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Uncertainty inequalities for the Heisenberg group
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1. Introduction
The classical Heisenberg—Pauli—-Weyl uncertainty inequality for the Fourier transform on
R" is

113 < cn/R |x|2|f(x>|2dfo 1171 f (&)1, (1.1)

which can also be written in the form:
I£13 < calllx] £l (=22 Flla,

where A denotes the Laplacian.
By means of the classical one-dimensional uncertainty inequality (1.1), Singer [13]
obtained an uncertainty inequality for the continuous wavelet transform on a real line:

kol £13 < 11t Wi () (@ Ol 2ardasar 1€ £ )2, (1.2)

where ¢ is an admissible wavelet and kg is an appropriate positive constant. For more
on the history and the relevance of the uncertainty inequality, we refer the readers to the
survey [5], the books [6,8], and the papers [2,10,11].

For the Heisenberg group H", Thangavelu [16] proved the following theorem.

Theorem 1.1. For a normalized L? function f on H", one has

n+l

Z\ 5 1/2 1/2
ﬁ(E) < (/ |z|2|f(z,t)|2dzdz) (/ |$1/2f(z,t)|2dzdt> ,
H}’l n

where £ is the Heisenberg sub-Laplacian.
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Later, Sitaram et al. [14] obtained a generalized theorem.

Theorem 1.2. For f € LZ(H”), 0<y <n+1, one has
172

1/2
||f||%sK< / |<z,r)|2y|f(z,t)|2dzdt) ( f |$V/2f<z,r>|2dzdr> ,
H" H"

where K is a constant.
In this paper, we will prove the following two extensions:

Theorem 1.3. For f € L2(H”), a,b > 0, one has

_b_ _a_
||f||§sc< / I(z,t)lzalf(z,t)lzdzdt)a ( / |fb/2f(z,t>|2dzdt)“ "
Hn Hn

(1.3)
where C is a constant.

Theorem 1.4. For f € HJ, ¢ € AWJ and a,b > 0, one has

b
dzdtdp \ a?
1713 < C(/ / |Gz, P Wy f (2, DI Znif)

x( / |$b/2f<z,r>|2dzdz>”b,
HVI

The idea that we modify Theorem 1.2 to Theorem 1.3 originates from [1], where the
analogue of inequality (1.3) is established for a locally compact space. The main approach
of the proof of Theorem 1.3 is based on the estimate of the heat kernel together with
the relation between the sub-Laplacian and the group Fourier transform. Our method is
different from that in [1]. Furthermore, as an application of (1.3) we deduce an uncertainty
inequality for the continuous wavelet transform on the Heisenberg group, which is an
extension of (1.2).

where C is a constant.

2. Preliminaries

The Heisenberg group, denoted by H”", is a nilpotent Lie group of step two whose
underlying manifold is C" x R equipped with the group law

N , , o1 -
(z, )z, 1) = z+z,t+t+§Imzz )

For (z,1) € H", the homogeneous norm of (z, ¢) is given by |(z, )| = (]z|* + [¢t]*)/*.
Then the ball of radius r centered at (z, r) is defined by B,(z,t) = {(z,t) € H" :
|(z, )71z, t")] < r}. Let S" be the unit sphere in H" and suppose f is a measurable
function, one has (see [3])

f(Z,t)dzdt:/ /oo Fororarde. (2.1
St J0

H"
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Letm(z,1) (z=x + iy, A € R* =R\ {0}) be the Schrodinger representations acted
on ¢ € LZ(R") by

T2, D@(E) = eMePEEFTEN o6 4 y).

Given a function f € L'(H"), its group Fourier transform f is defined to be the operator-
valued function and

foy = / f(z, ;. (z, t)dzdt.
Hn

Let die(A) = (27) "~ |A|"dA. Then one has the inversion of Fourier transform

Fet) = / (et 2 1) f ) ()

and the Plancherel formula

115 = [R IF O sdn ).

Suppose f and g are measurable functions on H", then their convolution is defined by
fxglz, 1) = / f (@, D) (—w, —s))g(w, s)dwds.
Hn

It follows from the definition of the Fourier transform that f * g(A) = f(A)&(1). In
addition, one has the generalized Yong inequality:

ILfxgll- < flIplgllys

where%=i+l—l.
Now consider the Heisenberg sub-Laplacian

n
2 2
L==) (XG+YD,
=
d

0 1.
where X ; = o 2V

|

=0 41,0 6di i
Y= By, + 5 3;- For the Schrodinger representations 7, one

D

has

d
ﬂf(Xj) = iAg;, JT)T(Y]‘) = E

So that 7 (£) = —A + A2|€|> = H()) is the Hermite operator. Let &y (o € N") stand

for the normalized Hermite functions on R”. For A € R*, define ®% (&) = |A| T (|4 %é).
Then one has

H)®L = 2la| + n)|A| 2.
One important relevance of sub-Laplacian .Z is the heat semigroup defined by

@7 )z, 1) =qs* f(z,0),
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where ¢; is the heat kernel given by
o n
C]s(Z, 1) = cp / e—m( : A > e—%()u:othks)\zlzd)L
o sinh As

with the positive constant ¢,. Note that the heat kernel is a C* function on H" x (0, 00)
and its Fourier transform is (see p. 86 of [18])

gs () = e~ M,

More details about the sub-Laplacian and the heat kernel on Heisenberg group can be
found in [4,15,17].

Now we are going to recall some facts about the continuous wavelet transform on the
Heisenberg group. Let Py(a € N") be the projection from L?(R") to one-dimensional
subspace spanned by ®,. For ¢ = + or —, define

HS ={f e L*(H"): f()) = f()P, and f(.)=0ifr ¢ R},
By Theorem 1 of [9] one has

L*(H") = @) (H; & Hy).

acN”
For a nonzero function ¢ € HJ , if it satisfies
02
om [ WMisy .,

we then call ¢ an admissible wavelet and write ¢ € AW . Given a function f € HJ, the
continuous wavelet transform of f with respect to ¢ is defined by

Ws f(z,t,p) = (f, Ulz, 1, p)9),

where

77—z ' —t— %Imzz_’)
N o '

Note the following facts: for f € HJ and ¢ € AW, one has

Uz, t,p)p (1) = p(n+1)/2¢<

/ Wy f (2. 1, p)ma(z. )dzdt = p" D2 £ () (pa)* 22)
Hf’l
and
o0
2dzdedp
/0 /Hn |W¢f(Z, l,/O)| W = C¢||f||%' (2.3)
For further details of wavelet transform on H", we refer to [7,9,12].

3. Proof of Theorems 1.3 and 1.4

In order to prove our main theorems, we first need some lemmas for preparation. Through-
out the paper, we will use C to denote the positive constant, which is not necessarily same
at each occurrence.
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Lemma 3.1. The heat kernel q5(z, t) satisfies the estimate
lgsll3 < Cs™!
with some positive constants C.
Proof. By Proposition 2.8.2 of [18] one has that
lgs(z, )] < Cs ™15 (ZP+D
holds for some positive constants C and A. Since (|z|* + |t|2)% < |z|> + |t], we have
g5 (2. )] < Cs ™~ em 5 1@NP,

Thus by (2.1) we get

IA

24 2
lgsl3 < € / 2= 21 gy

00
_op—p 24,2
C/ s 2n 2e =T r2n+ldr
0

— C s —n—1
which proves this lemma. U

Lemma 3.2. Let f € L>(H"). Thenfor0 <y < n + 1, one has

1/2
If *gslla < Cs—y/z( / Iz, D17 | f(z, z)|2dzdt)
Hl‘l

with some positive constants C.

Proof. We assume the non-trivial case that the integral of the right-hand side is finite. Let
B, = B,(0,0) and set f, = fxB,, f" = fx#Hm\B,. Note that

1f s = Y I1F 0I5 15

Then by the Plancherel formula we have

1" gsli3 /R D Ifre P ) 15duk)
o

[ X e e )
[04

IA

[ 0@l e

/ | 71> dzdt
Hl’l

Iz, DY | f(z, 1)|*dzd.
B,

- }“2]/ H"\
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On the other hand, by the generalized Yong inequality and Lemma 3.1 we have

I fr * aslz=lgsll2ll £l

" 1/2 1/2
5Cs—z</ |(z,t)|2V|f(z,t)|2dzdt) (/ |(z,t)|_2”dzdt> :
H" B,

Note that the second integral of the right-hand side is controlled by Cr~?*+"+! since
0 <y < n + 1. Therefore,

I f*ggslla < IIf" *qslla+ 1 *gsll2
12
<Cr v+ s_("+1)/2r”+1)</ Iz, D% | f(z, t)|2dzdt> )
Hn

172

Choosing r = s/~ then gives the desired estimate. (I

Lemma 3.3. For f € L2(H”), if 0<a<n+1,0<b <2, onehas

b

IFI3 < c(/ |(z,t>|2a|f<z,t>|2dzdt>”b
H"

x(/ |.£P12 £ (2, t)|2dzdt>a+b, (3.1)
Hn

where C is a constant.

Proof. By Lemma 3.2, we have
Ifll2 = If *gsll2 +11f = f*qsll2

1/2
Cs“”( / |(z,z>|2“|f(z,r)|2dzdz)
Hﬂ
A 1/2
+< f Do — e Gl o Hidum)
R* o

1/2
cs—“/2</ I(Z,t)lzalf(z,t)|2dzdt>
Hn

—sQ2lal+n)[A]

~ 1—e
+</R 2O ey

1/2
2
x(s(2|a|+n>|x|>b/2d>2||2du(x)> :

A

IA

IA

Note that if s > 1, then for b > 0,

1 —e* .
Wfl,

ifO0 <s <1, thenfor0<b <2,
)

1_})_/‘? < Cessmb2 < ¢,
)
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1—e™%
since % — 1(s = 0T). Thus we obtain
e Ssl-
172
Ifla < Cs—“/2< / Iz O/, r>|2dzdr>
Hn

. 1/2
+Csb/2( A{ Yl Uidu(m) : (3.2)

where we have applied the fact f(A)H(AW)P/2 = ZP12F(L) to get the last term.
Minimizing the right-hand side of (3.2) then gives the desired result. (]

Proof of Theorem 1.3. Ifa > n+ 1, leta’ < n + 1, then we have for all € > 0,

I(z, )| (z, )|
L

E(l

which implies that

G O Fll2 < €l fll2+ € NIz D1 flla.
Optimizing in € then gives the Landau—Kolmogorov inequality:

1—d'/a

G D1 Fll2 < ClIFIl |||(Z,l)laf||§//a- (3.3)

Now for b > 2, we set b’ < 2. Analogues to the above case we get
/ 1-b'/b b'/b
1LY fllp < Clfly P12 p15 7. (3.4)

Plugging (3.3) and (3.4) into (3.1) with a replaced by a’, b replaced by &’ then suggests
the desired result. U

Proof of Theorem 1.4. First, by the Plancherel formula and (2.2) we have

> dzdtdp
/0 f LWy f .t )P s

L 1iond d
B / / | F a6 (oa HGYY2 |3 sdpn ()=
0 R* o

o0 R . d
= /0 /R* ”f()‘)H()»)b/z||2S|I¢*(pk)llésdu(x)?p
= C¢/ 1LY £ (2, 1) Pdzdr.

Hn

Next from Theorem 1.3, we get

b

a+b
/ Wy f (2., p)|*dzdr < c( / |<z,r)|2“|W¢f<z,r,p>|2dzdr)
H)l Hﬂ

x(/H |$b/2w¢f(z,t,p)|2dzdz> .
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Integrating with respect to dp/p" 2 we obtain

b
//|W¢f<zzp)|2dZdtd” f(/ 1202 Wy £ (zt.0) 2 dzdr) v

b dp
|$h/2W¢f(z,t,p)| dzdr) ot

Then by Holder’s inequality and (2.3) we have

b
drdp atb
|If|I2<C</ f (P W £zt )P Znif)

x</ .28 £ (2, t)|2dzdt> o
HVL

This completes the proof of this theorem. (]
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