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1. Introduction

The long-time behavior of flows has been regarded as an interesting and important prob-
lem in the theory of fluid dynamics, and has been receiving much attention for many
years; see, for example [1–3, 5–8, 13] and the references therein. One of the most studied
models is the Navier–Stokes model (and its variants) since it can provide a suitable model
which covers several important fluids (see [12, 13] and the references therein).

However, most of the studies above are in connection with the deterministic case
and no heredity. As a general rule, another interesting question is to analyze the effects
produced on a deterministic system by stochastic or random disturbances and hered-
ity. In this paper, we consider the following stochastic incompressible two-dimensional
Navier–Stokes equations with delays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

du = [ν�u − (u,∇)u − ∇ p + f (t) + G(u(t − ρ(t)))]dt

+�(u(t − ρ(t)))dw(t), (0,+∞) × D,

div u = 0, (0,+∞) × D,

u(t, x) = 0, (t, x) ∈ (0,+∞) × ∂ D,

u(0) = u0(x), x ∈ D,

u(t, x) = ϕ(t, x), (t, x) ∈ (−τ, 0) × D,

where D is a regular open bounded domain of R2 with boundary 	, u is the velocity field
of the fluid, p the pressure, ν > 0 the kinematic viscosity, ϕ the initial velocity field, f
the external force field without delay, G(u(t − ρ(t))) the external force field with delay,
and �(u(t − ρ(t)))dw(t) the random force field with delay where w(t) is an infinite
dimensional Wiener process.
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Recently, stochastic Navier–Stokes equations have been studied by some authors and
many valuable results on the existence, uniqueness and the asymptotic behavior of the
weak solution and the strong solution for such equations have been established. For exam-
ple, Caraballo et al in [4], have discussed the exponential behavior and stabilizability of
stochastic 2D Navier–Stokes equations. The existence and uniqueness of solutions to the
backward 2D stochastic Navier–Stokes equations was obtained in [10]. In [6], Caraballo
and Real have considered the asymptotic behavior of two-dimensional Navier–Stokes
equations with delays with the help of the Lyapunov function and the Razuminkhin theo-
rem, respectively. Wei and Zhang, in [14], have investigated the exponential stability and
almost surely exponential stability of the weak solution for stochastic 2D Navier–Stokes
equations with variable delays by using the approach proposed in [6]. However, although
the desired results can be given in [14], the differentiability of variable delays must be
imposed. So, in this paper, in order to remove this restrictive condition about variable
delays, we proceed to study the exponential stability and almost surely exponential sta-
bility of the weak solution for stochastic two dimensional Navier–Stokes equations with
delays by establishing an integral inequality.

The format of this work is organized as follows. In §2, some necessary definitions,
notations and lemmas used in this paper will be introduced. By establishing an integral
inequality, some sufficient conditions about the exponential stability in mean square and
almost surely exponential stability for the weak solution of stochastic two dimensional
Navier–Stokes equations with delays are given in §3.

2. Preliminaries

Let H be the closure of the set {u ∈ C∞
0 (D, R2) : div u = 0} in the space L2(D, R2)

with the norm |u| = (u, u)
1
2 , where for any u, v ∈ L2(D, R2),

(u, v) =
2∑

j=1

∫

D
u j (x)v j (x)dx .

Let V denote the closure of the set {u ∈ C∞
0 (D, R2) : div u = 0} in the space

H1
0 (D, R2) with the norm ‖u‖ = ((u, v))

1
2 , where for any u, v ∈ H1

0 (D, R2),

((u, v)) =
2∑

i, j=1

∫

D

∂ui

∂x j

∂vi

∂x j
dx .

Thus, it is obviously seen that H and V are two separable Hilbert spaces with associated
inner (·, ·) and ((·, ·)), and the following expression is satisfied, i.e.

V ⊂ H ≡ H ′ ⊂ V ′,
where injections are dense, continuous and compact (H ′ and V ′ are the dual spaces of
H and V , respectively). λ1 denotes the first eigenvalue of A, and we remark that ‖v‖2 ≥
λ1|v|2, ∀v ∈ V . Now, we can set A = −P�, where P is the orthogonal projector from
L2(D, R2) onto H , and define the trilinear form b by

b(u, v, w) =
2∑

i, j=1

∫

D
ui (x)

∂v j (x)

∂xi
w j (x)dx .
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As we shall need some properties on this trilinear form b, we list here the ones we will
use later on (see [13]),

|b(u, v, w)| ≤ c1|u| 1
2 ‖u‖ 1

2 ‖v‖|w| 1
2 ‖w‖ 1

2 , ∀u, v, w ∈ V,

b(u, v, v) = 0, ∀u, v ∈ V,

b(u, u, v − u) − b(v, v, v − u) = −b(v − u, u, v − u), ∀u, v ∈ V,

(2.1)

where c1 > 0 is an appropriate constant which depends on the regular open domain D
(see p. 50 of [7]). Furthermore, we can define the operator B : V × V → V ′ by

〈B(u, v), w〉 = b(u, v, w), ∀u, v, w ∈ V,

where 〈·, ·〉 denotes the duality 〈V ′, V 〉. And, we also set

B(u) = B(u, u), ∀u ∈ V .

Let (�,�, P) be a complete probability space equipped with some filtration �t (t ≥ 0)

satisfying the usual conditions, i.e., the filtration is right continuous and �0 contains all P-
null sets. And let βn(t) (n = 1, 2, . . .) denote a sequence of real valued one-dimensional
standard Brownian motions mutually independent on (�,�, P). Setting

w(t) =
+∞∑

n=1

√
λ′

nβn(t)en, t ≥ 0,

where λ′
n ≥ 0 (n = 1, 2, . . .) are some nonnegative real numbers such that

∑+∞
n=1 λ′

n <

+∞, and {en} (n = 1, 2, . . .) is a complete orthonormal basis in a real and separa-
ble Hilbert space K . Let Q ∈ L(K , K ) be the operator defined by Qen = λ′

nen (n =
1, 2, . . .). The above K -valued stochastic process w(t) is called a Q-Wiener process.
L(K , H) denotes the space of bounded linear operators from K to H .

DEFINITION 2.1 [9]

Let σ ∈ L(K , H) and define

‖σ‖2
L0

2
:= tr(σ Qσ ∗) =

{+∞∑

n=1

‖√λ′
nσen‖2

}

.

If ‖σ‖2
L0

2
< +∞, then σ is called a Q-Hilbert–Schmidt operator and let L0

2(K , H)

denote the space of all Q-Hilbert–Schmidt operators σ : K → H .
Now, for the definition of a H -valued stochastic integral of a L0

2(K , H)-valued and �0-
adapted predictable process �(t) with respect to the Q-Wiener process w(t), the readers
can refer to [9].

Thus, the stochastic two-dimensional incompressible Navier–Stokes equations with
delays can be written as follows:

⎧
⎪⎨

⎪⎩

du(t) = [−ν Au(t) − B(u(t)) + f (t) + G(u(t − ρ(t)))]dt

+�(u(t − ρ(t)))dw(t), t ≥ 0,

u0(θ) = ϕ ∈ L2(�, C([−τ, 0], H)), θ ∈ [−τ, 0],
(2.2)
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where L2(�, C([−τ, 0], H)) denotes the family of all almost surely bounded �t (t ≥ 0)-
measurable and C([−τ, 0], H)-valued stochastic process and as usual, equipped with the
supremum norm ‖ϕ‖0 = E supθ∈[−τ,0] |ϕ(θ)|2; the function ρ : [0,+∞) → [0, τ ] (τ >

0) is bounded and measurable; f : [0,+∞) → V ′, G : V → V ′ and � : V → L(K , H)

are three appropriate Borel measurable functions.
The corresponding deterministic system of system (2.2) can be represented as follows:

⎧
⎨

⎩

d

dt
u(t) = −ν Au(t) − B(u(t)) + f (t) + G(u(t − ρ(t))), t ≥ 0,

u0(θ) = ϕ ∈ C([−τ, 0], H), θ ∈ [−τ, 0].
(2.3)

DEFINITION 2.2 [9]

A stochastic process u(t) (t ≥ −τ) is said to be a weak solution of system (2.2) if

(i) u(t) is �t -adapted;
(ii) u(t) ∈ L∞(−τ, T ; H) ∩ L2(−τ, T ; V ) almost surely for all T > 0;

(iii) the following equation holds as an identity in V ′ almost surely, for all t ∈ [0,+∞),

u(t) = u(0) +
∫ t

0
[−ν Au(s) − B(u(s)) + f (s) + G(u(s − ρ(s)))]ds

+
∫ t

0
�(u(s − ρ(s)))dw(s).

Let C (1,2)([0,+∞) × H, R+) denote the space of all R+-valued functions � defined on
[0,+∞) × H with the following assumptions:

(1) �(t, u) is differentiable in t ∈ [0,+∞) and twice Fréchet differentiable in u with
�t (t, ·), �u(t, ·) and �uu(t, ·) locally bounded on H ;

(2) �(t, ·), �t (t, ·) and �u(t, ·) are continuous on H ;
(3) for all trace class operators Z , tr(�uu(t, ·)Z) is continuous from H into R;
(4) if v ∈ V , then �u(t, v) ∈ V , and x → 〈�u(t, x), v∗〉 is continuous for each v∗ ∈ V ′;
(5) ‖�u(t, x)‖ ≤ C0(t)(1 + ‖x‖), C0(t) > 0, for all x ∈ V .

Lemma 2.3 (Ito’s formula) [9]. Let � ∈ C (1,2)([0,+∞) × H, R+). If the stochastic
process u(t) is a weak solution of system (2.2), then it holds that

�(t, u(t)) = �(0, u(0)) +
∫ t

0
L�(s, u(s))ds

+
∫ t

0
(�u(s, u(s)),�(u(s − ρ(s)))dw(s)),

where

L�(t, u(t)) = �t (t, u(t)) + 〈−ν Au(t) − B(u(t)) + f (t)

+ G(u(t − ρ(t))),�x (t, x(t))〉
+ 1

2
tr(�uu(t, u(t))�(u(t − ρ(t)))Q�(u(t − ρ(t)))∗).
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DEFINITION 2.4 [4]

A weak solution u(t) of system (2.2) converges to u∞ ∈ H exponentially stable in mean
square if there exist two positive numbers a > 0 and M0 > 0, such that

E |u(t) − u∞|2 ≤ M0e−at , t ≥ 0.

In particular, if u∞ is a stationary solution of system (2.2), then u∞ is called exponentially
stable in the mean square provided that any weak solution to (2.2) converges in L2 to u∞
at the same exponential rate a > 0.

DEFINITION 2.5 [4]

A weak solution u(t) of system (2.2) converges to u∞ ∈ H almost surely exponentially
stable if there exists γ > 0 such that

lim
t→+∞

1

t
log |u(t) − u∞| ≤ −γ, a.s.

In particular, if u∞ is a stationary solution of system (2.2), then u∞ is called almost surely
exponentially stable provided that any weak solution to (2.2) converges in L2 to u∞ with
the same constant γ > 0.

3. Main results

In order to discuss the exponential stability in mean square and almost surely exponential
stability of the weak solution to system (2.2), we need the following assumptions:

(H1) There exists a positive number β1 > 0 such that

‖G(u) − G(v)‖V ′ ≤ β1|u − v|,
for any u, v ∈ H and G(0) = 0.

(H2) There exists a positive number β2 > 0 such that

‖�(u) − �(v)‖L0
2

≤ β2|u − v|,
for any u, v ∈ H and �(0) = 0.

Remark 1. For f ∈ L2([0,+∞), V ′) and ν > 0, under the conditions (H1)–(H2), we
can show the existence and uniqueness of the weak solution to system (2.2). The proof is
extremely similar to that provided in [12]. Here, we omit it.

Firstly, assume that f is independent of t . We consider the existence of the stationary
solution to the equation

ν Au + Bu = f + G(u). (3.1)

Lemma 3.1 [6]. Supposed that condition (H1) holds and f ∈ V ′. Then

(i) if ν > λ−1
1 , there exists a stationary solution u∞ ∈ V to system (3.1);

(ii) furthermore, if (ν −λ1β1)
2 > C(D)‖ f ‖V ′ , then the stationary solution u∞ to system

(3.1) is unique, where C(D) is a positive constant.
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Lemma 3.2. For γ > 0, there exist two positive constants λ′ > 0, λ′′ > 0 and a function
y : [−τ,+∞) → [0,+∞). If λ′′ < γ , the following inequality

y(t) ≤
{

λ′e−γ t + λ′′ ∫ t
0 e−γ (t−s) supθ∈[−τ,0] y(s + θ)ds, t ≥ 0,

λ′e−γ t , t ∈ [−τ, 0] (3.2)

holds. Then, we have y(t) ≤ M1e−μt (t ≥ −τ), where μ ∈ (0, γ ) such that λ′′
γ−μ

eμτ = 1
and M1 = λ′.

Proof. Letting F(μ) = λ′′
γ−μ

eμτ − 1, we have F(0)F(γ−) < 0. That is, there exists a
positive constant μ ∈ (0, γ ) such that F(μ) = 0.

For any ε > 0 and letting Cε = λ′ + ε, we only claim that (3.2) implies

y(t) ≤ Cεe−μt , t ≥ −τ. (3.3)

It is easily seen that (3.3) holds for any t ∈ [−τ, 0]. Assume, for the sake of contradiction,
that there exists a t∗1 > 0 such that

y(t) < Cεe−μt , t ∈ [−τ, t∗1 ), y(t∗1 ) = Cεe−μt∗1 . (3.4)

From (3.2), it follows that

y(t∗1 ) ≤ λ′e−γ t∗1 + λ′′Cε

∫ t∗1

0
e−γ (t∗1 −s) sup

θ∈[−τ,0]
e−μ(s+θ)ds

< λ′e−γ t∗1 + λ′′Cεe−γ t∗1
∫ t∗1

0
e(γ−μ)sdseμτ

≤ λ′e−γ t∗1 − λ′′Cεeμτ

γ − μ
e−γ t∗1 + Cε

λ′′eμτ

γ − μ
e−μt∗1 . (3.5)

From the definitions of μ and Cε, we have

λ′′eμτ

γ − μ
= 1

and

λ′e−γ t∗1 − λ′′Cεeμτ

γ − μ
e−γ t∗1 ≤ λ′e−γ t∗1 − λ′′eμτ

γ − μ
e−γ t∗1 (ε + λ′) (γ − μ)

λ′′eμτ

< 0.

Thus, (3.5) yields

y(t∗1 ) < Cεe−μt∗1 ,

which contradicts (3.4), that is, (3.3) holds.
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As ε > 0 is arbitrarily small, in view of (3.3), it follows that

y(t) ≤ M1e−μt , t ≥ −τ,

where M1 = λ′ > 0. The proof of this lemma is completed. �

Theorem 3.3. Let u∞ be the unique stationary solution of (3.1) and �(u∞) = 0.
Suppose that the conditions (H1)–(H2) are satisfied, then the weak solution u(t) of system
(2.2) converges to the stationary solution u∞ of system (3.1) exponentially stable in the
mean square provided that the following inequality

2ν > 2
c1√
λ1

‖u∞‖ + 2β1 + β2
2

λ1
, (3.6)

holds.

Proof. From (3.6), we can choose a positive constant λ > 0 such that

λ − λ1

(

2ν − 2
c1√
λ1

‖u∞‖ − 2β1 + β2
2

λ1

)

≥ 0. (3.7)

Then, by using Lemma 2.3 to the function eλt |u(t) − u∞|2, we have

eλt |u(t) − u∞|2

= |u(0) − u∞|2 + λ

∫ t

0
eλs |u(s) − u∞|2ds

−2
∫ t

0
eλs〈ν Au(s), u(s) − u∞〉ds

−2
∫ t

0
eλs〈B(u(s)), u(s) − u∞〉ds + 2

∫ t

0
eλs〈 f, u(s) − u∞〉ds

+2
∫ t

0
eλs〈G(u(s − ρ(s))), u(s) − u∞〉ds

−2
∫ t

0
eλs〈�(u(s − ρ(s))), u(s) − u∞〉dw(s)

+
∫ t

0
eλs‖�(u(s − ρ(s)))‖2

L0
2
ds. (3.8)

Since u∞ is the stationary solution to (3.1),

∫ t

0
eλs〈ν Au∞, u(s) − u∞〉ds +

∫ t

0
eλs〈B(u∞), u(s) − u∞〉ds

=
∫ t

0
eλs〈 f, u(s) − u∞〉ds +

∫ t

0
eλs〈G(u∞), u(s) − u∞〉ds, (3.9)

and, noting the next identity:

〈B(u(t)) − B(u∞), u(t) − u∞〉 = b(u(t) − u∞, u∞, u(t) − u∞). (3.10)
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Substituting (3.9) and (3.10) into (3.8), we can obtain

eλt |u(t) − u∞|2

= |u(0) − u∞|2 + λ

∫ t

0
eλs |u(s) − u∞|2ds

−2
∫ t

0
eλs〈ν A(u(s) − u∞), u(s) − u∞〉ds

−2
∫ t

0
eλsb(u(s) − u∞, u∞, u(s) − u∞)ds

+2
∫ t

0
eλs〈G(u(s − ρ(s))) − G(u∞), u(s) − u∞〉ds

−2
∫ t

0
eλs〈�(u(s − ρ(s))) − �(u∞), u(s) − u∞〉dw(s)

+
∫ t

0
eλs‖�(u(s − ρ(s))) − �(u∞)‖2

L0
2
ds. (3.11)

Since
∫ t

0 eλs〈�(u(s − ρ(s))), u(s) − u∞〉dw(s) is a martingale [11], we have

E
∫ t

0
eλs〈�(u(s − ρ(s))) − �(u∞), u(s) − u∞〉dw(s) = 0.

So, from (3.11) it follows that

eλt E |u(t) − u∞|2

= E |u(0) − u∞|2 + λ

∫ t

0
eλt E |u(s) − u∞|2ds

−2
∫ t

0
eλs E〈ν A(u(s) − u∞), u(s) − u∞〉ds

−2
∫ t

0
eλs Eb(u(s) − u∞, u∞, u(s) − u∞)ds

+2
∫ t

0
eλs E〈G(u(s − ρ(s)) − G(u∞), u(s) − u∞〉ds

+
∫ t

0
eλs E‖�(u(s − ρ(s))) − �(u∞)‖2

L0
2
ds. (3.12)

From the properties of trilinear form b, we have

|b(u(s) − u∞, u∞, u(s) − u∞)|
≤ c1|u(t) − u∞| ‖u(t) − u∞‖ ‖u∞‖
≤ c1√

λ1
‖u∞‖ ‖u(t) − u∞‖2. (3.13)
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In view of (3.7), (3.13) and the conditions (H1) and (H2), we obtain

eλt E |u(t) − u∞|2

= E |u(0) − u∞|2 + λ

∫ t

0
eλt E |u(s) − u∞|2ds

−2
∫ t

0
eλs E〈ν A(u(s) − u∞), u(s) − u∞〉ds

−2
∫ t

0
eλs Eb(u(s) − u∞, u∞, u(s) − u∞)ds

+β1

∫ t

0
eλs E‖u(s) − u∞‖2ds

+(β1 + β2
2 )

∫ t

0
eλs E |u(s − ρ(s)) − u∞|2ds

≤ E |u(0) − u∞|2 + λ

∫ t

0
eλt E |u(s) − u∞|2ds

−(2ν − 2
c1√
λ1

‖u∞‖ − β1)

∫ t

0
eλs E‖u(s) − u∞‖2ds

+(β1 + β2
2 )

∫ t

0
eλs E |u(s − ρ(s)) − u∞|2ds

≤ E |u(0) − u∞|2 +
[

λ − λ1(2ν − 2
c1√
λ1

‖u∞‖ − β1)

]

∫ t

0
eλs E |u(s) − u∞|2ds

+(β1 + β2
2 )

∫ t

0
eλs E |u(s − ρ(s)) − u∞|2ds

≤ E |u(0) − u∞|2 +
[

λ − λ1(2ν − 2
c1√
λ1

‖u∞‖ − 2β1 + β2
2

λ1
)

]

∫ t

0
eλs sup

θ∈[−τ,0]
E |u(s + θ) − u∞|2ds. (3.14)

Consequently, from (3.14), we have

E |u(t) − u∞|2 ≤ sup
θ∈[−τ,0]

E |u(θ) − u∞|2e−λt

+
[

λ − λ1(2ν − 2
c1√
λ1

‖u∞‖ − 2β1 + β2
2

λ1
)

]

×
∫ t

0
e−λ(t−s) sup

θ∈[−τ,0]
E |u(s + θ) − u∞|2ds,

for all t ≥ 0. Obviously, it is easily derived that E |u(t) − u∞|2 ≤ supθ∈[−τ,0] E |u(θ) −
u∞|2e−λt , t ∈ [−τ, 0].

Case 1. If λ = λ1

(

2ν − 2 c1√
λ1

‖u∞‖ − 2β1+β2
2

λ1

)

, the desired result is obviously obtained.
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Case 2. If λ > λ1

(

2ν − 2 c1√
λ1

‖u∞‖ − 2β1+β2
2

λ1

)

, from Lemma 3.2, it follows

E |u(t) − u∞|2 ≤ M2e−αt , t ≥ 0,

where α ∈ (0, λ) and

M2 = max

{

sup
θ∈[−τ,0]

E |u(θ) − u∞|2(λ − α)

×
([

λ − λ1(2ν − 2
c1√
λ1

‖u∞‖ − 2β1 + β2
2

λ1
)

]

eατ

)−1

,

sup
θ∈[−τ,0]

E |u(θ) − u∞|2
}

> 0.

The proof of this theorem is completed. �

Theorem 3.4. Supposed that all conditions of Theorem 3.3 are satisfied, then the weak
solution of system (2.2) converges to the stationary solution u∞ of system (3.1) almost
surely exponentially stable.

Proof. Let n = 1, 2, . . . , from Itô formula, for t ≥ nτ ,

|u(t) − u∞|2 = |u(nh) − u∞|2 − 2
∫ t

nh
〈ν A(u(s) − u∞), u(s) − u∞〉ds

−2
∫ t

nh
〈B(u(s)) − B(u∞), u(s) − u∞〉ds

+2
∫ t

nh
〈G(u(s − ρ(s))) − G(u∞), u(s) − u∞〉ds

+
∫ t

nh
‖�(u(s − ρ(s)))‖2

L0
2
ds

+2
∫ t

nh
(u(s) − u∞,�(u(s − ρ(s))))dw(s).

In view of Burkholder–Davis–Gundy formula,

E

(

sup
nh≤t≤(n+1)h

∫ t

nh
(u(s) − u∞,�(u(s − ρ(s))))dw(s)

)

≤ C E

(∫ (n+1)h

nh
|u(s) − u∞|2 ‖�(u(s − ρ(s)))‖2

L0
2
ds

) 1
2

≤ C E( sup
nh≤s≤(n+1)h

|u(s) − u∞|2
∫ (n+1)h

nh
‖�(u(s − ρ(s)))‖2

L0
2
ds)

1
2

≤ 1

4
E( sup

nh≤s≤(n+1)h
|u(s) − u∞|2) + C ′

∫ (n+1)h

nh
E‖�(u(s − ρ(s)))‖2

L0
2
ds,



Stochastic Navier–Stokes equations 293

where C , C ′ denote two positive constants. From Theorem 3.3, we have
∫ (n+1)h

nh
E |u(s − ρ(s)) − u∞|2ds ≤ M2eατ e−αnh .

Thus, it follows that

E

(

sup
nh≤t≤(n+1)h

|u(t) − u∞|2
)

≤ E |u(nh) − u∞|2 − 2ν

∫ (n+1)h

nh
E‖u(s) − u∞)‖2ds

+2
c1√
λ1

‖u∞‖
∫ (n+1)h

nh
‖u(s) − u∞‖2ds

+β1

λ1

∫ (n+1)h

nh
E‖u(s) − u∞‖2ds

+(β1 + (1 + 2C ′)β2
2 )

∫ (n+1)h

nh
E |u(s − ρ(s)) − u∞|2ds

+1

2
E

(

sup
nh≤t≤(n+1)h

|u(t) − u∞|2
)

≤ E |u(nh) − u∞|2 − 1

λ1

(

2ν − 2
c1√
λ1

− β1

λ1

) ∫ (n+1)h

nh
E |u(s) − u∞|2ds

+(β1 + (1 + 2C ′)β2
2 )M2eατ e−αnh + 1

2
E

(

sup
nh≤t≤(n+1)h

|u(t) − u∞|2
)

.

From (3.6), it implies that

E( sup
nh≤t≤(n+1)h

|u(t) − u∞|2) ≤ Me−αnh,

where α is given in Theorem 3.3 and M > 0. Based on the Chebychev inequality,

P

{

ω : sup
nh≤t≤(n+1)h

|u(t) − u∞| > e− (α−ε)nh
2

}

≤ M ′e−εnh,

where M ′ is a positive constant and ε ∈ (0, α).
From the Borel–Cantelli lemma, there is a finite integer n0(ω) such that

sup
nh≤t≤(n+1)h

|u(t) − u∞| ≤ e− (α−ε)nh
2 , a.s.

for all n ≥ n0. The proof of this theorem is completed. �

Remark 2. Recently, in [14], Wei and Zhang have obtained the exponential stability in
mean square and almost surely exponential stability for the weak solution to system (2.2)
by constructing the Lyapunov functional proposed in [6]. But, an additional condition:
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ρ∗ = supt≥0 ρ′(t) < 1 must be imposed in [14]. However, this restrictive condition about
the time-varying delay can be removed in this paper. So, our result can improve the one
given in [14].

COROLLARY 3.5

Assuming that condition (H1) holds, the weak solution u(t) of system (2.3) converges to
its stationary solution u∞ exponentially stable provided the following inequality

ν >
c1√
λ1

‖x∞‖ + β1

λ1
,

holds.

Remark 4. In [6], Caraballo and Real have studied the asymptotic behavior of the weak
solution to system (2.3) by utilizing the direct method. However, a strong restrictive con-
dition of the delay are also imposed in [6], i.e. ρ′(t) < 1, for ∀t ≥ 0. In this paper, we can
remove this one. Thus, we can generalize and improve the result in [6].
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