Hall π ′-subgroup of G. �
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3. Proof of the main theorem

Proof. For every prime r ∈ π(G)−(π(m)
⋃

π(n)), it follows from Lemma 2.3 of [4] that
there exists a Sylow r -subgroup R of G such that R ≤ Z(G). Consequently, G = H × K ,
where K is a Hall π(m)

⋃
π(n)-subgroup of G. Moreover, the hypothesis is inherited by

K . As a result, without loss of generality, we may assume that G is a π(m)
⋃

π(n)-group.
For convenience, we denote π := π(m) and π ′ := π(n). The proof will be completed in
the following steps:

Step 1. We may assume that G has no π -elements of index m and no π ′-elements of
index n.

Suppose that x is a π -element of index m. By considering the primary decomposition
of x we may assume that x is a p-element for some p ∈ π . Now if y1 is a primary p′-
element of CG(x), we see from Lemma 2.1 that CG(xy1) = CG(x) ∩ CG(y1) ≤ CG(x),
which forces |CG(x) : CG(x)∩CG(y1)| = 1 or n. Hence CG(x) = CG(x)p ×CG(x)p′ by
Lemma 2.2. If CG(x)p′ is not abelian, then class sizes of primary and biprimary elements
of such a p′-subgroup are exactly the two numbers 1 and n in CG(x)p′ . Note that n must
occur. It follows from Lemma 2.3 that n = qb and therefore, G is solvable by Lemma
2.5, and we are done.

Now we prove that CG(x)p′ is not abelian. Otherwise, we have that CG(x)p′ has a π -
complement H , which is also a π -complement of G. Moreover, H � Z(G). Let v ∈
H − Z(G) be a primary element. Then |vG | = m and CG(x) = CG(v). For any w ∈
CG(x)p, we have that |wG | = 1 or m. Since |CG(x) : CG(x) ∩ CG(w)| = |CG(v) :
CG(v) ∩ CG(w)| = 1 or n and CG(x)p′ ≤ CG(w), we have that CG(x) = CG(w). Hence
CG(x) is abelian. Let y ∈ G be a primary element of index n. By conjugation, there is
some g ∈ G such that xg−1 ∈ CG(y), that is, yg ∈ CG(x). Hence CG(x) ≤ CG(yg). It
follows that |yG | | |xG |, a contradiction.

The second assertion holds because the hypotheses are symmetric in m and n.

Step 2. If x is a primary or biprimary π -element of index mn, then CG(x) = CG(x)π ×
CG(x)π ′ with CG(x)π ′ � Z(G) abelian. Similarly, if y is a primary or biprimary π ′-
element of index mn, then CG(y) = CG(y)π ×CG(y)π ′ with CG(y)π � Z(G) is abelian.

Note that mn is the maximal index. For any π ′-element y ∈ CG(x) of primary order,
by Lemma 2.1, it follows that CG(xy) = CG(x) ∩ CG(y) ≤ CG(x) and CG(xy) =
CG(x) ≤ CG(y). Moreover, y ∈ Z(CG(x)) and hence CG(x) = CG(x)π × CG(x)π ′ ,
where CG(x)π ′ is an abelian Hall π ′-subgroup of CG(x). We claim that CG(x)π ′ � Z(G).
Otherwise, CG(x)π ′ = Z(G)π ′ , which implies that |G : Z(G)|π ′ = n. Let z be an
arbitrary non-central primary or biprimary π -element, then z is of index n or mn by the
hypothesis. Since both cases imply that Z(G)π ′ is a π ′-subgroup of CG(z), we see that
for any non-central π ′-element w of primary order of G, CG(w)π = Z(G)π , yielding
that |G : Z(G)|π = m. Hence |G : Z(G)| = |G : Z(G)|π |G : Z(G)|π ′ = mn, a
contradiction to the fact that there is an element of primary order of index mn, and the
claim holds. Analogously, we have that CG(y) = CG(y)π × CG(y)π ′ , where CG(y)π �
Z(G) is abelian.

Without loss of generality, we assume that n < m from now on.

Step 3. Write Lπ := {x |x is a π -element such that |xG | = 1 or n}. Then Lπ is a
non-trivial abelian normal π -subgroup of G.
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By Lemma 2.4, the set W := {x ||xG | = 1 or n} is a normal subgroup of G. Let x be
an element in G∗ of index n. Write x = xπ xπ ′ , where xπ and xπ ′ are the π -part and the
π ′-part of x . Applying Step 1, xπ ′ must be central, whence x ∈ Lπ × Z(G)π ′ . Therefore
W = Lπ × Z(G)π ′ and consequently Lπ is a normal π -subgroup of G.

Notice that Lπ is abelian, as if primary element y ∈ Lπ , then |Lπ : CLπ (y)| divides
(|Lπ |, n) = 1. Finally, by considering the decomposition of any element of index n and
taking into account Step 1, we see immediately that Lπ is non-trivial.

For a prime q ∈ π , we define Lq := {x |x is a q-element such that |xG | = 1 or
n}. Notice that Lπ is the direct product of the subgroups Lq for all primes q ∈ π , and
consequently, Lq is an abelian normal subgroup of G.

Step 4. Let q ∈ π . If Lq is not central in G, then Lq is a Sylow q-subgroup of G.
Assume false, we may choose a q-element w of index mn. By Step 2, we write

CG(w) = CG(w)π × CG(w)π ′ , with CG(w)π ′ � Z(G) abelian. If u ∈ CG(w)π ′ , then
CG(w) ≤ CG(u) and in particular, CLq (w) ≤ CLq (u), so by applying Lemma 2.6, we get
u ∈ N := CG(Lq). Thus CG(w)π ′ ≤ N .

We fix some non-central element y ∈ Lq , so that N ≤ CG(y). As w has index mn and
y has index n, we see that |CG(y) : N | and |N : CG(w)π ′ | are both π -numbers, and so
CG(w)π ′ is a Hall π ′-subgroup of N and CG(y).

We show now that any q-element of G lies in N . Trivially, Lq ≤ N , so we consider
a q-element z 	∈ Lq . Thus z must have index mn. By Step 2, we may write CG(z) =
CG(z)π × CG(z)π ′ , where CG(z)π ′ is a non-central abelian Hall π ′-subgroup of CG(z).
Arguing about z as we did above with w, we obtain that CG(z)π ′ ≤ N . Take a non-
central primary element u ∈ CG(z)π ′ , then CG(z) ≤ CG(u). In addition, by Step 1, u has
index m or mn, so that |CG(u) : CG(z)| is equal to 1 or n. Since CG(z)π ′ ≤ N we have
Lq ≤ CG(u) so that Lq ≤ CG(z) and consequently z ∈ N , as we wanted to prove.

Now let t ∈ CG(y)∩ G∗. Consider the usual factorization t = tq tq ′ . We have CG(tq ′)∩
CG(y) = CG(tq ′ y) ≤ CG(y) by Lemma 2.1 and |CG(y) : CG(tq ′ y)| must be equal to
1 or m because y has index n. If for every r ∈ π ′ and CG(y)r ∈ Sylr (CG(y)), we have
that CG(y)r ≤ Z(G). Then CG(y)π ′ ≤ Z(G). From the first paragraph of this step, we
have that CG(y)π ′ < CG(w)π ′ since CG(w)π ′ � Z(G). But |CG(y)π ′ | = |CG(w)π ′ |,
a contradiction. For some r ∈ π ′, we can choose a non-central Sylow r -subgroup R of
CG(y), which is also a Sylow r -subgroup of N . Then there exists some g ∈ CG(y) such
that Rg ≤ CG(tq ′ y), so that tq ′ ∈ CG(Rg). Now we distinguish two cases for tq . Suppose
tq ∈ Lq , so that Rg ≤ N ≤ CG(tq) from the second paragraph of this step, we conclude
that t ∈ CG(Rg). In the other case, when tq is not in Lq , then it has index mn, and we can
again write CG(tq) = CG(tq)π ×CG(tq)π ′ , where CG(tq)π ′ is an abelian non-central Hall
π ′-subgroup of CG(tq). Furthermore, notice that the property of w given at the beginning
of this step holds for tq , that is, CG(tq)π ′ is also a π -complement of N and CG(y). As we
know that N has non-central π -complements and non-central Sylow r -subgroups, we may
consider the Sylow r -subgroup R1 of CG(tq)π ′ , which is not central. Then tq ′ ∈ CG(R1)

and trivially tq ∈ CG(R1) whence t ∈ CG(R1). Since R1 = Rg for some g ∈ CG(y), we
have that t ∈ CG(Rg).

Let v ∈ CG(y) be an arbitrary element. Considering its primary decomposition of
v = v1 · · · vrw1 · · ·ws , where vi are π -elements and w j are π ′-elements, respectively.

If there is some component of v with index mn, say v1, then CG(v1vi ) = CG(v1) ≤
CG(vi ) for all i ≥ 2 and CG(v1w j ) = CG(v1) ≤ CG(w j ) for all j . Hence CG(v) =
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CG(v1) ∩ · · · ∩ CG(ws) = CG(v1). From the above, we have that v1 ∈ CG(Rg) for some
g ∈ CG(y) and thus Rg ≤ CG(v1) = CG(v). Therefore, v ∈ CG(Rg).

On the other hand, we assume that there is no component of v with index mn.
Then by Step 1, we have that |vG

i | = 1 or n and |wG
j | = 1 or m. Assume that

v1, w1 	∈ Z(G). Then CG(v1vi ) = CG(v1) ∩ CG(vi ) for i ≥ 2. If |vG
i | = 1, then

CG(v1vi ) = CG(v1) ≤ CG(vi ). If |vG
i | = n, then CG(v1vi ) = CG(v1) ∩ CG(vi )

and thus |(v1vi )
G | ≤ |vG

1 ||vG
i | = n2 < mn. This gives |(v1vi )

G | = |vG
1 | = n and

CG(v1vi ) = CG(v1) = CG(vi ). Moreover, CG(v1 · · · vr ) = CG(v1). On the other hand,
we see from CG(w1w j ) = CG(w1)∩CG(w j ) that |(w1w j )

G | ≤ |wG
1 ||wG

j | = m2. Hence

|(w1w j )
G | = mn or m. If there is a non-central w j , say w2, such that |(w1w2)

G | = mn,
we can get that CG(w1 · · ·ws) = CG(w1w2). If there is no non-central w j such that
|(w1w j )

G | = mn, then CG(w1w j ) = CG(w1) ≤ CG(w j ) by Lemma 2.1 and thus
CG(w1 · · ·ws) = CG(w1) ∩ · · · ∩ CG(ws) = CG(w1).

Since we have proved that v1w1 ∈ CG(Rg) for some g ∈ G, it follows that Rg ≤
CG(v1w1) = CG(v). Hence v ∈ CG(Rg). Further, CG(y) = ⋃

g∈CG (y) CCG (y)(R)g ,
which implies that CG(y) = CCG (y)(R). Hence R must be central in CG(y). But we
know that R is not central in G, and so if we take some non-central u1 ∈ R, we have
CG(y) ≤ CG(R) ≤ CG(u1). This provides a π ′-element u of index n, contradicting
Step 1.

Step 5. G is solvable. Let y ∈ Lq − Z(G). It is easy to check that any primary or
biprimary q ′-element of CG(y) has index 1 or m in CG(y). We will assume first that
there exists a non-central Sylow r -subgroup R of CG(y) for some prime r ∈ π ′. If w is a
primary q ′-element of CG(y), then there exists some g ∈ CG(y) such that Rg ≤ CG(w),
that is, w ∈ CCG (y)(R)g .

Let v ∈ CG(y) be a q ′-element. Similar as in Step 4, we can obtain that v ∈ CG(R)g

for some g ∈ CG(y).
Thus, if we consider the {q, q ′}-decomposition of any element of CG(y), taking into

account that Lq is a Sylow q-subgroup of G, we have

CG(y) =
⋃

g∈CG (y)

CCG (y)(R)g Lq =
⋃

g∈CG (y)

(CCG (y)(R)Lq)g,

which implies that CG(y) = CCG (y)(R)Lq , and accordingly, |CG(y) : CCG (y)(R)| is a
q-number. Now, we take some non-central u ∈ R, which has index m or mn. Observe
that CCG (y)(R) ≤ CG(u) ∩ CG(y) = CG(uy) ≤ CG(y), so that uy has index n or mn.
The first case leads to CG(y) ≤ CG(u), which is a contradiction, and so uy has index mn
and it follows that m is a q-power. By Lemma 2.5, we obtain that G is solvable and the
theorem is proved.

Therefore, we will assume that for each prime r ∈ π ′, Sylow r -subgroups of CG(y)

are central in G and we will obtain a contradiction. In this case, we have CG(y) =
CG(y)π × Z(G)π ′ , and also |G : Z(G)|π ′ = n. If there exists a primary or biprimary π -
element v of index mn, then CG(v) = CG(v)π ×CG(v)π ′ with CG(v)π ′ � Z(G) abelian.
Since CG(v)π ′ ≥ Z(G)π ′ and |CG(v)π ′ | = |CG(y)π ′ |, we have that CG(v)π ′ = Z(G)π ′ ,
a contradiction. Notice that Lπ is a normal abelian subgroup and all the primary and bipri-
mary π -elements are contained in Lπ , we assume that there are no π -elements of index
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mn, and consequently that Lπ is a Hall π -subgroup of G. By Schur–Zassenhaus, we have
that G has a π -complement H . Write G = Lπ H . Since 1 � Lπ � G and Lπ is a char-
acteristic subgroup of G and G/Lπ is a π ′-group, we have have that G is π -separable by
Theorem 6.4.2 of [6]. Since |G : Z(G)|π ′ = n, we have that every π ′-element in G∗ ∩ H
with index 1 or m. By Lemma 2.7, we have that H is abelian. This implies that there is
a biprimary or triprimary element w with index mn. Write w = w1w2w3. It is easy to
see that w is neither a π -element nor a π ′-element. We may assume that w1w2 is a π -
element. Then CG(w1w2) = CG(w1) ∩ CG(w2) = CG(w1), and thus we may assume
that w is a biprimary element and write w = w1w2 with w1 being a π -element and w2
being a π ′-element. On the other hand, |G : CG(w)| = mn and CG(w)π ′ = Z(G)π ′ , we
get that CG(w) = CG(w)π × Z(G)π ′ . Since w2 is a π ′-element of CG(w), we have that
w2 ∈ Z(G)π ′ . This gives |wG | = |wG

1 | = mn, which contradicts that Lπ is abelian. �
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