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Abstract. In this article, we employ the Farey sequence and Fibonacci numbers to
establish strict upper and lower bounds for the order of the set of equivalent resistances
for a circuit constructed from n equal resistors combined in series and in parallel. The
method is applicable for networks involving bridge and non-planar circuits.
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1. Introduction

The net resistance of n resistors with resistances R1, R2, . . . , Rn connected in series is
given by

Rseries = R1 + R2 + · · · + Rn, (1)

whereas the net resistance of these resistors connected in parallel is given by

Rparallel = 1

1/R1 + 1/R2 + · · · + 1/Rn
(2)

(see [8] and [4].) It is well known that the net resistance Rseries is greater than the largest
resistance among the resistances R1, R2, . . . , Rn and that the net resistance Rparallel is less
than the smallest resistance among the resistances R1, R2, . . . , Rn . The net resistance in
an arbitrary circuit must therefore lie between Rparallel and Rseries. Using (1) and (2), one
can solve block by block any circuit configuration consisting of resistors connected in
series and in parallel.

The simplest network consists of n resistors connected in series and in parallel, each of
the same resistance R0. The net resistance is proportional to R0 which can be set (without
any loss of generality) to unity. Using (2) and (1) in this order, we see that the propor-
tionality constant is a rational number a/b in reduced form that ranges from 1/n to n.
The problems that are associated with resistor networks include finding the net resistance
between any two points in a network and the order of the set of equivalent resistances. A
careful study of the resistance problem is given in [2] using diverse techniques such as
Green’s function, while the perturbation of a network is investigated in [3]. The problem
of finding the order of the set of equivalent resistances has been studied numerically. Due
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to the constraint on computer memory, the problem was studied only up to n = 23. In this
article, we provide a method that works analytically for all values of n.

Let A(n) denote the set of equivalent resistances of n equal resistors put in an arbitrary
combination (using series and parallel). For n ≤ 5, we have
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Proceeding in this way, we see that the order of A(n) grows rapidly: 1, 2, 4, 9, 22, 53, 131,
337, 869, 2213, 5691, 14517, 37017, 93731, 237465, 601093, . . . . It is clear that a set of
higher order does not necessarily contain a set of lower order. For example, 2/3 is in A(3)

but it is not in A(4) or A(5). The numerical results in [1] suggest that |A(n)| ∼ 2.53n .
In Theorem 1 below, we employ the Farey sequence to establish a strict upper bound of
2.61n on |A(n)|. We will use Fibonacci numbers for the order of the Farey sequence.

Fibonacci numbers arise naturally in resistor networks. They form the sequence 1, 1, 2,
3, 5, 8, 13, 21, 34, 55, . . . . The n-th Fibonacci number is defined for n ≥ 3 by the linear
recurrence relation Fn = Fn−1 + Fn−2, using F1 = F2 = 1. A Farey sequence of order
m > 0, denoted by Fm , contains the most exhaustive set of fractions in the unit interval
[0, 1] whose denominators are less than or equal to m. For example, the terms in the Farey
sequence F7 are 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 5/7, 3/4, 4/5,
5/6, 6/7, 1 (see [5, 7, 10, 17]).

Our main result can be stated as follows:

Theorem 1. Let A(n) denote the set of equivalent resistances of n equal resistors put in
an arbitrary combination, let Fn+1 denote the (n + 1)-th term in the Fibonacci sequence,
and let G(n) denote the set of Farey fractions FFn+1 of order Fn+1 in the interval I =
[1/n, 1] along with their reciprocals. Moreover, define FFn+1(I ) = FFn+1 ∩ I . Then we
have

1

4
(1 + √

2)n < |A(n)| < |G(n)|,
where

|G(n)| = 2|FFn+1(I )| − 1.

As a corollary, we obtain the following numerical upper bound.

COROLLARY 2

Let A(n) be defined as in Theorem 1. Then we have

|A(n)| <

(
1 − 1

n

)
(0.318)(2.618)n .
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Here and in the sequel, the symbols S and P always denote series and parallel connec-
tions, respectively. Let (1S P)n denote a circuit constructed by connecting n unit resistors
in series and parallel incrementally, thus resulting in a ladder network. For two resistors,
we see that the resistance is R1S1 = 2; for three resistors, the resistance is R1S1P1 = 2/3;
for four resistors, the resistance is R1S1P1S1 = 5/3; and so on. As it turns out, the corre-
sponding resistances are ratios of consecutive Fibonacci numbers (see [12]). By induction,
we have

R(1S P)n =

⎧⎪⎪⎨
⎪⎪⎩

Fn

Fn+1
, if n is odd,

Fn+1

Fn
, if n is even.

The ladder network starts with two resistors in series. In principle, there can be more
than two resistors in series in the beginning, thus leading to (2S P)n . With two resistors
in series in the beginning, we note that for three resistors the corresponding resistance
is R2S1 = 3; for four resistors, the resistance is R2S1P1 = 3/4; for five resistors, the
resistance is R2S1P1S1 = 7/4, and so on. Inspection shows that these fractions are ratios
of consecutive Lucas numbers. Here we point out that n resistors are used to obtain the
(n − 1)-th Lucas number Ln−1. The same number of resistors in the ladder network gives
the Fibonacci number Fn+1. These numbers satisfy the strict inequality Ln−1 < Fn+1.
Again by induction, we have

R(2S P)n =

⎧⎪⎪⎨
⎪⎪⎩

Ln−1

Ln−2
, if n is odd,

Ln−2

Ln−1
, if n is even.

In the sequel, we cite various integer sequences from The On-Line Encyclopedia of
Integer Sequences (OEIS) created and maintained by Neil Sloane [11]. For example, the
sequence A(n) is identified by A048211 in [18]. The first sixteen sets A(n) are given
in [1], while the OEIS has seven additional terms for n = 17, 18, . . . , 23, which are
1519815, 3842575, 9720769, 24599577, 62283535, 157807915, 400094029. The num-
ber of equivalent resistances matches the number of configurations for n ≤ 3. For n = 4,
we have ten configurations that give a set of nine equivalent resistances. The two configu-
rations (R0 P R0)S(R0 P R0) and (R0S R0)S(R0 P R0) have the same equivalent resistance
R0. In this article, we focus on the set of equivalent resistances. The sequence 1, 2, 4,
10, 24, 66, 180, 522, 1532, 4624, 14136, 43930, 137908, 437502, 1399068, 4507352, . . .
gives the growth of the number of circuit configurations corresponding to the sets A(n)

and occurs in different contexts such as the number of unlabeled cographs on n nodes. The
OEIS enables us to see such connections among unrelated problems. Interestingly enough,
the OEIS has over thousand terms of this sequence [16]. The number of configurations is
much larger than the number of equivalent resistances.

2. The upper bound

The proof of the upper bound in Theorem 1 is embodied in the following two theorems.

Theorem 3 (Reciprocal theorem). Any circuit constructed from n equal resistors in
series or parallel, each resistor with resistance R0, has an equivalent resistance (a/b)R0.
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If one replaces all series connections to parallel connections and all parallel connections
to series connections, then the resulting circuit will have equivalent resistance (b/a)R0.

Theorem 4 (Bound of a and b theorem). Any circuit constructed from n equal resis-
tors in series or parallel, each resistor with resistance R0, has an equivalent resistance
(a/b)R0 such that the largest possible values of a and b are bounded by the (n + 1)-th
term in the Fibonacci sequence, Fn+1.

A proof of Theorem 3 is given by induction in [1], and Theorem 4 is discussed in
detail in [6], [14], and [15]. Theorem 3 states that the resistances in A(n) always occur
in pairs a/b and b/a, the former being less than 1 and the latter being greater than 1. So,
it suffices to count the number of circuit configurations whose equivalent resistances are
less than 1. Since Theorem 4 fixes the bound on the values of a and b, the problem of
estimating |A(n)| thus translates to the problem of counting the number of relevant proper
fractions whose denominators are bounded by m = Fn+1. As mentioned above, the Farey
sequence of order m > 0 provides the most exhaustive set of fractions in the unit interval
[0, 1] whose denominators are less than or equal to m. These fractions are restricted to the
subinterval I = [1/n, 1]; the length of this interval is |I | = (1 − 1/n). Let us recall that
the resistance 1/n is obtained by connecting n resistors in parallel. Taking into account
that all fractions in A(n), except 1, have a reciprocal pair and the fact that 1 is included in
the Farey sequence (and counted twice), we have

|G(n)| = 2|FFn+1(I )| − 1. (3)

By construction, the set G(n) is the grand set of fractions from the Farey sequence
FFn+1 in the interval [1/n, 1] along with their reciprocals. Its order is given by the
sequence 1, 3, 7, 17, 37, 99, 243, 633, 1673, 4425, 11515, 30471, 80055, 210157, 553253,
1454817, 3821369, 10040187, . . . . (see [24]). Inspection shows that G(n) contains all
rational numbers of the form a/b such that both a and b are bounded by Fn+1. Since
FFn+1 is exhaustive, the set G(n) is also exhaustive. This together with (3) lead to the
required upper bound in Theorem 1,

|A(n)| < |G(n)| = 2|FFn+1(I )| − 1.

At this point, we can derive an asymptotic formula for G(n) and thus prove Corollary 2.
Since Fm(I ) grows quadratically in m (see Theorem 330 in [7]), we have the asymptotic
limit

Fm(I ) ∼
(

1 − 1

n

)
3

π2
m2. (4)

Now, the closed form expression for the n-th Fibonacci number Fn is given by Fn =
[φn/

√
5], where φ = 1.6180339887 . . . is the golden ratio (see [12]). Here [x] is used to

denote the maximal integer less than or equal to x . Using (3) and (4) with the substitution
m = Fn+1, we obtain

|G(n)| ∼
(

1 − 1

n

)
6

π2

(
φn+1

√
5

)2

=
(

1 − 1

n

)
(0.318)(2.618)n .
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This is consistent with the asymptotic limit A(n) ∼ 2.53n obtained from numerical com-
putations up to n = 16 in [1] and up to n = 23 in [18]. Here we remark that the asymptotic
limit G(n) ∼ 2.618n strictly fixes an upper bound on |A(n)|. When using G(n) in place
of A(n), there is a certain amount of overcounting as the Farey sequence contains some
terms that are absent in the actual circuit configuration.

We next show that the Farey sequence method is applicable for circuits with n or fewer
equal resistors. To this end, let C(n) denote the set of equivalent resistances from one or
more n equal resistors put in an arbitrary combination. The order of the first 16 sets C(n)

are 1, 3, 7, 15, 35, 77, 179, 429, 1039, 2525, 6235, 15463, 38513, 96231, 241519, 607339
(see [19]).

We may write C(n) as

C(n) =
n⋃

i=1

A(i).

Here we note that each A(i) is a subset of G(i) which is constructed from FFi+1 and that a
Farey sequence of a given order contains all Farey sequences of lower orders. Thus, we have

|A(n)| < |C(n)| < |G(n)|.
Finally, bridge circuits can be analysed by first converting them to the usual series-

parallel equivalents with transformed resistances (see [4]). The transformed resistances
satisfy Theorem 4. In fact, the bounds turn out to be less than Fn+1. Although individual
bridge circuits do not necessarily satisfy Theorem 3, the set of bridge circuits satisfy
Theorem 3 for n ≤ 8. When the bridge circuits in the set A(n) are modified to equivalent
circuits in B(n), their orders are the terms in the sequence 1, 2, 4, 9, 23, 57, 151, 409, . . .
(see [20]). Moreover, circuits of equal resistors forming geometries such as polygons and
polyhedral structures are studied in [9] and [13]. From these investigations, it is evident
that Theorem 4 is satisfied by these circuits. Hence, any larger set of circuit configurations
involving such geometries will be bounded by |G(n)|. Because of this, the Farey sequence
method is applicable. Hence, all equivalent resistances of configurations containing bridge
circuits belong to G(n). Note that the set A(n) is a proper subset of the set B(n) which
additionally contains bridge circuits. These two sets satisfy the inequalities

|A(n)| < |B(n)| < |G(n)|.
For the sets A(n) and C(n), by virtue of Theorem 3 we conclude that there are equal

number of configurations on either side of 1 with the reciprocal relation for each pair. In
the absence of Theorem 3, the same cannot be said of set B(n). Still larger sets D(n) are
obtained by including the bridge circuits in the set C(n). The order of the first few sets of
D(n) are 1, 3, 7, 15, 35, 79, 193, 489, . . . (see [21]). All four sets A(n), C(n), D(n) and
G(n) satisfy the inequalities

|A(n)| < |C(n)| < |D(n)| < |G(n)|.

3. The lower bound

In this section we establish the lower bound in Theorem 1. The order of the set A(n + 1)

can be estimated from the order of the set A(n). Treating the elements of A(n) as single
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blocks the (n + 1)-th resistor can be connected either in series or in parallel, and so the
resulting sets are called either series or parallel. We denote these sets either by 1S A(n) or
1P A(n). We can also add the (n + 1)-th resistor somewhere within the A(n) blocks and
call the resulting set the cross set, which we denote by 1 ⊗ A(n).

The sets 1S A(n) and 1P A(n) each has exactly |A(n)| configurations and |A(n)| equiv-
alent resistances. They are disjoint and contribute 2|A(n)| elements to the set A(n + 1).
Additionally, they are the source of 2n configurations. The cross set is not as straight-
forward, as it is generated by placing the (n + 1)-th resistor anywhere within the blocks
of A(n). The cross set is the source of all extra configurations which do not necessarily
result in new equivalent resistances. Moreover, it has at least |A(n − 1)| elements, since
the set A(n) has |A(n − 1)| connections corresponding to those in the set 1 ⊗ A(n − 1).
This argument works for n ≥ 6 and leads to the inequality

|A(n + 1)| > 2|A(n)| + |A(n − 1)|,
which, in turn, leads to the required lower bound in Theorem 1,

1

4
(1 + √

2)n < |A(n)|.

Appendix

In this section we derive several properties of the set A(n). First, the scaling property
is the statement that if a/b ∈ A(m), then one can construct the resistances k(a/b) and
(1/k)(a/b) using k such blocks in series and in parallel, respectively, with km number of
unit resistors. Thus, we have k A(m) ∈ A(km) and (1/k)A(m) ∈ A(km).

From (1), we see that a block of i resistors in series has an equivalent resistance i . If
i such blocks are combined in parallel, using (2) we get back the unit resistance. From
this, we conclude that 1 ∈ A(i2). The same result can be obtained by taking i blocks in
series, each containing i unit resistors connected in parallel. Once the unit resistor has
been obtained, using i2 resistors (or much less as we shall soon see), we can use it to
construct other equivalent resistances. Every set A(m) is made from m unit resistors. The
same set can be replicated by using m unit resistors constructed with i2 resistors. Hence
A(m) ⊂ A(i2m). Whenever 1 belongs to some set A(i), we label it as 1i to indicate that
it has been constructed from i basic unit resistors R0.

The translation property is the statement that 1 ∈ A(i) implies 1 ∈ A(i+3). This can be
seen by taking either of the combination of 1i with three basic unit resistors (1S1)P(1S1i )

so that R2P2 = 1 or with (1P1)S(1P1i ), so that R(1/2)S(1/2) = 1. So whenever 1 ∈ A(i),
it follows that 1 ∈ A(i + 3). We shall use the translation property to prove the following
theorem.

Theorem A1. We have 1 ∈ A(n) for n �= 2, n �= 3, and n �= 5.

From an exhaustive search (or otherwise), we know that 1 belongs to A(6), A(7) and
A(8). Using the translational property, we see that 1 also belongs to A(9), A(10) and
A(11); and to A(12), A(13) and A(14); and so on. Thus we conclude that 1 belongs to
A(n) for n ≥ 6. As for the lower A(i), 1 belongs to A(1) and A(4); but 1 does not belong
to A(2), A(3) and A(5). Hence the theorem is proved.
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Next, recall that all elements in A(n) have a reciprocal pair a/b and b/a, with 1 being
its own partner. The presence of 1 implies that |A(n)| is always odd, with the exception
of |A(2)| = 2, |A(3)| = 4 and |A(5)| = 22. Recall also that each Farey sequence Fm

contains an odd number of elements, with the exception of m = 1, where |F1| = 2.

COROLLARY A2

We have 1/2 ∈ A(n) for n �= 1, n �= 3, n �= 4, and n �= 6.

The parallel combination of one basic unit resistor, with 1i for i = 4 and i ≥ 6 results
in an equivalent resistance of 1/2. This is because R1P1i = (1 × 1i )/(1 + 1i ) = 1/2.
Consequently, 1/2 ∈ A(i + 1) for i = 4 and i ≥ 6. Corollary A2 is proved for n = 5 and
n ≥ 7. Resorting to an exhaustive search, we note that 1/2 ∈ A(2). The four exceptional
sets are A(1), A(3), A(4) and A(6), which do not contain 1/2. Here we note that the Farey
sequence Fm contains 1/2, with the exception of F1.

Theorem A3 (Modular theorem). We have

(i) A(m) ⊂ A(m + 3),

(ii) A(m) ⊂ A(m + i) for i ≥ 5.

Every set A(m) is constructed from m basic unit resistors R0. If we replace any one of
these basic unit resistors with 1i for i = 4 and i ≥ 6, we will reproduce the complete set
A(m) using (m+i −1) resistors. Consequently, A(m) ⊂ A(m+i −1) for i = 4 and i ≥ 6.
Thus, Theorem A3 is proved. Specifically, every set A(m) is completely contained in all
subsequent and larger sets A(m + 3) along with infinite and complete sequence of sets
A(m +5), A(m +6), A(m +7), . . . . However, it is very surprising to note that the infinite
range theorem is silent about the three important sets: the nearest neighbour A(m + 1),
next-nearest neighbour A(m + 2), and the near-neighbour A(m + 4). From the modular
relation A(m) ⊂ A(m + i) for i ≥ 5, we conclude that A(n − 5) ⊂ A(n) ∩ A(n + 1)

for n ≥ 6. This is the closest that we can get to understand the overlap between A(n) and
its nearest neighbor A(n + 1). An immediate consequence of Theorem A3 is that the set
C(n) can be rewritten as follows:

C(n) =
n⋃

i=1

A(i) =
n⋃

i=n−2

A(i) = A(n − 2) ∪ A(n − 1) ∪ A(n),

which tells us that it is enough to consider only the last three sets A(n − 2), A(n − 1) and
A(n) in the union. So it is not surprising that the ratio C(n)/A(n) is close to 1.

We now turn our attention to the decomposition of A(n). When deriving the lower
bound in Theorem 1, we observed that A(n) is the union of the three sets formed by
different ways of adding the n-th resistor. The decomposition

A(n) = 1P A(n − 1) ∪ 1S A(n − 1) ∪ 1 ⊗ A(n − 1)

enables us to understand some properties of A(n).
All elements of the parallel set are strictly less than 1; this is because R1P(a/b) =

a/(a + b) < 1. Likewise, all elements of the series set are strictly greater than 1; this is
because R1S(a/b) = (a + b)/b > 1. So 1P A(n − 1) ∩ 1S A(n − 1) = ∅, and the element
1 necessarily belongs to the cross set alone.
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The series and the parallel sets each have exactly |A(n − 1)| configurations and the
same number of equivalent resistances. Let c/d and d/c be any reciprocal pair (ensured
by Theorem 3) in A(n −1). Then R1P(c/d) = c/(c +d) and R1P(d/c) = d/(c +d) belong
to the set 1P A(n−1). Similarly, R1S(c/d) = (c+d)/d and R1S(d/c) = (c+d)/c belong to
the set 1S A(n−1). This shows that all the reciprocal partners of the set 1P A(n−1) always
belong to the set 1S A(n − 1), and vice versa. Consequently, all elements in the cross set
1 ⊗ A(n − 1) have their reciprocal partners in 1 ⊗ A(n − 1), with 1 being its own partner.
These two disjoint sets contribute 2A(n − 1) elements to the set A(n) and are the source
of 2n configurations. The order of the cross set 1⊗ A(n) is A(n + 1)−2A(n) and is given
by the terms in the sequence 0, 0, 0, 1, 4, 9, 25, 75, 195, 475, 1265, 3135, . . . (see [22]).
It is the cross set which takes the count beyond 2n to 2.53n numerically and maximally to
2.61n , strictly fixed by the Farey sequence method. For n ≥ 7, all the three basic sets have
odd number of elements since A(n) is odd for n ≥ 6. For n > 6, the cross set has at least
|A(n − 2)| elements since A(n − 1) has |A(n − 2)| connections corresponding to the set
1⊗ A(n−2). This leads to the recurrence relation which gives the lower bound for |A(n)|.

The cross set is expected to be dense near 1 with few of its elements below a half (recall
that 1/2 ∈ 1P A(n) for n ≥ 6 and 1/2 is not a member of the cross set). This is reflected by
the fact that cross sets up to 1⊗A(7) do not have a single element below a half. The succes-
sive cross sets have 1, 6, 9, 24, 58, 124, 312, . . . , elements below a half respectively (see
[23]); a small percentage compared to the size of the cross sets 195, 475, 1265, 3125, . . .
(see [22]).

It is straightforward to carry over the set theoretic relations to the bridge circuits sets,
since A(n) ⊂ B(n) (see [20]). Unlike the sets A(i), the sets B(i) have the additional
feature 1 ∈ B(5). So the various statements must be modified accordingly. In particular,
we have

(i) 1 ∈ B(n) for n �= 2 and n �= 3,
(ii) 1/2 ∈ B(n) for n �= 1, n �= 3 and n �= 4,

(iii) B(m) ⊂ B(mi) for i = 1 and i ≥ 4,
(iv) B(m) ⊂ B(m + i) for i ≥ 3,
(v) B(n − 3) ⊂ B(n) ∩ B(n + 1) for n ≥ 4.

Finally, the complementary property is the statement that every set A(n) with n ≥ 3 has
some complementary pair such that their sum is equal to 1. As an example, in A(3) we
have the pair (1/3, 2/3); in A(4) we have two pairs (1/4, 3/4) and (2/5, 3/5); and so on.

By virtue of Corollary A2, we see that 1/2 can be treated as its own complementary
partner. We shall soon conclude that each element of the set 1P A(n − 1) has a com-
plementary partner in 1P A(n − 1). By Theorem 3, the elements c/d and d/c occur as
reciprocal pairs in A(n − 1). So in 1P A(n − 1) we have

(
1P

c

d

)
+

(
1P

d

c

)
= c

c + d
+ d

d + c
= 1.

Consequently, all elements of 1P A(n−1) have a complementary partner in 1P A(n−1).
For n ≥ 7, the number of such pairs in 1P A(n − 1) is (A(n − 1) − 1)/2. This is because
A(n − 1) is odd for n ≥ 7 and 1/2 ∈ A(n) for n ≥ 7. It is obvious that the set 1S A(n − 1)

does not have complementary pairs. Here we recall that elements in the Farey sequence
are complementary with respect 1; the median point 1/2 is the only exception and may be
treated as its own partner.
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