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Uncertainty inequalities for the Heisenberg group
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1. Introduction

The classical Heisenberg–Pauli–Weyl uncertainty inequality for the Fourier transform on
R

n is

‖ f ‖4
2 ≤ cn

∫
Rn

|x |2| f (x)|2dx
∫

Rn
|ξ |2| f̂ (ξ)|2dξ, (1.1)

which can also be written in the form:

‖ f ‖2
2 ≤ cn‖|x | f ‖2‖(−�)1/2 f ‖2,

where � denotes the Laplacian.
By means of the classical one-dimensional uncertainty inequality (1.1), Singer [13]

obtained an uncertainty inequality for the continuous wavelet transform on a real line:

kφ‖ f ‖2
2 ≤ ‖τWφ( f )(a, τ )‖L2(dτda/a2)‖ξ f̂ (ξ)‖2, (1.2)

where φ is an admissible wavelet and kφ is an appropriate positive constant. For more
on the history and the relevance of the uncertainty inequality, we refer the readers to the
survey [5], the books [6,8], and the papers [2,10,11].

For the Heisenberg group Hn, Thangavelu [16] proved the following theorem.

Theorem 1.1. For a normalized L2 function f on Hn, one has

√
n

(
π

2

) n+1
2 ≤

( ∫
Hn

|z|2| f (z, t)|2dzdt

)1/2( ∫
Hn

|L 1/2 f (z, t)|2dzdt

)1/2

,

where L is the Heisenberg sub-Laplacian.
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Later, Sitaram et al. [14] obtained a generalized theorem.

Theorem 1.2. For f ∈ L2(Hn), 0 ≤ γ < n + 1, one has

‖ f ‖2
2 ≤ K

( ∫
Hn

|(z, t)|2γ | f (z, t)|2dzdt

)1/2(∫
Hn

|L γ /2 f (z, t)|2dzdt

)1/2

,

where K is a constant.

In this paper, we will prove the following two extensions:

Theorem 1.3. For f ∈ L2(Hn), a, b > 0, one has

‖ f ‖2
2 ≤C

(∫
Hn

|(z, t)|2a| f (z,t)|2dzdt

) b
a+b

(∫
Hn

|L b/2 f (z,t)|2dzdt

) a
a+b

,

(1.3)

where C is a constant.

Theorem 1.4. For f ∈ Hσ
α , φ ∈ AW σ

α and a, b > 0, one has

‖ f ‖2
2 ≤ C

( ∫ ∞

0

∫
Hn

|(z, t)|2a|Wφ f (z, t)|2 dzdtdρ

ρn+2

) b
a+b

×
(∫

Hn
|L b/2 f (z, t)|2dzdt

) a
a+b

,

where C is a constant.

The idea that we modify Theorem 1.2 to Theorem 1.3 originates from [1], where the
analogue of inequality (1.3) is established for a locally compact space. The main approach
of the proof of Theorem 1.3 is based on the estimate of the heat kernel together with
the relation between the sub-Laplacian and the group Fourier transform. Our method is
different from that in [1]. Furthermore, as an application of (1.3) we deduce an uncertainty
inequality for the continuous wavelet transform on the Heisenberg group, which is an
extension of (1.2).

2. Preliminaries

The Heisenberg group, denoted by Hn, is a nilpotent Lie group of step two whose
underlying manifold is C

n × R equipped with the group law

(z, t)(z′, t ′) =
(

z + z′, t + t ′ + 1

2
Im zz̄′

)
.

For (z, t) ∈ Hn , the homogeneous norm of (z, t) is given by |(z, t)| = (|z|4 + |t |2)1/4.

Then the ball of radius r centered at (z, t) is defined by Br (z, t) = {(z′, t ′) ∈ Hn :
|(z, t)−1(z′, t ′)| < r}. Let Sn be the unit sphere in Hn and suppose f is a measurable
function, one has (see [3])

∫
Hn

f (z, t)dzdt =
∫

Sn

∫ ∞

0
f (rζ )r2n+1drdζ. (2.1)
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Let πλ(z, t) (z = x + iy, λ ∈ R
∗ = R \ {0}) be the Schrödinger representations acted

on ϕ ∈ L2(Rn) by

πλ(z, t)ϕ(ξ) = eiλt eiλ(x ·ξ+ 1
2 x ·y)ϕ(ξ + y).

Given a function f ∈ L1(Hn), its group Fourier transform f̂ is defined to be the operator-
valued function and

f̂ (λ) =
∫

Hn
f (z, t)πλ(z, t)dzdt.

Let dμ(λ) = (2π)−n−1|λ|ndλ. Then one has the inversion of Fourier transform

f (z, t) =
∫ ∞

−∞
tr(π∗

λ (z, t) f̂ (λ))dμ(λ)

and the Plancherel formula

‖ f ‖2
2 =

∫
R∗

‖ f̂ (λ)‖2
H Sdμ(λ).

Suppose f and g are measurable functions on Hn, then their convolution is defined by

f ∗ g(z, t) =
∫

Hn
f ((z, t)(−w,−s))g(w, s)dwds.

It follows from the definition of the Fourier transform that f̂ ∗ g(λ) = f̂ (λ)ĝ(λ). In
addition, one has the generalized Yong inequality:

‖ f ∗ g‖r ≤ ‖ f ‖p‖g‖q ,

where 1
r = 1

p + 1
q − 1.

Now consider the Heisenberg sub-Laplacian

L = −
n∑

j=1

(X2
j + Y 2

j ),

where X j = ∂
∂x j

− 1
2 y j

∂
∂t , Y j = ∂

∂y j
+ 1

2 x j
∂
∂t . For the Schrödinger representations πλ one

has

π∗
λ (X j ) = iλξ j , π∗

λ (Y j ) = ∂

∂ξ j
.

So that π∗
λ (L ) = −� + λ2|ξ |2 = H(λ) is the Hermite operator. Let �α (α ∈ N

n) stand

for the normalized Hermite functions on R
n . For λ ∈ R

∗, define �λ
α(ξ) = |λ| n

4 �α(|λ| 1
2 ξ).

Then one has

H(λ)�λ
α = (2|α| + n)|λ|�λ

α.

One important relevance of sub-Laplacian L is the heat semigroup defined by

(e−sL f )(z, t) = qs ∗ f (z, t),
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where qs is the heat kernel given by

qs(z, t) = cn

∫ ∞

−∞
e−iλt

(
λ

sinh λs

)n

e− 1
4 (λ coth λs)|z|2dλ

with the positive constant cn . Note that the heat kernel is a C∞ function on Hn × (0,∞)

and its Fourier transform is (see p. 86 of [18])

q̂s(λ) = e−s H(λ).

More details about the sub-Laplacian and the heat kernel on Heisenberg group can be
found in [4,15,17].

Now we are going to recall some facts about the continuous wavelet transform on the
Heisenberg group. Let Pα(α ∈ N

n) be the projection from L2(Rn) to one-dimensional
subspace spanned by �α. For σ = + or −, define

Hσ
α = { f ∈ L2(Hn) : f̂ (λ) = f̂ (λ)Pα and f̂ (λ) = 0 if λ /∈ R

σ }.
By Theorem 1 of [9] one has

L2(Hn) =
⊕
α∈Nn

(H+
α ⊕ H−

α ).

For a nonzero function φ ∈ Hσ
α , if it satisfies

Cφ =
∫

R∗

‖φ̂(λ)‖2
H S

|λ| dλ < +∞,

we then call φ an admissible wavelet and write φ ∈ AW σ
α . Given a function f ∈ Hσ

α , the
continuous wavelet transform of f with respect to φ is defined by

Wφ f (z, t, ρ) = 〈 f, U (z, t, ρ)φ〉,
where

U (z, t, ρ)φ(z′, t ′) = ρ−(n+1)/2φ

(
z′ − z√

ρ
,

t ′ − t − 1
2 Im zz̄′

ρ

)
.

Note the following facts: for f ∈ Hσ
α and φ ∈ AW σ

α , one has
∫

Hn
Wφ f (z, t, ρ)πλ(z, t)dzdt = ρ(n+1)/2 f̂ (λ)φ̂(ρλ)∗ (2.2)

and ∫ ∞

0

∫
Hn

∣∣Wφ f (z, t, ρ)
∣∣2 dzdtdρ

ρn+2
= Cφ‖ f ‖2

2. (2.3)

For further details of wavelet transform on Hn , we refer to [7,9,12].

3. Proof of Theorems 1.3 and 1.4

In order to prove our main theorems, we first need some lemmas for preparation. Through-
out the paper, we will use C to denote the positive constant, which is not necessarily same
at each occurrence.



Uncertainty inequalities for the Heisenberg group 577

Lemma 3.1. The heat kernel qs(z, t) satisfies the estimate

‖qs‖2
2 ≤ Cs−n−1

with some positive constants C.

Proof. By Proposition 2.8.2 of [18] one has that

|qs(z, t)| ≤ Cs−n−1e− A
s (|z|2+|t |)

holds for some positive constants C and A. Since (|z|4 + |t |2) 1
2 ≤ |z|2 + |t |, we have

|qs(z, t)| ≤ Cs−n−1e− A
s |(z,t)|2 .

Thus by (2.1) we get

‖qs‖2
2 ≤ C

∫
Hn

s−2n−2e− 2A
s |(z,t)|2dzdt

= C
∫ ∞

0
s−2n−2e− 2A

s r2
r2n+1dr

= Cs−n−1,

which proves this lemma. �

Lemma 3.2. Let f ∈ L2(Hn). Then for 0 ≤ γ < n + 1, one has

‖ f ∗ qs‖2 ≤ Cs−γ /2
( ∫

Hn
|(z, t)|2γ | f (z, t)|2dzdt

)1/2

with some positive constants C.

Proof. We assume the non-trivial case that the integral of the right-hand side is finite. Let
Br = Br (0, 0) and set fr = f χBr , f r = f χHn\Br . Note that

‖ f̂ (λ)‖2
H S =

∑
a

‖ f̂ (λ)�λ
α‖2

2.

Then by the Plancherel formula we have

‖ f r ∗ qs‖2
2 =

∫
R∗

∑
α

‖ f̂ r (λ)e−s H(λ)�λ
α‖2

2dμ(λ)

=
∫

R∗

∑
α

‖ f̂ r (λ)e−s(2|α|+n)|λ|�λ
α‖2

2dμ(λ)

≤
∫

R∗

∑
α

‖ f̂ r (λ)�λ
α‖2

2dμ(λ)

=
∫

Hn
| f r |2dzdt

≤ 1

r2γ

∫
Hn\Br

|(z, t)|2γ | f (z, t)|2dzdt.
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On the other hand, by the generalized Yong inequality and Lemma 3.1 we have

‖ fr ∗ qs‖2 =‖qs‖2‖ fr‖1

≤Cs− n+1
2

(∫
Hn

|(z,t)|2γ | f (z,t)|2dzdt

)1/2(∫
Br

|(z,t)|−2γ dzdt

)1/2

.

Note that the second integral of the right-hand side is controlled by Cr−γ+n+1 since
0 ≤ γ < n + 1. Therefore,

‖ f ∗ qs‖2 ≤ ‖ f r ∗ qs‖2 + ‖ fr ∗ qs‖2

≤ Cr−γ (1 + s−(n+1)/2rn+1)

( ∫
Hn

|(z, t)|2γ | f (z, t)|2dzdt

)1/2

.

Choosing r = s1/2 then gives the desired estimate. �

Lemma 3.3. For f ∈ L2(Hn), if 0 < a < n + 1, 0 < b ≤ 2, one has

‖ f ‖2
2 ≤ C

( ∫
Hn

|(z, t)|2a | f (z, t)|2dzdt

) b
a+b

×
(∫

Hn
|L b/2 f (z, t)|2dzdt

) a
a+b

, (3.1)

where C is a constant.

Proof. By Lemma 3.2, we have

‖ f ‖2 ≤ ‖ f ∗ qs‖2 + ‖ f − f ∗ qs‖2

≤ Cs−a/2
( ∫

Hn
|(z, t)|2a| f (z, t)|2dzdt

)1/2

+
( ∫

R∗

∑
α

∥∥ f̂ (λ)
(
1 − e−s(2|α|+n)|λ|)�λ

α

∥∥2
2dμ(λ)

)1/2

≤ Cs−a/2
( ∫

Hn
|(z, t)|2a| f (z, t)|2dzdt

)1/2

+
( ∫

R∗

∑
α

∥∥ f̂ (λ)
1 − e−s(2|α|+n)|λ|

(s(2|α| + n)|λ|)b/2

×(s(2|α| + n)|λ|)b/2�λ
α

∥∥2
2dμ(λ)

)1/2

.

Note that if s ≥ 1, then for b ≥ 0,

1 − e−s

sb/2
≤ 1;

if 0 < s < 1, then for 0 ≤ b ≤ 2,

1 − e−s

sb/2
≤ Ce−ss1−b/2 ≤ C,
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since
1−e−s

sb/2

e−ss1−b/2
→ 1(s → 0+). Thus we obtain

‖ f ‖2 ≤ Cs−a/2
( ∫

Hn
|(z, t)|2a| f (z, t)|2dzdt

)1/2

+ Csb/2
(∫

R∗

∑
α

∥∥L̂ b/2 f (λ)�λ
α

∥∥2
2dμ(λ)

)1/2

, (3.2)

where we have applied the fact f̂ (λ)H(λ)b/2 = L̂ b/2 f (λ) to get the last term.
Minimizing the right-hand side of (3.2) then gives the desired result. �

Proof of Theorem 1.3. If a ≥ n + 1, let a′ < n + 1, then we have for all ε > 0,

|(z, t)|a′

εa′ ≤ 1 + |(z, t)|a
εa

,

which implies that

‖|(z, t)|a′
f ‖2 ≤ εa′ ‖ f ‖2 + εa′−a‖|(z, t)|a f ‖2.

Optimizing in ε then gives the Landau–Kolmogorov inequality:

‖|(z, t)|a′
f ‖2 ≤ C‖ f ‖1−a′/a

2 ‖|(z, t)|a f ‖a′/a
2 . (3.3)

Now for b > 2, we set b′ ≤ 2. Analogues to the above case we get

‖L b′/2 f ‖2 ≤ C‖ f ‖1−b′/b
2 ‖L b/2 f ‖b′/b

2 . (3.4)

Plugging (3.3) and (3.4) into (3.1) with a replaced by a′, b replaced by b′ then suggests
the desired result. �

Proof of Theorem 1.4. First, by the Plancherel formula and (2.2) we have
∫ ∞

0

∫
Hn

|L b/2Wφ f (z, t, ρ)|2 dzdtdρ

ρn+2

=
∫ ∞

0

∫
R∗

∥∥ f̂ (λ)φ̂∗(ρλ)H(λ)b/2
∥∥2

H Sdμ(λ)
dρ

ρ

≤
∫ ∞

0

∫
R∗

∥∥ f̂ (λ)H(λ)b/2
∥∥2

H S‖φ̂∗(ρλ)‖2
H Sdμ(λ)

dρ

ρ

= Cφ

∫
Hn

|L b/2 f (z, t)|2dzdt.

Next from Theorem 1.3, we get

∫
Hn

|Wφ f (z, t, ρ)|2dzdt ≤ C

( ∫
Hn

|(z, t)|2a|Wφ f (z, t, ρ)|2dzdt

) b
a+b

×
( ∫

Hn
|L b/2Wφ f (z, t, ρ)|2dzdt

) a
a+b

.
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Integrating with respect to dρ/ρn+2 we obtain

∫ ∞

0

∫
Hn

|Wφ f (z,t,ρ)|2 dzdtdρ

ρn+2
≤ C

∫ ∞

0

(∫
Hn

|(z,t)|2a|Wφ f (z,t,ρ)|2dzdt

) b
a+b

×
(∫

Hn
|L b/2Wφ f (z,t,ρ)|2dzdt

) a
a+b dρ

ρn+2
.

Then by Hölder’s inequality and (2.3) we have

‖ f ‖2
2 ≤ C

(∫ ∞

0

∫
Hn

|(z, t)|2a |Wφ f (z, t, ρ)|2 dzdtdρ

ρn+2

) b
a+b

×
(∫

Hn
|L b/2 f (z, t)|2dzdt

) a
a+b

.

This completes the proof of this theorem. �
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