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Abstract. In this paper we consider the notion of continuous frame of subspaces
and define a new concept of continuous frame, entitled continuous atomic resolution of
identity, for arbitrary Hilbert space H which has a countable reconstruction formula.
Among the other results, we characterize the relationship between this new concept and
other known continuous frames. Finally, we state and prove the assertions of the stability
of perturbation in this concept.
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1. Introduction and preliminaries

As we know frames are more flexible tools to convey information than bases, and so they
are suitable replacement for bases in a Hilbert space H. Finding a representation of f ∈ H
as a linear combination of the elements in frames, is the main goal of discrete frame the-
ory. But in continuous frame, which is a natural generalization from discrete, it is not
straightforward. However, one of the applications of frames is in wavelet theory. The prac-
tical implementation of the wavelet transform in signal processing requires the selection
of a discrete set of points in the transformed space. Indeed, all formulas must generally
be evaluated numerically, and a computer is an intrinsically discrete object. But this oper-
ation must be performed in such a way that no information is lost. So efforts have been
done to find methods to discretize classical continuous frames for use in applications like
signal processing, numerical solution of PDE, simulation, and modelling; see for exam-
ple [1, 8]. In particular, the discrete wavelet transform and Gabor frames are prominent
examples and have been proven to be a very successful tool for certain applications. Since
the problem of discretization is so important it would be nice to have a general method for
this purpose. For example, Ali et al. [1] asked for conditions which ensure that a certain
sampling of a continuous frame {ψx }x∈X yields a discrete frame {ψxi }i∈I (see also [9]).

In recent years, there has been considerable interest by harmonic and functional ana-
lysts in the frame of subspaces problem of the separable Hilbert space; see [5], [4], [3]
and [2] and references therein. Frame of subspaces was first introduced by Casazza and
Kutyniok in [5]. They present a reconstruction formula f = ∑

i∈I ν2
i S−1πWi ( f ) for
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frames of subspaces. Continuous frame of subspace is a natural generalization from dis-
crete frame of subspaces to continuous. As we expect, in discrete frame of subspaces every
element in H has an expansion in terms of frames. But in the continuous case it is with
respect to Bochner integral which is not desirable. Therefore, discretization of continuous
frame of subspaces is also very important.

Suppose that the measure μ, which appears in the integral of continuous frame, is
Radon or discontinuous. (Note that there exist infinite many positive finite discontin-
uous measure on a locally compact space X which are not counting measure.) Then
{x ∈ X : μ({x} �= 0} is a nonempty set and we may investigate about some conditions
under which every fixed element f ∈ H has a countable subfamily J f of X with frame
property for H. This leads us to define uca-resolution of identity (Definition 2.1), which
is a generalization of the resolution of identity (Definition 3.24 of [5]), and atomic resolu-
tion of identity [4], to arbitrary Hilbert space (separable or nonseparable). We then show
that in this concept many basic properties of discrete state can be derived within this more
general context. In fact uca-resolution identity helps us to investigate continuous frames
which have discretization. Because under some extra conditions, every uca-resolution of
identity provides a continuous frame of subspace, and conversely. This means that the
relationship between uca-resolution of identity and known continuous frames, such as
frame of subspaces, is very tight.

Assume H to be a Hilbert space and X to be a locally compact Hausdorff space
endowed with a positive Radon or discontinuous measure μ. Let W = {Wx }x∈X be a
family of closed subspaces in H and let ω : X → [0,∞) be a measurable mapping such
that ω �= 0 almost everywhere (a.e.). We say that Wω = {(Wx , ω(x))}x∈X is a continuous
frame of subspaces for H, if:

(a) the mapping x �→ πWx is weakly measurable;
(b) there exist constants 0 < A, B < ∞ such that

A‖ f ‖2 ≤
∫

X
ω(x)2‖πWx ( f )‖2 dμ(x) ≤ B‖ f ‖2 (1)

for all f ∈ H. The numbers A and B are called the continuous frame of subspaces bounds.
If Wω satisfies only the upper inequality in (1), then we say that it is a continuous Bessel
frame of subspaces with bound B. Note that if X is a countable set and μ is the counting
measure, then we obtain the usual definition of a (discrete) frame of subspaces.

For each continuous Bessel frame of subspaces Wω = {(Wx , ω(x))}x∈X , if we
define the representation space associated with Wω by L2(X,H,Wω) = {ϕ : X →
H| ϕ is measurable, ϕ(x) ∈ Wx and

∫
X ‖ϕ(x)‖2dμ(x) < ∞}, then L2(X,H,Wω) with

the inner product is given by

〈ϕ,ψ〉 =
∫

X
〈ϕ(x), ψ(x)〉dμ(x), for all ϕ,ψ ∈ L2(X,H,Wω),

is a Hilbert space. Also, the synthesis operator TWω
: L2(X,H,Wω) → H is defined by

〈TWω
(ϕ), f 〉 =

∫

X
ω(x)〈ϕ(x), f 〉dμ(x),

for all ϕ ∈ L2(X,H,Wω) and f ∈ H. Its adjoint operator is T ∗
Wω

: H → L2(X,H,Wω);
T ∗
Wω

( f ) = ωπWω
( f ). For more details, see [2].
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Now, we give two immediate consequences from the above discussion. As the first, we
have the following characterization of continuous Bessel frame of subspaces in term of
their synthesis operators as in the discrete frame theory; see [3,6].

Theorem 1.1. A family Wω is a continuous Bessel frame of subspaces with Bessel
fusion bound B for H if and only if the synthesis operator TWω

is a well-defined bounded
operator and ‖TWω

‖ ≤ √
B.

Also, by an argument similar to the proof of (Theorem 2.6 of [3]), we have a char-
acterization of continuous frame of subspaces as follows:

Theorem 1.2. The following conditions are equivalent:
(a) Wω = ({Wx }x∈X , ω(x)) is a continuous frame of subspaces for H;
(b) The synthesis operator TWω

is a bounded, linear operator from L2(X,H,Wω)

onto H;
(c) The analysis operator T ∗

Wω
is injective with closed range.

If Wω is a continuous frame of subspaces for H with frame bounds A, B, then we
define the frame of subspaces operator SWω

for Wω by

SWω
( f ) = TWω

T ∗
Wω

( f ), f ∈ H,

which is a positive, self-adjoint, invertible operator on H with A · IdH ≤ SWω
≤ B · IdH.

2. Main result

For establishing a relationship between discrete and continuous frame of subspaces, we
generalize the concept of continuous frame and resolution of identity to arbitrary Hilbert
space H. For this purpose, we introduce the summation to noncountable form. Let H be
a Hilbert space and {Tx }x∈X be a family of bounded operators on it. If now, set �, the
collection of all finite subset of X , then � is a directed set ordered under inclusion.

Let f be a fixed element of the Hilbert space H. Define the sum S( f ) of the family
{Tx ( f )}x∈X as the limit

S( f ) =
∑

x∈X

Tx ( f ) = lim

{∑

x∈γ

Tx ( f ) : γ ∈ �

}

.

If this limit exists, we say that the family {Tx ( f )}x∈X is unconditionally summable. It is
easy to see that the family {Tx ( f )}x∈X is unconditionally summable if and only if for each
ε > 0, there exist a finite subset γ0 ∈ � such that

∥
∥
∥
∥
∥
∥

∑

x∈γ1

Tx ( f ) −
∑

x∈γ2

Tx ( f )

∥
∥
∥
∥
∥
∥

< ε,

for each γ1, γ2 > γ0. Therefore for each ε > 0, there is a finite subset γ0 of X such that

‖Tx ( f )‖ < ε

for all x ∈ X\γ0. Hence for a fixed element f ∈ H, if {Tx ( f )}x∈X is unconditionally
summable, then J f = {x ∈ X : Tx ( f ) �= 0} is countable.
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DEFINITION 2.1

Let H be a Hilbert space and let ω : X → [0,∞) be a measurable mapping such that
ω �= 0 almost everywhere. We say that a family of bounded operator {Tx }x∈X on H is an
unconditional continuous atomic resolution (uca-resolution) of the identity with respect
to ω for H, if there exist positive real numbers C and D such that for all f ∈ H,

(a) the mapping x �→ Tx is weakly measurable;
(b) C‖ f ‖2 ≤ ∫

X ω(x)2‖Tx ( f )‖2dμ(x) ≤ D‖ f ‖2;
(c) f = ∑

x∈X Tx ( f ).

The optimal values of C and D are called the uca-resolution of the identity bounds. It
follows from the definition and the uniform boundedness principle that supx∈X‖Tx‖x∈X

< ∞.

Remark 2.2.

(a) If f ∈ H satisfies in (c), then as we mention above, there is a countable measurable
subset J f (depends of f ) of X such that

Tx ( f ) = 0,

for all x ∈ X\J f . So
∫

X
ω(x)2‖Tx ( f )‖2dμ(x) =

∑

j∈J f

ω( j)2‖Tj ( f )‖2μ({ j})

and condition (b) transform to

C‖ f ‖2 ≤
∑

j∈J f

ω( j)2‖Tj ( f )‖2 μ({ j}) ≤ D‖ f ‖2.

(b) If H is a separable Hilbert space with orthonormal bases {en}∞n=1, then by condition
(c), for each n there exists a countable measurable subset Jn of X such that

Tx (en) = 0,

for all x ∈ X\Jn . So, we can find a countable subset J = ⋃∞
n=1 Jn of X such that

Tx ( f ) = 0,

for all f ∈ H and x ∈ X\J , and we have
∫

X
ω(x)2‖Tx ( f )‖2dμ(x) =

∑

j∈J

ω( j)2‖Tj ( f )‖2 μ({ j}).

Therefore, if H is a separable Hilbert space, Definitions 2.1 and 3.1 in [4] coincide.

From now on, H is a Hilbert space with orthonormal bases {eλ}λ∈� and X is a locally
compact Hausdorff space endowed with a positive Radon or discontinuous measure μ,
and ω : X → [0,∞) is a measurable mapping such that ω �= 0 almost everywhere. For a
fixed element f ∈ H, by [7] there exists a countable subset J of � such that

〈
f, eλ

〉 = 0
for all λ ∈ �\J .
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The following is an important example of uca-resolution compatible with Definition
2.1, and note that this example does not satisfy in the definition of resolution of identity
and atomic resolution of identity which is stated in [5] and [4], respectively.

Example 2.3. Let H be a Hilbert space with orthonormal basis {eλ}λ∈�. If, we consider
� as a locally compact space with discrete topology and measurable space endowed with
counting measure, then the family {Tλ}λ∈� of bounded operators on H is defined by

Tλ( f ) = 〈
eλ, f

〉
eλ, for all f ∈ H and λ ∈ �,

is an uca-resolution of identity for H.

In the next theorem we show that every uca-resolution of identity for H, provides a
continuous frame of subspace.

Theorem 2.4. Let {Tx }x∈X be a family of bounded operators on H and for each x ∈ X,

set Wx = Tx (H). Suppose that there exists D > 0 and R > 0 such that the following
conditions hold:
(a) f = ∑

x∈X ω(x)2Tx ( f )μ({x});
(b)

∫
X ω(x)2‖πWx ( f ) − Tx ( f )‖2dμ(x) ≤ R‖ f ‖2;

(c)
∫

X ω(x)2‖Tx ( f )‖2dμ(x) ≤ D‖ f ‖2,

for all f ∈ H. Then {(Wx , ω(x))}x∈X is a continuous frame of subspaces for H.

Proof. Let f be a fixed element of H. As we mention in Remark 2.2(a), there exists a
countable subset J f of X such that

ω(x)2Tx ( f )μ({x}) = 0,

for all x ∈ X\J f , and

∫

X
ω(x)2‖Tx ( f )‖2dμ(x) =

∑

x∈X

ω(x)2‖Tx ( f )‖2μ({x}).

So we can use Cauchy–Schwarz inequality and compute as follows:

‖ f ‖4 =
(〈

f,
∑

x∈X

ω(x)2Tx ( f )μ({x})
〉)2

=
(

∑

x∈X

ω(x)〈√μ({x}) f, ω(x)
√

μ({x}) Tx ( f )〉
)2

=
(

∑

x∈X

ω(x)〈√μ({x}) πWx ( f ), ω(x)
√

μ({x}) Tx ( f )〉
)2

≤
(

∑

x∈X

ω(x)‖√μ({x}) πWx ( f )‖‖ω(x)
√

μ({x}) Tx ( f )‖
)2
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≤
(

∑

x∈X

ω(x)2‖πWx ( f )‖2μ({x})
) (

∑

x∈X

‖ω(x)
√

μ({x}) Tx ( f )‖2

)

≤
(∫

x∈X
ω(x)2‖πWx ( f )‖2dμ(x)

) (∫

X
ω(x)2‖Tx ( f )‖2dμ(x)

)

≤ D‖ f ‖2
(∫

X
ω(x)2‖πWx ( f )‖2dμ(x)

)

.

Also, by triangle inequality and hypothesis we have

∫

X
ω(x)2‖πWx ( f )‖2dμ(x) ≤ D

(

1 +
√

R

D

)2

‖ f ‖2,

so the assertion holds. �
Casazza and Kutyniok in [5] introduced an interesting example of atomic resolution of

identity. In the next theorem we obtain the uca-resolution of identity form, which is the
converse of Theorem 2.4.

Theorem 2.5. Let {(Wx , ω(x))}x∈X be a continuous Bessel frame of subspaces for H
with Bessel bound D, and for each x ∈ X. Let Tx : H → Wx be a bounded operator such
that TxπWx = Tx . Also assume that for each f ∈ H,

f =
∑

x∈X

ω(x)2Tx ( f )μ({x}).

Then for all f ∈ H we have

1

D
‖ f ‖2 ≤

∫

X
ω(x)2‖Tx ( f )‖2dμ(x) ≤ DE‖ f ‖2,

where E = supx∈X‖Tx‖x∈X .

Proof. By a similar proof of Theorem 2.4, we obtain

1

D
‖ f ‖2 ≤

∫

X
ω(x)2‖Tx ( f )‖2dμ(x).

Also we have

1

D
‖ f ‖2 ≤

∫

X
ω(x)2‖Tx ( f )‖2dμ(x)

=
∫

X
ω(x)2‖TxπWx ( f )‖2dμ(x)

≤
∫

X
ω(x)2‖Tx‖2‖πWx ( f )‖2dμ(x)

≤ E
∫

X
ω(x)2‖πWx ( f )‖2dμ(x) ≤ DE‖ f ‖2.

Whence, for each f ∈ H,

1

D
‖ f ‖2 ≤

∫

X
ω(x)2‖Tx ( f )‖2dμ(x) ≤ DE‖ f ‖2.

as we required. �
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PROPOSITION 2.6

Let {Wx }x∈X be a family of closed subspaces of Hilbert space H such that the mapping
x → πWx is weakly measurable. Also suppose ω is a bounded map and the following
conditions hold for all f ∈ H:
(a) There exists C > 0 such that

∫

X
‖ πWx ( f ) ‖2 dμ(x) ≤ 1

C
‖ f ‖2,

(b) f = ∑
x∈X ω(x)πWx ( f )μ({x}).

Then {(Wx , ω(x))}x∈X is a continuous frame of subspaces for H.

Proof. By condition (a) we see that
∫

X
ω(x)2‖πWx ( f )‖2dμ(x) ≤ supx∈X ω(x)

C
‖ f ‖2, ( f ∈ H).

Condition (b) implies that for a fixed element f of H,
∫

X
ω(x)2‖πWx ( f )‖2dμ(x) =

∑

x∈X

ω(x)2‖πWx ( f )‖2μ({x})

and
∫

X
‖πWx ( f )‖2 dμ(x) =

∑

x∈X

‖πWx ( f )‖2μ({x}).

Now, since the family {ω(x)μ({x})Tx } is unconditionally summable, we can use Cauchy–
Schwarz inequality and compute as follows:

‖ f ‖4 =
(〈

∑

x∈X

ω(x)μ({x})πWx ( f ), f

〉)2

=
(

∑

x∈X

ω(x)μ({x})‖πWx ( f )‖2

)2

≤
(

∑

x∈X

ω(x)2μ({x})‖πWx ( f )‖2

) (
∑

x∈X

‖πWx ( f )‖2μ({x})
)

≤ 1

C
‖ f ‖2

(
∑

x∈X

ω(x)2‖πWx ( f )‖2μ({x})
)

.

Thus

C‖ f ‖2 ≤
∑

x∈X

ω(x)2‖πWx ( f )‖2μ({x}) =
∫

X
ω(x)2‖πWx ( f )‖2dμ(x)

for all f ∈ H, and this completes the proof. �
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In the following proposition we give a reconstruction formula for continuous frame of
subspaces in the special case.

PROPOSITION 2.7

Let {Wx }x∈X be a family of orthogonal closed subspaces of Hilbert space H. If {(Wx ,

ω(x)}x∈X is a continuous frame of subspaces for H with bounds C, D, then for each
f ∈ H,

f =
∑

x∈X

πWx ( f ).

The converse is true if ω is bounded and there exists C > 0 such that
∫

X
‖πWx ( f )‖2dμ(x) ≤ 1

C
‖ f ‖2,

for all f ∈ H.

Proof. Let {(Wx }x∈X be a continuous frame of subspaces. First, we should note that for
each f ∈ H, by the Hahn-Banach theorem and orthogonality of the family {Wx }x∈X , there
exists a sequence { fn} in H such that fn −→ f and for each n we have the following
equality

fn =
∑

x∈X

πWx ( fn).

Now we define Sγ ( f ) = ∑
x∈γ πWx ( f ), where γ is an arbitrary finite subset of X and

f ∈ H. Therefore

C‖Sγ ( f ) − f ‖2 ≤
∫

X
ω(x)2‖πWx (Sγ ( f ) − f )‖2dμ(x)

≤
∫

X
ω(x)2‖πWx ( f )‖2dμ(x)

≤ D‖ f ‖2.

By replacing f with fn − f we obtain

‖Sγ ( fn − f ) − ( fn − f )‖ ≤
√

D

C
‖ fn − f ‖.

The converse holds by Proposition 2.6. �

Now we want to show that, by a given uca-resolution of identity, each f ∈ H has a new
countable reconstruction formula. First we need the following lemma:

Lemma 2.8. Let {Tx }x∈X be an uca-resolution of the identity with respect to weight ω for
H with bounds C and D, and let { fi }i∈I be a frame sequence. Then there exists a count-
able subset J of X, such that {ω( j)

√
μ({ j})T ∗

j ( fi )}i∈I, j∈J is a frame for span{ fi }i∈I .

Proof. If we set Ji = {x ∈ X : Tx ( fi ) �= 0}, then by definition of uca-resolution of iden-
tity, Ji is a countable and measurable subset of X . Now, set J = ⋃

i∈I Ji . So J is a count-
able and measurable subset of X , and for each f ∈ span{ fi }i∈I and x ∈ X\J we have

Tx ( f ) = 0.
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Hence we see that for each f ∈ span{ fi }i∈I ,

C‖ f ‖2 ≤
∑

j∈J

ω2( j)μ({ j})‖Tj ( f )‖2 ≤ D‖ f ‖2

and

f =
∑

j∈J

Tj ( f ),

and these series converge unconditionally.
Now, suppose that A and B are frame bounds of { fi }i∈I . For each f ∈ span{ fi }i∈I we

have

A
∑

j∈J

ω2( j)μ({ j})‖Tj ( f )‖2 ≤
∑

j∈J

∑

i∈I

|〈ω2( j)μ({ j})Tj ( f ), fi 〉|2

≤ B
∑

j∈J

ω2( j)μ({ j})‖Tj ( f )‖2,

and therefore

AC‖ f ‖2 ≤ A
∑

j∈J

ω2( j)μ({ j})‖Tj ( f )‖2

≤
∑

j∈J

∑

i∈I

|〈 f, ω2( j)μ({ j})T ∗
j ( fi )〉|2

≤ B
∑

j∈J

ω2( j)μ({ j})‖Tj ( f )‖2 ≤ B D‖ f ‖2

and this complete the proof. �

Theorem 2.9. Let {Tx }x∈X be an uca-resolution of the identity with respect to weight
ω for H with bounds C and D. Then for each f ∈ H, there exists a countable subset I
(dependents on f ) of X, such that we have the following reconstruction formula

f =
∑

i∈I

ω2(i)μ({i})S−1T ∗
i Ti ( f ) =

∑

i∈I

ω2(i)μ({i})T ∗
i Ti S−1( f ),

where S is a frame operator of a frame sequence.

Proof. Let f be a fixed element of Hilbert space H. Set

H f = span{e j } j∈J ,

where J = { j ∈ � : 〈e j , f 〉 �= 0} is a countable subset of �. Then, by Lemma 2.8,
there is a countable subset I of X such that the sequence {ω(i)

√
μ({i})T ∗

i (e j )}i∈I, j∈J is
a frame for H f .

If now, S ∈ B(H) is the frame operator of {ω(i)
√

μ({i})T ∗
i (e j )}i∈I, j∈J , then we have

S( f ) =
∑

i∈I

∑

j∈J

〈
f, ω(i)

√
μ({i})T ∗

i (e j )
〉
ω(i)

√
μ({i})T ∗

i (e j )

=
∑

i∈I

ω2(i)μ({i})T ∗
i

⎛

⎝
∑

j∈J

〈Ti ( f ), e j 〉e j

⎞

⎠

=
∑

i∈I

ω2(i)μ({i})T ∗
i Ti ( f ).
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Hence, the reconstruction formula follows immediately from the invertibility of the
operator S. �

In the rest of paper we consider the stability of perturbation in uca-resolution of identity.
First, let us state and prove the following useful lemma.

Lemma 2.10. Let {Tx }x∈X and {Sx }x∈X be two families of bounded operators on H and
there exists 0 < λ < 1 such that for all finite subset I of X,

∥
∥
∥
∥
∥

∑

i∈I

(Ti − Si )( f )

∥
∥
∥
∥
∥

≤ λ

∥
∥
∥
∥
∥

∑

i∈I

Ti ( f )

∥
∥
∥
∥
∥

, f ∈ H. (2)

If {(Tx , ω(x)}x∈X is an uca-resolution of identity then we have the following reconstruc-
tion formula

f =
∑

x∈X

Sx S−1( f ), f ∈ H

where S is an invertible operator on H.

Proof. Let f ∈ H and let I be a finite subset of X . Since
∥
∥
∥
∥
∥

f −
∑

i∈I

Si ( f )

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

f −
∑

i∈I

Ti ( f )

∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

∑

i∈I

Ti ( f ) −
∑

i∈I

Si ( f )

∥
∥
∥
∥
∥

,

therefore by inequality (2) we have
∥
∥
∥
∥
∥

f −
∑

i∈I

Si ( f )

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

f −
∑

i∈I

Ti ( f )

∥
∥
∥
∥
∥

+ λ

∥
∥
∥
∥
∥

∑

i∈I

Ti ( f )

∥
∥
∥
∥
∥

. (3)

Hence, the family {Sx ( f )}x∈X is unconditionally summable. Now, we define S : H → H
by S( f ) = ∑

x∈X Sx ( f ). By inequality (3) and using that {(Tx , ω(x)} is assumed to be
uca-resolution of identity, S is well defined and we have

‖ f − S( f )‖ ≤ λ‖ f ‖,
for all f ∈ H. So ‖idH − S‖ ≤ λ < 1, and therefore S is an invertible operator on H.
Hence for all f ∈ H we have

∑

x∈X

Sx S−1( f ) = SS−1( f ) = f,

and this complete the proof. �

DEFINITION 2.11

Let {Tx }x∈X and {Sx }x∈X be two families of bounded operators on H, and let ω : X →
[0,∞) be a measurable map such that ω(x) �= 0 almost everywhere. Suppose that 0 ≤
λ1, λ2 < 1, and ϕ : X → [0,∞) is an arbitrary positive map such that

∫
X ϕ(x)2dμ(x) <

∞. If

‖ω(x)(Tx − Sx )( f )‖ ≤ λ1‖ω(x)Tx ( f )‖ + λ2‖ω(x)Sx ( f )‖ + ϕ(x)‖ f ‖
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for all f ∈ H and x ∈ X , then we say that {(Sx , ω(x))}x∈X is a (λ1, λ2, ϕ)-perturbation
of {(Tx , ω(x))}x∈X .

From now on, let {Sx }x∈X be a family of bounded operators on H such that the mapping
x �→ Sx ( f ) is weakly measurable. Then for each bounded operator S : H → H, the
map x �→ Sx S( f ) is weakly measurable. Hence by Lemma 2.9, we have the following
theorem.

Theorem 2.12. Let {(Tx , ω(x))}x∈X be an uca-resolution of identity for H with bounds
C and D, and let {(Sx , ω(x))}x∈X be a (λ1, λ2, ϕ)-perturbation of {(Tx , ω(x))}x∈X for

some 0 ≤ λ1, λ2 < 1. Moreover assume that (1 − λ1)
√

C − (
∫

X ϕ(x)2dμ(x))
1
2 > 0 and

for some 0 ≤ λ < 1,

‖
∑

i∈I

(Ti − Si )( f )‖ ≤ λ‖
∑

i∈I

Ti ( f )‖, f ∈ H,

for all finite subset I of X. Then there exists an invertible operator S on H such that
{(Sx S−1, ω(x)}x∈X is a uca-resolution of the identity on H.

Proof. First it should be noted that by Lemma 2.10, there exists an invertible operator S on
H, such that the family {Sx S−1}x∈X satisfies in Definition 2.1(c). Also by open mapping
theorem and closed graph theorem, there exist A > 0 and B > 0 such that

A‖ f ‖ ≤ ‖S−1( f )‖ ≤ B‖ f ‖
for all f ∈ H.

Now, for f ∈ H we obtain

(∫

X
ω(x)2‖Sx ( f )‖2dμ(x)

) 1
2

≤
(∫

X
ω(x)2(‖Tx ( f )‖ + ‖(Tx − Sx )( f )‖)2dμ(x)

) 1
2

≤
(∫

X
((ω(x)2 (‖Tx ( f )‖ + λ1‖Tx ( f )‖‖ + λ2‖Sx ( f )‖))

+ ϕ(x)‖ f ‖)2 dμ(x)

) 1
2

≤ (1 + λ1)

(∫

X
ω(x)2‖Tx ( f )‖2dμ(x)

) 1
2

+λ2

(∫

X
ω(x)2‖Sx ( f )‖2dμ(x)

) 1
2 + ‖ f ‖

(∫

X
ϕ(x)2dμ(x)

) 1
2

.

Hence
∫

X
ω(x)2‖Sx S−1( f )‖2dμ(x)

≤
(

(1 + λ1)
√

D + (
∫

x ϕ(x)2dμ(x))
1
2

1 − λ2

)2

B2‖ f ‖2.
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To prove the lower bound, first we observe that

‖ f ‖2 ≤ 1

C

∫

X
ω(x)2‖Tx ( f )‖2dμ(x),

for all f ∈ H. Therefore, by triangle inequality we have

(∫

X
ω(x)2‖Tx ( f )‖2dμ(x)

) 1
2 −

(∫

X
ω(x)2‖Sx ( f )‖2dμ(x)

) 1
2

≤
(∫

X
‖ω(x)(Tx − Sx )( f )‖2

) 1
2

≤ λ1

(∫

X
ω(x)2‖Tx ( f )‖2dμ(x)

) 1
2 + λ2

(∫

X
ω(x)2‖Sx ( f )‖2dμ(x)

) 1
2

+ 1√
C

(∫

X
ϕ(x)2dμ(x)

) 1
2
(∫

X
ω(x)2‖Tx ( f )‖2dμ(x)

) 1
2

.

Hence
⎛

⎝
1 − λ1 − 1√

C
(
∫

x ϕ(x)2dμ(x))
1
2

1 + λ2

⎞

⎠
(∫

X
ω(x)2‖Tx ( f )‖2dμ(x)

) 1
2

≤
(∫

X
ω(x)2‖Sx ( f )‖2dμ(x)

) 1
2

.

So
(

(1 − λ1)
√

C − (
∫

x ϕ(x)2dμ(x))
1
2

1 + λ2

)2

A2‖ f ‖2

≤
∫

X
ω(x)2‖Sx S−1( f )‖2dμ(x),

as we required. �

Remarks 2.13. Suppose {Tx }x∈X and {Sx }x∈X are two families of bounded operators on
H. If {(Tx , ω(x))}x∈X is a uca-resolution of identity, then by Cauchy–Schwarz inequality
we have

|〈Tx Sx ( f ), g〉| = |〈Sx ( f ), T ∗
x (g)〉|

≤ ‖Sx ( f )‖‖T ∗
x ‖‖g‖

≤ ‖Sx ( f )‖‖g‖ sup
x∈X

‖Tx‖,

for all f, g ∈ H and x ∈ X . Hence, for each f ∈ H and x ∈ X ,

‖Tx Sx ( f )‖ ≤ ‖Sx ( f )‖E,

where E = supx∈X ‖Tx‖.
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Theorem 2.14. Let {(Tx , ω(x))}x∈X be an uca-resolution of identity for H with bounds
C and D, and let {Sx }x∈X be a family of bounded operators on H such that for some K ,

∫

X
ω(x)2‖Sx ( f )‖2dμ(x) ≤ K‖ f ‖2,

for all f ∈ H. Suppose that ϕ : X → [0,∞) is a positive map, and there exist 0 <

λ1, λ2 < 1 such that

‖ω(x) f −ω(x)Tx Sx ( f )‖ ≤ λ1‖ω(x)Tx ( f )‖+λ2‖ω(x)Tx Sx ( f )‖+ϕ(x)‖ f ‖.
Also

‖
∑

i∈I

(Ti − Si )( f )‖ ≤ λ‖
∑

i∈I

Ti ( f )‖

for all finite subset I of X and for all f ∈ H, where 0 < λ < 1. If
∫

X ϕ(x)dμ(x) < ∞ and

0 < (
∫

X ω(x)2dμ(x))
1
2 −λ1

√
D − (

∫
X ϕ(x)2dμ(x)) < ∞, then there exists an invertible

operator S on H such that {(Sx S−1, ω(x))}x∈X is an uca-resolution of the identity on H.

Proof. For f ∈ H we have

‖ f ‖
(∫

X
ω(x)2dμ(x)

) 1
2

≤
(∫

X
(‖ω(x) f − ω(x)Tx Sx ( f )‖ + ‖ω(x)Tx Sx ( f )‖)2 dμ(x)

) 1
2

≤
(∫

X
‖ω(x) f − ω(x)Tx Sx ( f )‖2dμ(x)

) 1
2

+
(∫

X
‖ω(x)Tx Sx ( f )‖2dμ(x)

) 1
2

≤
(∫

X
(λ1‖ω(x)Tx ( f )‖ + λ2‖ω(x)2Tx Sx ( f )‖ + ϕ(x)‖ f ‖)2dμ(x)

) 1
2

+
(∫

X
‖ω(x)Tx Sx ( f )‖2dμ(x)

) 1
2

≤ λ1
√

D‖ f ‖ + (1 + λ2)

(∫

X
ω(x)2‖Tx Sx ( f )‖2dμ(x)

) 1
2

+‖ f ‖
(∫

X
ϕ(x)2dμ(x)

) 1
2

≤ λ1
√

D‖ f ‖ + (1 + λ2)E

(∫

X
ω(x)2‖Sx ( f )‖2dμ(x)

) 1
2

+‖ f ‖
(∫

X
ϕ(x)2dμ(x)

) 1
2
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where E = supx∈X ‖Tx‖. Therefore

‖ f ‖ (
∫

X ω(x)2dμ(x))
1
2 − λ1

√
D − (

∫
X ϕ(x)2dμ(x))

1
2

E(1 + √
λ2)

≤
(∫

X
ω(x)2‖Sx ( f )‖2dμ(x)

) 1
2

.

Now by Lemma 2.10, and similar to the proof of of Theorem 2.12, the assertion holds. �
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