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Abstract. In a wide subclass of generalized order statistics (gOs), which contains
most of the known and important models of ordered random variables, weak conver-
gence of lower extremes are developed. A recent result of extreme value theory of
m−gOs (as well as the classical extreme value theory of ordinary order statistics) yields
three types of limit distributions that are possible in case of linear normalization. In
this paper a similar classification of limit distributions holds for extreme gOs, where
the parameters γ j , j = 1, . . . , n, are assumed to be pairwise different. Two illustrative
examples are given to demonstrate the practical importance for some of the obtained
results.

Keywords. Weak convergence; generalized order statistics; extreme value theory;
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1. Introduction and auxiliary results

Kamps [6] introduced the concept of generalized order statistics (gOs) as a unification
of several models of ascendingly ordered random variables (rv’s). The use of such a
concept has been steadily growing over the years. This is due to the fact that such concepts
include important well-known concepts that have been separately treated in statistical
literature.

In testing the strength of materials, reliability analysis, lifetime studies, etc., the real-
izations of experiments arise in nondecreasing order and therefore we need to consider
several models of ascendingly ordered rv’s. Theoretically, many of these models are con-
tained in the gOs model, such as ordinary order statistics (oOs), order statistics with
non-integral sample size, sequential order statistics (sOs), record values, Pfeifer’s record
model and progressive type II censored order statistics (pOs). These models can be applied
in reliability theory, especially the extreme value ones. For instance, the r -th extreme
order statistic represents the lifetime of some r−out-of−n system, whereas the sOs model
is an extension of the oOs model and serves as a model describing certain dependencies
or interactions among the system components caused by failures of components. The pOs
model is an important method for obtaining data in lifetime tests. Live units removed early
on can be readily used in other tests, thereby saving cost to the experimenter, and a com-
prise can be achieved between time consumption and observation of some extreme values.
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The concept of gOs enables a common approach to structural similarities and analogies.
Known results in submodels can be subsumed, generalized and integrated within a gen-
eral framework. Well-known distributional and inferential properties of oOs and record
values turn out to remain valid for gOs. Thus, the concept of gOs provides a large class
of models with many interesting and useful properties for both the description and the
analysis of practical problems. Due to this reason the question arises whether the general
distribution theory of gOs as well as their properties can be obtained by analogy with that
for oOs. The present paper proves this coincidence between the limit theory of oOs and
an important wide class of gOs including pOs. The limit theory of pOs has not been avail-
able so far. Since, the statistical modeling of data that arise in practice mainly depends on
the limit theory, the result of this paper will be of considerable practical importance (for
more details, see Example 3.2).

Kamps [6] defined gOs by first defining what he called the uniform gOs and then
he used the quantile transformation to obtain the general gOs. Namely, uniform gOs
U (r, n, m̃, k), r = 1, 2, . . . , n, are defined by their joint density function

f (m̃,k)
1,2,...,n:n(u1, u2, . . . , un) = f (m̃,k)

U (1,n,m̃,k),U (2,n,m̃,k),...,U (n,n,m̃,k):n(u1, u2, . . . , un)

=
⎛
⎝

n∏
j=1

γ j

⎞
⎠

⎛
⎝

n−1∏
j=1

(1 − u j )
γ j −γ j+1−1

⎞
⎠ (1 − un)γn−1,

on the cone {(u1, . . . , un) : 0 ≤ u1 ≤ · · · ≤ un < 1} ⊂ R
n, with parameters

γ1, . . . , γn > 0. The parameters γ1, . . . , γn are defined by γn = k > 0 and
γr = k + n − r + ∑n−1

j=r m j = k + M ′
r , r = 1, 2, . . . , n − 1, where M ′

r = ∑n−1
j=r m′

j ,

m′
j = m j + 1, m̃ = (m1, m2, . . . , mn−1) and m1, m2, . . . , mn−1 ∈ R. Generalized

order statistics based on some distribution function (df) F are defined via the quantile
transformation X (r, n, m̃, k) = F−1(U (r, n, m̃, k)), r = 1, 2, . . . , n. Particular choices
of the parameters γ1, . . . , γn lead to different models, e.g., m−gOs (γn = k, γr =
k + (n − r)(m + 1), r = 1, . . . , n − 1), oOs (γn = 1, γr = n − r + 1, r = 1, . . . , n − 1,

i.e., k = 1, mi = 0, i = 1, . . . , n − 1), sOs (γn = αn, γr = (n − r + 1)αr , αr >

0, r = 1, . . . , n − 1), pOs with censoring scheme (R1, . . . , RM ) (γn = RM + 1, γr =
n − r + 1 + ∑M

j=r R j , if r ≤ M − 1 and γr = n − r + 1 + RM , if r ≥ M) and upper
records (γr = 1, 1 ≤ r ≤ n, i.e., k = 1, mi = −1, i = 1, . . . , n − 1) (see [5–7]). There-
fore, all the results obtained in the model of gOs can be applied to the particular models
choosing the respective parameters.

In a wide subclass of gOs, where m1 = m2 = · · · = mr−1 = m, Kamps [6] derived
the marginal df

�(m̃,k)
r :n (x) = P(X (r, n, m̃, k) ≤ x) = 1 − Cr−1(1 − F(x))γr

r−1∑
j=0

1

j !Cr− j−1
g j

m(x),

where m 	= −1, (m + 1)gm(x) = Gm(x) = 1 − (1 − F(x))m+1 is a df, while g−1(x) =
− log(1 − F(x)) (record model), and Cr−1 = ∏r

i=1 γi , r = 1, 2, . . . , n. The possible

limit df’s of �
(m̃,k)
n:n , i.e., the limit df of the maximum gOs, under the condition m1 =

m2 = · · · = mn−1 = m 	= −1 (in this case, clearly, the record model is excluded)
and their domain of attraction under linear normalization are shown in Nasri-Roudsari
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[9]. The analogous results for the power normalization are derived by Nasri-Roudsari
[10], by using the transfer theorem of Christoph and Falk [4]. Barakat [3] extended these
results to a more general case, where m1 = m2 = · · · = mn−r = m 	= −1 and M̌ =

1
r−1

∑n−1
j=n−r+1 m j remains fixed, as n → ∞. The main result of Nasri-Roudsari [9] can

be summarized in the following theorem.

Theorem 1.1 [9]. Let m1 = m2 = · · · = mn−1 = m > −1 and r ∈ {1, 2, . . . , n}.
Then, there exist real normalizing constants ãn > 0 and b̃n for which �

(m̃,k)
n−r+1:n(ãn x +

b̃n)
w−→n �̃

(m̃,k)
r (x), where w−→n denotes the weak convergence, as n → ∞, and

�̃
(m̃,k)
r (x) is a nondegenerate df, if and only if there exist real normalizing constants

α̃n > 0 and β̃n for which

�
(0̃,1)
n−r+1:n(α̃n x + β̃n)

w−→n �̃(0̃,1)
r (x) = 1 − �r (Vt,β(x)), t ∈ {1, 2, 3},

where �r (x) is the incomplete gamma function and

Type I : V1(x) = V1;β(x) = e−x , ∀ x;

Type II : V2;β(x) =
{ ∞, x ≤ 0,

x−β, x > 0;

Type III : V3;β(x) =
{

(−x)β, x ≤ 0,

0, x > 0.

In this case �̃
(m̃,k)
r (x) = 1 − �R(V m+1

t,β (x)), where R = k
m+1 + r − 1. Moreover, ãn

and b̃n may be chosen such that ãn = α̃φ̃(n) and b̃n = β̃φ̃(n), where φ̃(n) = n
1

m+1 .

The following theorem gives the analogous result for the r -th lower gOs.

Theorem 1.2. Let m1 = m2 = · · · = mn−1 = m > −1 and r ∈ {1, 2, . . . , n}.
Then, there exist real normalizing constants an > 0 and bn for which �

(m̃,k)
r :n (an x +

bn)
w−→n �

(m̃,k)
r (x), where �

(m̃,k)
r (x) is a nondegenerate df, if and only if there exist real

normalizing constants αn > 0 and βn for which

�(0̃,1)
r :n (αn x + βn)

w−→n �(0̃,1)
r (x) = �r (Ut,β(x)), t ∈ {1, 2, 3},

where

Type I : U1(x) = U1;β(x) = ex , ∀ x;

Type II : U2;β(x) =
{

(−x)−β, x ≤ 0,

∞, x > 0;

Type III : U3;β(x) =
{

0, x ≤ 0,

xβ, x > 0.

In this case �
(m̃,k)
r (x) = �r (Ut,β(x)) = 1 −

r−1∑
j=0

1
j !U

j
t,β(x)e−Ut,β (x), where an and bn

may be chosen such that an = αφ(n) and bn = βφ(n), where φ(n) = (m + 1)n.
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Theorem 1.2 can be easily proved by considering the representation of Nasri-Roudsari
[9], �

(m̃,k)
r :n (x) = IGm (x)(r, N − r), where Ix (a, b) = 1

B(a,b)

∫ x
0 ta−1(1 − t)b−1dt denotes

the incomplete beta function and N = n + k
m+1 . On the other hand, by noting that

�
(0̃,1)
r :n (αn x + βn)

w−→n �̃
(0̃,1)
r (x) = �r (Ut,β(x)), t ∈ {1, 2, 3}, if and only if nF(αn x +

βn)
w−→n Ut,β(x), which implies that nGm(αn x + βn) = n[1 − F̄m+1(αn x + βn)] ∼

(m+1)nF(αn x +βn), as n → ∞, where F̄ = 1−F. Therefore, nGm(αφ(n)x +βφ(n)) ∼
φ(n)F(αφ(n)x + βφ(n)) → Ut,β(x), as n → ∞. Thus, we get

�(m̃,k)
r :n (αφ(n)x + βφ(n)) = IGm (αφ(n)x+βφ(n))(r, N − r)

= 1 −
r−1∑
j=0

�(N )

j !�(N − j)
G j

m(αφ(n)x + βφ(n))Ḡ
N− j−1
m

× (αφ(n)x + βφ(n))
w−→n �r (Ut,β(x)),

(see also [8]).
Although, the above two theorems provide a set-up which includes many interesting

models such as oOs and pOs, with censoring scheme (R, . . . , R) ∈ N
M , a lot of models

contained in the family of gOs are excluded in this set-up, eg., pOs with general censoring
scheme (R1, . . . , RM ). In this paper we extend Theorem 1.2 to a very wide subclass
of gOs in which the vector m̃ is arbitrarily chosen such that m′

i = mi + 1 > 0, i =
1, 2, . . . , n −1, and the parameters γ1, . . . , γn are pairwise different, i.e., γi 	= γ j , i 	=
j, for all i, j ∈ {1, . . . , n}. For instance, this assumption is no restriction on pOs with
general censoring scheme (R1, . . . , RM ). The choice m1 = · · · = mn−1 = −1, which
has to be excluded here, corresponds to common record values. However, this excluded
case has been extensively studied by various authors (see [1, 11, 12]). The marginal df of
the r -th gOs in this case is given in [7] by

�(m̃,k)
r :n (x) = 1 − Cr−1

r∑
i=1

ai (r)

γi
(1 − F(x))γi , (1.1)

where ai (r) = ∏r
j=1
j 	=i

1
γ j −γi

=
r∏

j=1

〈i〉
1

γ j −γi
. Since the parameters γ j eventually depend

on n we indicate this attribute subsequently by an additional index, i.e., γi,n .

Remark 1.1. Although the parameter ai (r) depends on γi,n , the following representation,
which can be easily proved

ai (r) = (−1)r−i
(∏i−1

j=1
∑i−1

t= j m′
t

) (∏r
j=i+1

∑ j−1
t=i m′

t

) , (1.2)

shows that ai (r) does not depend on n for all i = 1, . . . , r, whenever r is constant with
respect to n. Here we adopt (and in the sequel) the conventions

∏
∅ = 1 and

∑
∅ = 0.
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Remark 1.2. For all n and i = 1, . . . , n − 1, it is easy to prove that

(i) γ1,n > γ2,n > · · · > γn−1,n ;

(ii) γi,n = γ1,n − ∑i−1
j=1 m′

j .

Remark 1.3. Since, for all r, n, k and m̃, we have �
(m̃,k)
r :n (−∞) = 0, then

Cr−1

r∑
i=1

ai (r)

γi,n

=
r∑

i=1

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

= 1,

for all r ≤ n and γ1,n > γ2,n > · · · > γn−1,n .

We end this section with two lemmas which are needed in the next sections.

Lemma 1.1. For all θ 	= γi,n , i = m, m + 1, . . . , r, we get
r∑

i=m

a[m]
i (r)

θ − γi,n

=
r∏

i=m

(−1)r−m

θ − γi,n

, (1.3)

where

a[m]
i (r) =

r∏
j=m

〈i〉
1

γ j,n − γi,n

.

Clearly we have a[1]
i (r) = ai (r).

Proof. We prove the lemma by induction over r. Since

a[m]
i (m)

θ − γi,n

= 1

θ − γi,n

m∏
i=m

〈m〉
1

(γi,n − γm,n )
= 1

θ − γi,n

,

the LHS of the relation (1.3) coincides with its RHS at r = m. Let us now assume the
relation (1.3) to be true for m ≤ s < r . That is

s∑
i=m

a[m]
i (s)

θ − γi,n

=
s∏

i=m

(−1)s−m

θ − γi,n

. (1.4)

Therefore, for s + 1, we have

s+1∑
i=m

a[m]
i (s + 1)

θ − γi,n

=
s∑

i=m

a[m]
i (s + 1)

θ − γi,n

+ a[m]
s+1(s + 1)

θ − γs+1,n

.

Since r ≤ s in the first summation on the RHS of the last relation, we have

a[m]
i (s + 1) =

s+1∏
j=m

〈i〉
1

(γ j,n − γi,n )
= a[m]

i (s)

γs+1,n − γi,n

.
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Thus, we get

s+1∑
i=m

a[m]
i (s + 1)

θ − γi,n

=
s∑

i=m

a[m]
i (s)

(θ − γi,n )(γs+1,n − γi,n )
+ a[m]

s+1(s + 1)

θ − γs+1,n

.

By using the partial fraction and the assumption of induction (1.4), we get

s+1∑
i=m

a[m]
i (s + 1)

θ − γi,n

=
s∑

i=m

a[m]
i (s)

(θ − γi,n )(γs+1,n − θ)

+
s∑

i=m

a[m]
i (s)

(θ − γs+1,n )(γs+1,n − γi,n )
+ a[m]

s+1(s + 1)

θ − γs+1,n

= − 1

θ − γs+1,n

s∏
i=m

(−1)s−m

θ − γi,n

+ 1

θ − γs+1,n

s∑
i=m

a[m]
i (s)

γs+1,n − γi,n

+ a[m]
s+1(s + 1)

θ − γs+1,n

. (1.5)

Again, an application of the assumption of induction, with θ = γs+1,n yields

1

θ − γs+1,n

s∑
i=m

a[m]
i (s)

γs+1,n − γi,n

= 1

θ − γs+1,n

s∏
i=m

(−1)s−m

γs+1,n − γi,n

= 1

θ − γs+1,n

s∏
i=m

(−1)(s−m)+(s−m+1)

γi,n − γs+1,n

= − 1

θ − γs+1,n

s∏
i=m

1

γi,n − γs+1,n

= − 1

θ − γs+1,n

s+1∏
i=m

〈s+1〉
1

γi,n − γs+1,n

= − a[m]
s+1(s + 1)

θ − γs+1,n

. (1.6)

Combining relations (1.5) and (1.6), we can see that relation (1.3) is true for s+1, which
completes the proof. �

Lemma 1.2. The df �
(m̃,k)
r :n (x) can be represented as

�(m̃,k)
r :n (x) = 1 − F̄γ1,n (x)L(m̃,k)

r :n (x), (1.7)



On the limit distribution of gOs 303

where

L(m̃,k)
r :n (x) =

r∑
i=1

⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠ F̄−(γ1,n −γi,n )

(x)

is a polynomial of γ1,n with degree r −1. Moreover, this polynomial depends on n only
through the parameter γ1,n .

Proof. In view of (1.2) and Remarks 1.2(ii) and 1.3, it is easy to prove the representation

L(m̃,k)
r :n (x) =

r∑
i=1

(−1)r−i∏r
j=1

〈i〉
(γ1,n − ∑ j−1

t=1 m′
t )(∏i−1

j=1
∑i−1

t= j m′
t

) (∏r
j=i+1

∑ j−1
t=i m′

t

) F̄−∑i−1
t=1 m′

t (x),

(1.8)

which in turns immediately proves our assertion, and the proof is complete. �

Lemma 1.2 reveals an interesting fact that, given a df F and suitable normalizing con-
stants, the asymptotic behaviour of the df �

(m̃,k)
r :n (x), as n → ∞ depends solely on

γ1,n and in fact the parameter γ1,n may be thought as the basket, which contains all the

information on the asymptotic behaviour of the df �
(m̃,k)
r :n (x). In §2, we study the weak

convergence of the df �
(m̃,k)
r :n (x), as γ1,n → ∞. Section 3 is concerned with the weak con-

vergence of the df �
(m̃,k)
r :n (x), as γ1,n → γ1 > 0 and some illustrative examples.

2. Main result

Throughout this section we assume that there exist normalizing constants αn > 0 and
βn for which

�
(0̃,1)
1:n (αn x + βn) = 1 − F̄n(αn x + βn)

w−→n �
(0̃,1)
1 (x)

= �1(Ut,β(x))=1 − e−Ut,β (x), t ∈ {1, 2, 3}, (2.1)

where the functions Ut,β(x), i = 1, 2, 3 are defined in Theorem 1. It is known that the
necessary and sufficient condition for (2.1) holds if

n F(αn x + βn) −→ Ut,β(x), t ∈ {1, 2, 3}, (2.2)

which implies that for large n, F(αn x + βn) ∼ 0 for all x for which �
(0̃,1)
1 (x) < 1. On

the other hand, on account of (1.1), we get �
(m̃,k)
1:n (x) = 1 − F̄ γ1,n (x). Therefore

�
(m̃,k)
1:n (an x + bn) = �

(m̃,k)
1:n (αγ1,n

x + βγ1,n
)

= 1 − F̄ γ1,n (αγ1,n
x + βγ1,n

)
w−→n �

(m̃,k)
1 (x)

= �1(Ut,β(x)), t ∈ {1, 2, 3}, (2.3)

if relation (2.2) (as well as relation (2.1)) is satisfied. The following theorem gives the
possible limits of the r -th gOs.
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Theorem 2.1. Under the condition (2.1) (or equivalently the condition (2.2)) and for all
m̃ ∈ R

n−1 such that m′
t > 0, t = 1, . . . , n − 1, we get

�(m̃,k)
r :n (an x + bn)

w−→n �(m̃,k)
r (x) = �r (Ut,β(x))

= 1 −
r−1∑
i=0

Ui
t,β(x)

i ! e−Ut,β (x), t ∈ {1, 2, 3}, (2.4)

where an = αγ1,n
> 0 and bn = βγ1,n

.

Proof. Relation (2.3) shows that the theorem is true when r = 1. Moreover, when
r = 2, in view of Remark 1.2(ii) and the relation F(an x + bn) → 0 as n → ∞,

Lemma 1.2 yields �
(m̃,k)
2:n (an x + bn) = 1 − F̄γ1,n (an x + bn)L(m̃,k)

2:n (an x + bn), where

L(m̃,k)
2:n (an x + bn) = γ2,n

γ2,n − γ1,n

− γ1,n

γ1,n − γ2,n

F̄ −m′
1(an x + bn)

= −(γ1,n − m′
1) + γ1,n F̄−m′

1(an x + bn)

m′
1

= γ1,n (1 + m′
1 F(an x + bn)(1 + ◦(1))) − (γ1,n − m′

1)

m′
1

= m′
1 + γ1,n m′

1 F(an x + bn)(1 + ◦(1))

m′
1

= 1 + γ1,n F(an x + bn)(1 + ◦(1)) → 1 + Ut,β(x).

Therefore,

�
(m̃,k)
2:n (an x + bn)

w−→n 1 − (1 + Ut,β(x))e−Ut,β (x)

= �2(Ut,β(x)) = 1 −
1∑

i=0

Ui
t,β(x)

i ! e−Ut,β (x),

which means that Theorem 2.1 is also true when r = 2.
Now, in order to prove the theorem for all r, we proceed as follows: First, in view of

Lemma 1, we note that L(m̃,k)
r :n (an x + bn) is a polynomial of γ1,n with degree r − 1.

On the other hand, by expanding F̄−(γ1,n −γi,n )
(an x + bn) = F̄−∑i−1

t=1 m′
t (an x + bn) by

binomial expansion, L(m̃,k)
r :n may be regarded as a polynomial of γ1,n with degree r −1,

as well as an infinite polynomial of F(an x + bn). Since, under the condition of theorem
γ1,n F(an x + bn) → Ut,β(x) and F(an x + bn) → 0 as n → ∞, we can easily

see that for large n, all terms of L(m̃,k)
r :n as a polynomial of F(an x + bn), starting
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from Fr (an x + bn) will be vanished. Therefore, in view of (1.7), we have the following
representation as n → ∞:

�(m̃,k)
r :n (an x + bn)

= 1 − F̄γ1,n (an x + bn)(A0,r + A1,r F(an x + bn)

+ · · · + Ar−1,r Fr−1(an x + bn))(1 + ◦(1)),

where

A	,r = 1

	!
r∑

i=1

⎡
⎣

⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠

⎛
⎝

	∏
j=1

(γ1,n − γi,n + j − 1)

⎞
⎠

⎤
⎦ . (2.5)

Moreover, in view of Remark 1.3, we can easily see that A0,r = 1 for all r . Our task now
is to compute A	,r for all 1 ≤ 	 ≤ r − 1. To achieve this we first derive a recurrence
relation which is satisfied by A	,r for all 1 ≤ 	 < r − 1, r ≥ 3. In view of (2.5), we get

(	 + 1)! A	+1,r =
r∑

i=1

⎡
⎣

⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠

×
⎛
⎝

	+1∏
j=2

(γ1,n − γi,n + j − 1)

⎞
⎠ (γ1,n − γi,n )

⎤
⎦

=
r∑

i=2

⎡
⎣

⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠

×
⎛
⎝

	∏
j=1

(γ1,n − γi,n + j − 1)

⎞
⎠ (γ1,n − γi,n + 	)

⎤
⎦

= (γ1,n + 	)

r∑
i=2

⎡
⎣

⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠

×
⎛
⎝

	∏
j=1

(γ1,n − γi,n + j − 1)

⎞
⎠

⎤
⎦

−
r∑

i=2

⎡
⎣γi,n

⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠

×
⎛
⎝

	∏
j=1

(γ1,n − γi,n + j − 1)

⎞
⎠

⎤
⎦ . (2.6)
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On the other hand, we can show that

	! A	,r =
r∑

i=1

⎡
⎣
⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠

⎛
⎝

	∏
j=1

(γ1,n − γi,n + j − 1)

⎞
⎠
⎤
⎦

=
r∑

i=1

⎡
⎣
⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠

⎛
⎝

	∏
j=2

(γ1,n −γi,n + j − 1)

⎞
⎠(γ1,n − γi,n )

⎤
⎦

=
r∑

i=2

⎡
⎣

⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠

⎛
⎝

	∏
j=1

(γ1,n − γi,n + j − 1)

⎞
⎠

⎤
⎦ . (2.7)

Combining (2.6) and (2.7) we get, for all 1 ≤ 	 < r − 1, r ≥ 3

(	 + 1)!A	+1,r = 	!(γ1,n + 	)A	,r − 
n(	, r),

where


n(	, r) =
r∑

i=2

⎡
⎣γi,n

⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠

⎛
⎝

	∏
j=1

(γ1,n − γi,n + j − 1)

⎞
⎠

⎤
⎦

= Cr−1

r∑
i=2

∏	
j=2(γ1,n − γi,n + j − 1)
∏r

j=2
〈i〉

(γ j,n − γi,n )

= Cr−1

r∑
i=2

⎡
⎣a[2]

i (r)

	∏
j=2

(γ1,n − γi,n + j − 1)

⎤
⎦. (2.8)

If one shows that 
n(	, r) = 0 for all 1 ≤ 	 < r − 1, r ≥ 3, and A1,r = γ1,n , then by
induction over r we can easily see that

A	,r = γ1,n (γ1,n + 1) · · · (γ1,n + 	 − 1)

	! ,

which in turn, in view of our conditions γ1,n F(an x +bn) → Ut,β(x) and F(an x +bn) →
0 as n → ∞, implies that the relation (2.4) and consequently Theorem 2 will be proved
(the Mathematica version 6.0 is used to check that 
r,	 = 0 for r = 3, 4, . . . , 12 and for
all values of 	 < r. Although, this will be satisfactory for many practical purposes, it
will be better to prove this fact theoretically).

Now, in view of (2.5), we get

A1,r =
r∑

i=1

⎡
⎣

⎛
⎝

r∏
j=1

〈i〉
γ j,n

γ j,n − γi,n

⎞
⎠ (γ1,n − γi,n )

⎤
⎦
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= γ1,n

r∑
i=2

⎡
⎣

r∏
j=2

〈i〉
γ j,n

γ j,n − γi,n

⎤
⎦

= γ1,n

r−1∑
i ′=1

⎡
⎣

r−1∏
j ′=1

〈i ′〉
γ

j ′+1,n

γ
j ′+1,n

− γ
i ′+1,n

⎤
⎦= γ1,n

r−1∑
i=1

⎡
⎣

r−1∏
j=1

〈i〉
γ �

j,n

γ �
j,n

− γ �
i,n

⎤
⎦ ,

where γ �
j,n

= γ j+1,n , j = 1, 2, . . . , r − 1. In view of the obvious relation γ �
1,n

> · · · >

γ �
r−1,n

, we can apply Remarks 1.3 with r − 1 and γ �
j,n

instead of r and γ j,n respectively,
to get

A1,r = γ1,n

r−1∑
i=1

⎡
⎣

r−1∏
j=1

〈i〉
γ �

j,n

γ �
j,n

− γ �
i,n

⎤
⎦ = γ1,n .

Now, let 
̄n(	, r) = 
n(	,r)
Cr−1

. Therefore, by using (2.8) we get


̄n(1, r) =
r∑

i=2

a[2]
i (r) =

r−1∑
i=2

a[2]
i (r) + a[2]

r (r). (2.9)

Since, in the first summation on the RHS of (2.9), i ≤ r − 1, we get

a[2]
i (r) = a[2]

i (r − 1)

γr,n − γi,n

.

Thus


̄n(1, r) =
r−1∑
i=2

a[2]
i (r − 1)

γr,n − γi,n

+ a[2]
r (r).

An application of Lemma 1, with θ = γr,n thus yields


̄n(1, r) =
r−1∏
i=2

(−1)(r−1)−2

γr,n − γi,n

+ a[2]
r (r) = −

r−1∏
i=2

1

γi,n − γr,n

= −
r∏

i=2

〈r〉
1

γi,n − γr,n

+ a[2]
r (r) = −a[2]

r (r) + a[2]
r (r) = 0.

Therefore, for all 3 ≤ r < n and γ1,n > γ2,n > · · · > γr,n , we get 
n(1, r) = 0. We
are now going to prove 
̄n(	, r) = 0 (and consequently 
n(	, r) = 0). This will be done
by induction over 	. Assume, for all 3 ≤ r < n and γ1,n > γ2,n > · · · > γr,n , we have


̄n(ξ, r) = 0 for all ξ < r − 2. (2.10)
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Then, by using (2.8) and the assumption of the induction (2.10), we get


̄n(ξ + 1, r) =
r∑

i=2

⎡
⎣a[2]

i (r)

ξ+1∏
j=2

(γ1,n − γi,n + j − 1)

⎤
⎦

=
r∑

i=2

⎡
⎣a[2]

i (r)(γ1,n − γi,n + ξ)

ξ∏
j=2

(γ1,n − γi,n + j − 1)

⎤
⎦

= −
r∑

i=2

⎡
⎣a[2]

i (r)γi,n

ξ∏
j=2

(γ1,n − γi,n + j − 1)

⎤
⎦

=
r∑

i=2

⎡
⎣a[2]

i (r)(γ2,n − γi,n )

ξ∏
j=2

(γ1,n − γi,n + j − 1)

⎤
⎦

−γ2,n 
̄n(ξ, r)

=
r∑

i=3

⎡
⎣a[2]

i (r)(γ2,n − γi,n )

ξ∏
j=2

(γ1,n − γi,n + j − 1)

⎤
⎦ .

(2.11)

Since, in the summation of the RHS of (2.11), i ≥ 3, we get

a[2]
i (r) =

r∏
j=2

〈i〉
1

γ j,n − γi,n

= 1

γ2,n − γi,n

r∏
j=3

〈i〉
1

γ j,n − γi,n

= a[3]
i (r)

γ2,n − γi,n

.

Thus, we get


̄n(ξ + 1, r) =
r∑

i=3

⎡
⎣a[3]

i (r)

ξ∏
j=2

(γ1,n − γi,n + j − 1)

⎤
⎦

=
r−1∑
i ′=2

⎡
⎣a[3]

i ′+1(r)

ξ∏
j=2

(γ1,n − γ
i ′+1,n

+ j − 1)

⎤
⎦ .

On the other hand,

a[3]
i ′+1(r) =

r∏
j=3

〈i ′+1〉
1

γ j,n − γ
i ′+1,n

=
r−1∏
j ′=2

〈i ′〉
1

γ
j ′+1,n

− γ
i ′+1,n

=
r−1∏
j ′=2

〈i ′〉
1

γ �
j ′,n − γ �

i ′,n
= a�[2]

i ′ (r − 1).
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Therefore,


̄n(ξ + 1, r) =
r−1∑
i=2

⎡
⎣a

�[2]
i (r − 1)

ξ∏
j=2

(γ1,n − γ�
i,n

+ j − 1)

⎤
⎦

=
r−1∑
i=2

⎡
⎣a

�[2]
i (r − 1)

ξ∏
j=2

(γ1,n−1 − γ�
i,n

+ j − 1)

⎤
⎦ .

Since the assumption of the induction holds for all 3 ≤ r < n and γ1,n > · · · > γr,n , we
can apply it with r − 1 and γ1,n , γ

�
2,n

, . . . , γ �
r−1,n

instead of r and γ1,n , . . . , γr,n respectively

(note that γ1,n > γ�
2,n

> . . . > γ�
r−1,n

) to get 
̄n(ξ + 1, r) = 0. This completes the proof
of the theorem. �

Remark 2.1. Under the condition that k = 1, m′
t = m + 1, t = 1, . . . , n − 1. Since

γ
1,n− k

m+1
→ ∞ if γ1,n → ∞ and F(an x + bn) ∼ 0 as n → ∞, we can see that (with

φ(n) = (m + 1)n)

�(m̃,k)
r :n (αφ(n)x + βφ(n)) = �(m̃,k)

r :n
(

a
n− k

m+1
x + b

n− k
m+1

)

∼ �
(m̃,k)

r :n− k
m+1

(
a

n− k
m+1

x + b
n− k

m+1

)

w−→n �r (Ut,β(x)) = 1

−
r−1∑
i=1

Ui
t,β(x)

i ! e−Ut,β (x), t ∈ {1, 2, 3}.

Therefore, Theorem 1 is a simple consequence of Theorem 2 in this case.

3. Further limit theorem and illustrative examples

In this section we drop all the previous conditions and consider only the condition γ1,n →
γ1 > 0 as n → ∞. The next theorem gives the asymptotic behaviour of the r -th gOs
under this condition. It is worth to mention that most of the known models, eg., oOs, pOs
are excluded from this situation.

Theorem 3.1. Under the condition γ1,n → γ1 > 0, as n → ∞, and for all m̃ ∈ R
n−1

such that m′
t > 0, t = 1, · · · , n − 1, we get

�(m̃,k)
r :n (an x + bn)

w−→n ��(m̃,k)
r (x) = 1 −

r∑
i=1

⎛
⎝

r∏
j=1

〈i〉
γ j

γ j − γi

⎞
⎠ F̄γi (ax + b),

(3.1)

where γ j,n → γ j , j = 1, 2, . . . , r, an = a > 0 and bn = b.
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Proof. In view of Remark 1.2(ii) and the two relations γ1,n → γ1 > 0 as n → ∞, and
γ j,n+1 ≥ γ j,n for all n, the parameter γ j,n converges to a positive real number γ j for all
j = 1, . . . , r. Therefore, the proof is immediately followed by using (1.7). �

Example 3.1. Let m′
t = ( 1

2 )t , t = 1, . . . , n − 1 and k = 0. Then, γ j,n → ( 1
2 ) j−1, j =

1, . . . , r . In view of Theorem 3, we get

�(m̃,k)
r :n (x)

w−→n ��(m̃,k)
r (x) = 1 −

r∑
i=1

⎛
⎝

r∏
j=1

〈i〉
1

1 − 2 j−1

⎞
⎠ F̄ (2

1−i
)(ax + b).

Example 3.2. (pOs with general censoring scheme (R1, . . . , RM )). Let X1, . . . , Xn be
independent lifetimes of n identical units, with Xi having the df F. These units are
placed on test at time t = 0. At the time of the r -th failure, Rr , 1 ≤ r ≤ M, number
of surviving units are randomly withdrawn from the experiment. Thus, if M failures are
observed, then R1 +· · ·+ RM number of units are progressively censored and in this case

we get n = M + R1 +· · ·+ RM . The r -th failure time X (R̃)
r :n , where R̃ = (R1, . . . , RM ) is

called the r -th progressive Type II censored order statistic (e.g., see [2]). Clearly, X (R̃)
r :n =

X (r, n, m̃, k), where k = RM + 1, mi = Ri , i = 1, . . . , M − 1 and mi = 0, i =
M, . . . , n−1. Therefore, γ1,n = n. Thus, in view of Theorem 2.1, we can conclude that in
this important model, the extreme value theory coincides with the classical extreme value
theory of oOs, regardless of the value of M. If the failure times are from a continuous
population with a df F, it is readily checked that F belongs to the Type I domain, when F
is a standard normal. The exponential and log-normal distributions also have Type I limits.
The Pareto, Cauchy distributions give Type II limits, whereas the uniform distribution
belongs to the Type III domain. For statistical modeling purpose, we first write the full
limiting df’s model defined in (2.4), by adding location and scale parameters μ and σ > 0,

namely, �r (Ut,β(
x−μ
σ

)), t = 1, 2, 3. Then, by taking the reparametrization γ = 1
β
− due

to von Mises (see [13]) one obtains a continuous, unified model

�r (Ũγ (x)) = 1 −
r−1∑
i=0

Ũ i
γ (x)

i ! exp(−Ũγ (x)), (3.2)

where

Ũγ (x) = exp

(
−

(
1 − γ

(
x − μ

σ

)− 1
γ

))
, 1 − γ

(
x − μ

σ

)
> 0.

Apart from a change of origin (the location parameter μ) and a change in the unit on the
x-axis (the scale parameter σ > 0) the df (3.2) yields the three limit types defined in
(2.4), according as γ = 0 (γ → 0), γ > 0 and γ < 0. In this case, any suitable stan-
dard statistical methodology from parametric estimation theory can be utilized in order
to derive estimate of the parameters μ, σ and γ. Theorem 2.1 enables us to use the tra-
ditional method of analyzing extreme values, which is known as the block method. For
example, consider a general Type-II censoring scheme (R1, . . . , RM ), in which n ran-
domly selected units were placed on a life test. Suppose, we need to fit the limiting df of

the r -th failure time X (R̃)
r :n . Then we have to repeat this test a suitable number of times,
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(say K ), which is the number of blocks. Since, Theorem 2.1 states that the df (3.2) is the

only one which can appear as the limit of linearly normalized X (R̃)
r :n , we have, in this case,

K observed failure times which can be used as a sample of size K from the limiting df
(3.2) to get the estimate of the parameters μ, σ and γ. It is worth mentioning that in the
test based on oOs we have to wait till nK failures, while in the test based on pOs we have
only to wait till r K failures, if we choose M = r (note that M is any integer, for which
r ≤ M < n).

Acknowledgement

The authors are grateful to the referee for suggestions and comments that improved the
presentation substantially.

References

[1] Arnold B C, Balakrishnan N and Nagaraja H N (New York: Records, Wiley) (1998)
[2] Balakrishnan N and Aggarwala R, Progressive censoring. Theory, methods and applica-

tions, Statistics for Industry and Technology (Boston: Birkhauser Boston Inc.) (2000)
[3] Barakat H M, Limit theory of generalized order statistics, J. Statist. Plann. Inference

137(1) (2007) 1–11
[4] Christoph G and Falk M, A note on domains of attraction of p-max stable laws, Stat.

Probab. Lett. 28 (1996) 279–284
[5] Cramer E, Contributions to generalized order statistics, Habililationsschrift, Reprint

(University of Oldenburg) (2003)
[6] Kamps U, A Concept of Generalized Order Statistics (Stuttgart: Teubner) (1995)
[7] Kamps U and Cramer E, On distribution of generalized order statistics, Statistics 35

(2001) 269–280
[8] Marohn F, On rates of uniform convergence of lower extreme generalized order statistics,

Extremes 7 (2004) 271–282
[9] Nasri-Roudsari D, Extreme value theory of generalized order statistics, J. Statist. Plann.

Inference 55 (1996) 281–297
[10] Nasri-Roudsari D, Limit distributions of generalized order statistics under power nor-

malization, Comm. Statist. Theory Methods 28 (1999) 1379–1389
[11] Resnick S I, Limit laws for record values, Stochastic Process. Appl. 1 (1973a) 67–82
[12] Resnick S I, Record values and maxima, Ann. Probab. 1 (1973b) 650–662
[13] Reiss R D and Thomas M, Statistical analysis of extreme values from insurance, finance,

hydrology and other fields (Berlin: Birkhäuser Verlag) (2003)


	On the limit distribution of lower extreme generalized order statistics
	Abstract
	Introduction and auxiliary results
	Main result
	Further limit theorem and illustrative examples
	References



