Proc. Indian Acad. Sci. (Math. Sci.) Vol. 121, No. 4, November 2011, pp. 435-446.
© Indian Academy of Sciences

On hypersurfaces with two distinct principal curvatures
in space forms

BING YE WU

Department of Mathematics, Minjiang University, Fuzhou, Fujiang 350108, China
E-mail: bingyewu@yahoo.cn

MS received 28 December 2009; revised 18 August 2011

Abstract. We investigate the immersed hypersurfaces in space forms Nt (o), n>4
with two distinct non-simple principal curvatures without the assumption that the (high
order) mean curvature is constant. We prove that any immersed hypersurface in space
forms with two distinct non-simple principal curvatures is locally conformal to the
Riemannian product of two constant curved manifolds. We also obtain some charac-
terizations for the Clifford hypersurfaces in terms of the trace free part of the second
fundamental form.
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1. Introduction

Let N"*1(¢) be an (n+1)-dimensional simply connected space form of constant curvature
¢, namely,

1
S”+1(c):{xeR"“:(x,x):—}, c>0;
c
Nn+1(c) — Rn‘l’l, c = 0,
1
H"*1(c) = {x € erz+2 S x) = —, x> O} , c<0.
c

Let us first recall the definition of an important class of hypersurfaces in space forms,
namely, the Clifford hypersurfaces.

Example 1.1 (The Clifford hypersurfaces in N**1(c)). Let us first consider the case
when ¢ > 0. In this case, N"*(c) = S"t!(c) = {x € R"™™ : (x,x) = %}, where
(,+) is the standard inner product on R"™2 For 1 < m < n— 1,1 € (0,%), let
Mupp-m(c.t) = §"(25;) x 87" (5;)- We view x = (x1,%2) € My n-m(c, ) as
a vector in R"*t2 = R+ 5 R?*=+1 then x € $"*!(c). This is the standard isomet-
ric embedding of M, ,—n(c, t) into S"*1(c). In this situation, for suitably chosen unit
normal vector field, M, ,—m (c, t) has two distinct principal curvatures A = /ccots of
multiplicity m and u = —./c tan ¢ of multiplicity n — m.
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Similarly, when ¢ = 0, N**1(0) = R"*!. For 1 <m < n — 1,1 € (0, 400), let
My p—m(0, 1) = R™ x S (t%). Then M,y n—m (0, 1) is an embedded hypersurface in
R"*+1 and it has two distinct principal curvatures A = 0 with multiplicity m and 1 = ¢
with multiplicity n — m.

Finally, when ¢ < 0, N"*!(¢) = H"*!(c) = {x € R’f""z Cx,x) = %,x’”z > 0}.
Here (x,y); = x'yl 4+ ... 4 x?Flyntl _ xn+2yn42 s the standard Lorentzian inner
product on R’f”. Forl <m <n—1,t € (0,400), let My ,_m(c,t) = Sm(gi;h%;) X
H”*m(cos"zt). Then M,, ,_m(c,t) is an embedded hypersurface in H"*!(c), and for
suitably c?losen unit normal vector field, it has two distinct principal curvatures A =
/—c cotht of multiplicity m and i = +/—c tanh ¢ of multiplicity n — m.

There has been a long history for the study of hypersurfaces in space forms with two
distinct principal curvatures. In 1970, Otsuki [4] studied the minimal hypersurfaces in
™1 (1)(n > 3) with two distinct principal curvatures and proved that if the multiplicities
of the two principal curvatures are both greater than 1 (namely, the two principal curva-
tures are both non-simple), then they are the Clifford minimal hypersurfaces. This result
can be generalized to the case of constant (high order) mean curvature and other space
forms (see e.g., [3,5,6]).

In this paper, we shall study the hypersurfaces in N" ! (¢)(n > 4) with two distinct non-
simple principal curvatures without the assumption that the (high order) mean curvature
is constant. For convenience, we shall denote by M k() or M {‘ (¢), etc, the k-dimensional
complete Riemannian manifolds with constant curvature c. Our first result is the local
structure theorem for such hypersufaces.

Theorem 1.2. Any (connected) hypersurface in N'+1(¢), n > 4 with two distinct non-
simple principal curvatures is locally conformal to M{*(c1) x My ™" (c2) with 1 < m <
n—1landcy+c; =1.

Now let M be a hypersurface in N"*!(¢) with two distinct principal curvatures A,
of multiplicities m, n — m. Denote by (h;;) the second fundamental form of M, by H =
% > hj; the mean curvature of M, and by ¢; ; the tensor h;; — H4;; of the trace free part
of the second fundamental form (/;;). Let ® be the square of the length of (¢;;), and
€ = sgn(A — ) be the signature of A — . For each H, m and € = %1, set

n(n — 2m)

Pue(H,x)=x>—¢ Hx —n(c+ H?). (1.1

nm(n —m)

Suppose that ¢ + H? > 0, and let B, ¢(H) be the square of the positive root of
Pm,e(H, X) = 0, ie.,

B () = n(n —2m)eH + ny/n>H? + 4m(n — m)c. (12)

2/nm(n —m)
Our second result provides a characterization for Clifford hypersurfaces in terms of ®.
Theorem 1.3. Let M be a complete hypersurface immersed in N*t1(c), n > 4 with

two distinct non-simple principal curvatures A, L of multiplicities m, n — m. Suppose in
addition that inf |\ — | > 0,c + H> > 0 and ® > By, (H), here € = sgn(A — ),
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then H is constant, ® = B, (H), and M is isometric to the Clifford hypersurface as
described in Example 1.1.

Especially, for hypersurfaces in spheres and Euclidean space, we have the following
two results.

Theorem 1.4. Let M be a compact hypersurface immersed in S"7'(c), n > 4 with two
distinct non-simple principal curvatures ), i of multiplicities m,n — m. If one of the
following three conditions holds, then M is isometric to the Clifford hypersurface as
described in Example 1.1.

(1) M has nonnegative sectional curvature;
(2) ® = Bi,e(H);
(3) @ < Bu,e(H).

Theorem 1.5. The only complete noncompact hypersurfaces in R"*', n > 4 with two
distinct bounded non-simple principal curvatures A, v satisfying inf |A — u| > 0 are
Clifford hypersurfaces in R"*! as described in Example 1.1.

Remark.

(1) Under the additional assumption that the mean curvature H is constant, (2) and (3) of
Theorem 1.4 has been verified by Chang [2].

(2) The basic idea of the present paper can be used to study space-like hypersurfaces in
Lorentzian space forms and we can obtain the Lorentzian versions of the main results
of this paper (see [7]).

2. Preliminaries

Let M be an n-dimensional hypersurface in a space form N"*!(c) of constant curvature
c. For any p € M, we choose a local orthonormal frame ey, ..., ey, e,+1 in N”+1(c)
around p such that eq, ..., e, are tangent to M. Take the corresponding dual coframe
W1, ..., Wy, Wy4+1 With the connection 1-forms wap, 1 < A, B < n + 1. We make the
convention on the range of indices that | < A, B,... <n+ 1,1 <i,j,... < n. The
structure equations of N"*1(¢) are

da)Az—Za)AB/\a)B, wap +owpa =0, 2.1
B
1
dwpsp = — ZU)AC ANwcp + > Z Kapcpwc N wp, (2.2)
C C.D
Kapcp = c(8acdpp — 8apdpc), (2.3)

where Kapcp is the curvature tensor of N"t1(¢). When restricted to M, we have
wpy1 = 0, and thus 0 = dw,41 = — ) ; Wpt1 i A w;. By Cartan’s lemma, there exist
local functions £;; such that

Optli = Zhijwj» hij = hjj. 2.4
J
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The second fundamental form is h = Zi’j hijw; @ wj. We also write & = (h;j)nxn and
call the eigenvalues of matrix (h;;) the principal curvatures of M. The mean curvature
of M is given by H = ,lltr(h) = %Zz hi;. From (2.1)—(2.4) we obtain the structure
equations of M,

dwiz—Za)ij Nwj, a)l‘j—i—a)ﬁ:(), (2.5)
J
1
dw;j = — Xk:a)ik A wgj + 3 ; Rijriwr N (2.6)

and the Gauss equations
Rijii = c(Bixdj1 — 818 k) + hixhji — hith j, 2.7

where R is the Riemannian curvature tensor of M. The covariant derivative of h;; is
defined by

> hijrex = dhij =Y (hijori + hixor)) - (2.8)
k k

Thus, by exterior differentiation of (2.4), we obtain the Codazzi equation

hijk = hikj. 2.9)

3. Conformal structure for hypersurfaces

Now, let M be a (connected) hypersurface in N**1(c¢) with two distinct non-simple prin-
cipal curvatures with multiplicities m,n — m, here | < m < n — 1. In this situation, we

can choose local frame field ey, ..., e, such that

hij = Xidij, 3.1
where

M= =An=A, Apgpl == Ay = WL (3.2)

By means of (2.8) and (3.1), we obtain

Zhijkwk =§;jdhi + (L) — Awij. (3.3)
k
In the following we shall use the convention on the ranges of indices: 1 < a,b,c,... <

m,m-+1=<rs,t, ... <n.From(2.9), (3.2) and (3.3) we easily get

hapi =0, Va #b, i, (3.4)
hrsi = 09 vr 7& s, is (35)
)M,a = M,r = 09 va, r, (3'6)

haar = )V,ra hrra = M.as Va,r. G.7)
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Here A ; = ¢;(X), ;i = ¢; (). Combining (2.9), (3.3)—~(3.7), we have

Zhariwi = — Wrg = Aywg + WL qwr,
i

and consequently,

A A — A —
opg = T 4 M a),=( u),rwa_( u),awr_ 3.8)
A—Lu A— A—Lu A—u

Now we consider a new Riemannian metric ds> on M by

52 =Y @ @ =0 — wo;. (3.9
i

Clearly, (M, ds?) is conformal to (M, d5?). In the following we are going to prove that

locally (M, d5?) is isometric to the Riemannian product of two constant curved manifolds

of dimensions m and n—m. For smooth function f on M, let f; and f 7 be the components

of the first covariant derivative of f with respect to the metric ds> and ds2, respectively.
By definition, we have

df =Y fioi =Y fior,
i i
and thus

fi=0—-wf;. (3.10)

Let @;; be the connection 1-forms of d52. Then by the structure equations of ds* and ds?,
it is easy to see that

Gyl G-
wij = w;jj + 1 wj — P wj
A— )i A=)
P “)”w,-—( 2 3.11)
A—U A—U
Combining (3.6), (3.8), (3.10) and (3.11) we have
_ i - mpoo_
ab = Bup — iy + g, (3.12)
A— A—
L L (3.13)
Wrs = Wrs )»—/JLCUS P @r, :
— )\’_
Oar = =20 G — 2 B, Bar =0 (3.14)
A— A—u

Since @4 = 0, (M, d5?) is locally isometric to the Riemannian product (Mi”, d§12) X
(M;’ - dig) of two manifolds of dimensions m and n — m, and A and u can be viewed
as a function on (M;'_m, dE%) and (Mi”, d§12), respectively. Here dE% =>, J)ﬁ, dE% =
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> cbf Taking exterior differentiation on the first equality of (3.14) and using (2.6), (2.7)
and (3.12)—(3.14) yields

1
dwyr = _Xh:wab/\wbr _g:was/\wsr'FERarijwi N w;j
_ i - My My AFoo_
= Z Wap — Ha wp + b wg | A b w; + ! wp
B A—u A—u A—u A—u

)\‘-, _ _ )\.? _ )\.y‘ _
+Z< T3 buw”>A<w"+k—’éuwr_k—ruws>

)\‘ -
+C+ M&)a/\c?),:—d Ha Aoy + A @y
(A —p)? A—u

A A
—d <x u) A @g + —A Za)ab A @p. (3.15)

Note that as a function on (M, dflz), the second covariant derivative of u is defined by
> kap@s = dia = ) i b, (3.16)
b b

Similarly, as a function on (Mgfm, dE%), the second covariant derivative of A is given by

Zl,ﬁd)x =dAy — Zk,iﬁ)sw (3.17)
N N

Substituting (3.16) and (3.17) into (3.15), after simplifying we reach at

1 e
m(c + )\./L + |V}\,| + |V,bb| )wa Ao
1

= —m (Z,u, ab@Wp N Wy —i—Z)L”a)A /\a)a) ,
where |[VA|? = Do A Vu)? = Do ,u . By comparison we get

c+ A+ VAP + [Vl + (A — w(paa — hir) =0, Va,r, (3.18)
Ars =0, Vr#s; Kaip = 0, Va #b. (3.19)
From (3.18) it is clear that

M =Ass, Vst paa =W, Va,b. (3.20)

Let R, peq be the curvature tensor of M™, dE]Z), it is determined by the structure equation

dwgp = — Zwac ANOcp + = Z Rabcdwc A @yg. (3.21)
cd
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Similarly, the curvature tensor Ry, of (M5 ™", d53) is determined by
_ _ _ 1 _ _ _
dayy = — Xt:wrt A s + 5 ;}: Rystw®; A 0. (3.22)

Differentiating (3.12) and (3.13) and using (2.6), (2.7) and (3.20)—(3.22), after simplifying
we get

Raped = ¢1(8acdha — 8addbe),  Rrstw = €2(8r185w — Srwbst)- (3.23)
Here
R S ST
= a2 (¢ + A%+ VAP + Vil + 20 — W aa). (3.24)
R
2= G F T HIVAP + VAP =20 = i), (3.25)

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By (3.23)—(3.25), we need only to prove that c1, ¢; are constant
with ¢; + ¢x = 1. By (3.18) it is easy to see that c; +c¢2 = 1. On the other hand, by (3.18)
and (3.19) we see that

1
(enr = m(z)ﬁ»,f + 2 A7+ 2h b aa)
— 2R (e A2 [TAR 4 [Tl + 20— )pa.aa) = O.
A —pw)? ’
Similarly, (¢2) .z = 0. Since ¢; + ¢c2 = 1, we have (c1) 7 = (c1).a = (c2).a = (c2) 7 =0,
namely, c1, ¢ are constant. Hence we have proved the Theorem. O

4. Auxiliary lemmas
In order to prove Theorems 1.3—1.5, we need some auxiliary lemmas. At first we have the

following:

Lemma 4.1 (Euler’s lemma) [1]. Let f : Rf — R be a smooth function defined on
a Euclidean k-space. If f is positively homogeneous of degree s, namely, f(t - x) =
t5- f(x),¥Yt > 0, then

k

el
IR
A=l *

Lemma 4.2. Let f : N"(c) — R, m > 2 be a smooth function, and f,[zé’l <a,b<m
be the components of the second covariant derivative of f with respect to the local
orthonormal frame of N" (¢). If f satisfies

fab =8 bab- @.1)
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Here g : N (¢) — R is a smooth function, then

(1) when ¢ > 0, N"(¢) = S"™(c) — R"*!, there is a constant vector p € R"*! and a
constant b such that f(x) = (x, p) + b, g(x) = —c(x, p), Vx € S"(¢);

(2) when ¢ = 0, N™(0) = R™, there are two constants a, b and a vector p € R" such
that f(x) = a{x — p,x — p) + b, g(x) = a,¥x € R"™; consequently, f is constant
if it is bounded,

3) when ¢ < 0,N"(¢) = H"(¢c) — RTH, there is a constant vector p € R’I"H
and a constant b such that f(x) = (x, p)1 + b, g(x) = —c{x, p)1,Vx € H"(¢).
Consequently, if f has upper bound or lower bound, then p is time-like or p = 0;
and f is constant if it is bounded.

Proof. It should be noted that this lemma has been verified in [7], here we include the
proof for readers’ convenience. We shall only prove (3), and (1) and (2) can be proved
similarly. Without loss of generality, we assume that ¢ = —1. Let x', ..., x"*! be the
global co-ordinates of RTH so that the Lorentzian inner product on ]R’{’H is given by

m+1
o= eaxtyt wa =Gy =0y,
A=1

Heree| = =€y =1=—¢€p41. LetCt ={x € R’{"H :(x,x)1 < 0, x> 0}, then
r = /—{x,x); : Ct — Ris a smooth function, and the hyperbolic m-space of constant
sectional curvature —1 is deﬁned by H"(—1) = r~1(1). We choose the local orthonormal

frame ey, ..., epn, emt1 = % = = of C™t, then when restricted on H"(—1), eq, ..., e
are tangent to H" (—1), and the standard orthonormal basis %, R % of R’I"‘H can
be expressed by
d eAxA
[— a J—
ax_A = ;CAEH , Cem+1- (42)

From (4.2) it is clear that

d d epepxtxB
€A8AB = <— —> =) ¢ — ———. (4.3)
axA  axB [, Xa: r2
By the definition of » we have
3%r 3 9 1 eaepxxB
——— =Hr| —,—5 | = —— [ €46 ). 4.4
0xA0xB " (BxA 8x3) r ( A%AB + r2 ) 44

Here H denotes the Hessian operator on R’I”H. Let D be the Levi-Civita connection of
R’l’”l. Then

- 1 e,

D,,ep = Veaeh + ;Sahem+la D, epny1 = 77 D em+1 =0. 4.5)

em+1

Here ﬁea ep 1s the component of D, e, which is orthogonal to e, 1. It is clear that when
restricted on H™ (c), V is the Levi-Civita connection of H" (c), here ¢ < 0. Let f be
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the function given by the lemma. We can extend it to a function f which is positively
homoigen?ous of degree_zero on CT by f(x) = f(%),Vx € C*. Let Hf(eq,ep) =
eqepf — Ve, ep f. Then H f(eq, ep) is positively homogeneous of degree —2, and it is the
component of the Hessian of f when restricted on H” (¢) for any ¢ < 0. Therefore, by

(4.1) we have

- . ~ dab
Hf(easer) =8 5

(4.6)

Here g is defined in the same way as f . Now we define a function F on CT by F =r - f .

It is clear that e, (r) = em_H(f) =0, ep+1(r) = 1. By (4.5) we have

f

HF (eq, ep) = eaep(F) — De,ep(F) =r - H f(eq, ) — Sap g
which together with (4.6) yields

HF(eaen) =G by G=5—1.

P

By (4.6) we also have

HF(eq, em+1) = HF (em+1, em+1) = 0.
Combining (4.2)—(4.4), (4.7) and (4.8) we get

3?’F 3 3%r
axAoxB HE (E)x“‘ 8xB> ZCACB CaxAdxB rG.

It is clear from (4.9) that

*r  0rG)  *r  3(rG)
axA9xB  9xC  9x49xC  9xB

which together with (4.4) implies that

€ ArG ecxAx€\ 9(rG
(5AB+ Bizx )Q_(SAMCJ;_;)Q‘

ax¢ oxB

A7)

4.8)

(4.9)

(4.10)

Itis clear that rG = g — f is positively homogeneous of degree zero, thus by Lemma 4.1

we have

Letting A = C in (4.10) and then taking the sum, by using (4.11) it is easy to get

3(rG)
(m — D)= =0.

4.11)
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Since m > 2, we see that % = 0,VB. As the result, rG = a; (a constant). Now
(4.9) shows that the function F + a;r is a linear function on CT, namely, there is a con-
stant a> and a constant vector p € Rq”“ such that F(x) + a1r(x) = (p,x)1 + az, and
consequently, f(x) = (p, x); +b,Vx € H"(—1). Here b = ap — a;. Now it is clear that
fap = (P, Xx)1 - 8ap, and this implies that g(x) = (p, x)1, Vx € H"(—1), and thus we

are done. O

By Lemma 4.2 we can prove

Lemma 4.3. Let M be a complete hypersurface immersed in N"t1(¢)(n > 4) with two
distinct non-simple principal curvatures A, y withinf [A — u| > 0. If c + i < 0, then M
is isometric to the Clifford hypersurface as described in Example 1.1.

Proof. Let ds? be the original Riemannian metric on M. By assumption, ds? is complete,
and inf|A — | > 0, it is clear that the new metric d52 = (A — w)2ds? is also complete,
and thus by Theorem 1.2, (M, ds?) is isometric to MY (c1) x My~ (c2), where m is the
multiplicity of A. We shall prove the lemma when A — o > 0, the case when A — u < 0
can be shown similarly. In this situation, since A and u can be viewed as functions on
Mg_m (c2) and M{"(cy), respectively, we conclude that A has lower bound while 1 has
upper bound. Now we claim that if X is not a constant, then it attains its minimum at
some point vg € M5 " (c2), and A7 > O for any r at vg. To prove this claim, we
can assume that M7 " (c2) = N"7"(c;) without loss of generality (we may consider
the lift of function A to the universal covering space if necessary). By (3.19) and (3.20),
A satisfies A 75 = v - &4, here v is a smooth function on N*™"(cp). If ¢ > 0, then
N'™M(cp) = §"™(cp), and by Lemma 4.2, A(v) = a(v, p) + b,Yv € §" " (cp) for
some constants a, b and p € S"(c,). Since A is not a constant, we have a # 0, and
without loss of generality, we assume that @ > 0. In this situation, A attains its minimum
at v9 = —p, and since A 7z = —acy(v, p), one has A 77 > 0 at v9o = —p for any r.
When ¢, = 0 or ¢; < 0, we can show that the claim still holds, by using Lemma 4.2.
Similarly, if  is not a constant, then it attains its maximum at some point ug € M i" (c1),
and 1 gz < O for any a at ug. Now let (1o, vo) € M{'(c1) x M5~ (c2) be the point such
that A attains its minimum and p attains its maximum, then since ¢ + A < 0, by (3.18)
and the maximum principal we have

O0>c+iu=0Gh—-wWAswF—a) =0

at (uo, vo). Noting that inf(A — p) > 0, we must have A7z = pnzz = 0, Va, r. Thus
by the above discussion, X, i are both constants, and consequently M is isometric to the
Clifford hypersurface, and the lemma is proved. ]

5. The proof of the main results

In this last section we shall complete the proof of Theorems 1.3—1.5.

Proof of Theorem 1.3. By assumption, the second fundamental form (4;;) has two non-
simple eigenvalues A and p with multiplicities m and n — m, thus (¢;;) = (h;; — Hd;j)
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has two eigenvalues Ah=A—Hand i = u — H of multiplicities m and n — m, and
consequently,

0 = trace(¢;;) = mA + (n — m)fi, 5.1
® =mit+ (n —m)j°. (5.2)

By (5.1) and (5.2) it is easy to see that

Pzt e, p=—e " o (5.3)
mn (n —m)n

Here € = sgn(): — ft) = sgn(A — ). From (5.3) we have

n—2m

tin=c+ G+ H(E+H =c+H + ———=
c+ip=c+( ) (1 )=c NTICED]

1
eHVO — -,
n

and thus
n(n —2m)

Jnmmn —m)

Notice that & > By, (H). We see that n(c + Apn) = —Py.(H, J®) < 0, thus by
Lemma 4.3 we conclude that M is isometric to the Clifford hypersurface as described in
Example 1.1. U

—n(cH+ip) = d—e HN®—n(c+H?) = Py (H,NV®). (54)

Proof of Theorem 1.4. Note that Case (2) is the special case of Theorem 1.3. We need
only to prove Cases (1) and (3). By (3.20), (3.18) can be re-written as

A VA2 +|Vul? 1 - 1 -
c+ A+ VA" + |Vl PR PR S VR
A— m n—m

Here A denotes the Laplace operator on (M, d5?). Since M is compact, by Stokes theorem
we get

A VA2 + V|2
/ c+Aiu+ VAT + |Vl _o (5.5)
(M ,ds?)

A=

If M has nonnegative sectional curvature, by Gauss equation it is equivalent to c+iu > 0,
which together with (5.5) yields [VA| = |Vu| = 0, namely, A and y are constants, and
thus M is isometric to the Clifford hypersurface. If ® < B, (H), then by (5.4) one
has n(c + i) = —Pp(H, Vo) > 0, again by (5.5) M is isometric to the Clifford
hypersurface. g

Proof of Theorem 1.5. Since inf |A — | > 0, by Theorem 1.2, (M, ds? = (L — p)3ds?)
is isometric to M{"(c1) x M)~ " (c2) with ¢; 4+ ¢ = 1. Here by (3.24) and (3.25), ¢1 and
¢y are given by

el (W + VAR + [Vul® + 200 = Wi aa), (5.6)

g
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_ 1 2 =02 = 2 -
2= G (17 + 1927 + 190 =20~ ). (5.7)

Note that M is noncompact, and we must have ¢; < 0 or ¢; < 0. Without loss of gen-
erality, we assume that ¢; < 0. Since p is bounded, by (3.19), (3.20) and Lemma 4.2,
W is constant, which together with (5.6) yields A = ¢; = 0, namely, both A and p are
constants, and consequently M is isometric to the Clifford hypersurface. |
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