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Abstract. We investigate the immersed hypersurfaces in space forms N
n+1(c), n ≥4

with two distinct non-simple principal curvatures without the assumption that the (high
order) mean curvature is constant. We prove that any immersed hypersurface in space
forms with two distinct non-simple principal curvatures is locally conformal to the
Riemannian product of two constant curved manifolds. We also obtain some charac-
terizations for the Clifford hypersurfaces in terms of the trace free part of the second
fundamental form.
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1. Introduction

Let N
n+1(c) be an (n+1)-dimensional simply connected space form of constant curvature

c, namely,

N
n+1(c) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S
n+1(c) =

{

x ∈ R
n+2 : 〈x, x〉 = 1

c

}

, c > 0;
R

n+1, c = 0;

H
n+1(c) =

{

x ∈ R
n+2
1 : 〈x, x〉1 = 1

c
, xn+2 > 0

}

, c < 0.

Let us first recall the definition of an important class of hypersurfaces in space forms,
namely, the Clifford hypersurfaces.

Example 1.1 (The Clifford hypersurfaces in N
n+1(c)). Let us first consider the case

when c > 0. In this case, N
n+1(c) = S

n+1(c) = {
x ∈ R

n+2 : 〈x, x〉 = 1
c

}
, where

〈·, ·〉 is the standard inner product on R
n+2. For 1 ≤ m ≤ n − 1, t ∈ (

0, π
2

)
, let

Mm,n−m(c, t) = S
m
( c

sin2 t

) × S
n−m

( c
cos2 t

)
. We view x = (x1, x2) ∈ Mm,n−m(c, t) as

a vector in R
n+2 = R

m+1 × R
n−m+1, then x ∈ S

n+1(c). This is the standard isomet-
ric embedding of Mm,n−m(c, t) into S

n+1(c). In this situation, for suitably chosen unit
normal vector field, Mm,n−m(c, t) has two distinct principal curvatures λ = √

c cot t of
multiplicity m and μ = −√

c tan t of multiplicity n − m.
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Similarly, when c = 0, N n+1(0) = R
n+1. For 1 ≤ m ≤ n − 1, t ∈ (0,+∞), let

Mm,n−m(0, t) = R
m × S

n−m(t2). Then Mm,n−m(0, t) is an embedded hypersurface in
R

n+1, and it has two distinct principal curvatures λ = 0 with multiplicity m and μ = t
with multiplicity n − m.

Finally, when c < 0, N
n+1(c) = H

n+1(c) = {
x ∈ R

n+2
1 : 〈x, x〉1 = 1

c , xn+2 > 0
}
.

Here 〈x, y〉1 = x1 y1 + · · · + xn+1 yn+1 − xn+2 yn+2 is the standard Lorentzian inner
product on R

n+2
1 . For 1 ≤ m ≤ n − 1, t ∈ (0,+∞), let Mm,n−m(c, t) = S

m
( −c

sinh2 t

) ×
H

n−m
( c

cosh2 t

)
. Then Mm,n−m(c, t) is an embedded hypersurface in H

n+1(c), and for
suitably chosen unit normal vector field, it has two distinct principal curvatures λ =√−c coth t of multiplicity m and μ = √−c tanh t of multiplicity n − m.

There has been a long history for the study of hypersurfaces in space forms with two
distinct principal curvatures. In 1970, Otsuki [4] studied the minimal hypersurfaces in
S

n+1(1)(n ≥ 3) with two distinct principal curvatures and proved that if the multiplicities
of the two principal curvatures are both greater than 1 (namely, the two principal curva-
tures are both non-simple), then they are the Clifford minimal hypersurfaces. This result
can be generalized to the case of constant (high order) mean curvature and other space
forms (see e.g., [3,5,6]).

In this paper, we shall study the hypersurfaces in N
n+1(c)(n ≥ 4) with two distinct non-

simple principal curvatures without the assumption that the (high order) mean curvature
is constant. For convenience, we shall denote by Mk(c) or Mk

1 (c), etc, the k-dimensional
complete Riemannian manifolds with constant curvature c. Our first result is the local
structure theorem for such hypersufaces.

Theorem 1.2. Any (connected) hypersurface in N
n+1(c), n ≥ 4 with two distinct non-

simple principal curvatures is locally conformal to Mm
1 (c1) × Mn−m

2 (c2) with 1 < m <

n − 1 and c1 + c2 = 1.

Now let M be a hypersurface in N
n+1(c) with two distinct principal curvatures λ,μ

of multiplicities m, n − m. Denote by (hi j ) the second fundamental form of M , by H =
1
n

∑
hii the mean curvature of M , and by φi j the tensor hi j − Hδi j of the trace free part

of the second fundamental form (hi j ). Let � be the square of the length of (φi j ), and
ε = sgn(λ − μ) be the signature of λ − μ. For each H, m and ε = ±1, set

Pm,ε(H, x) = x2 − ε
n(n − 2m)√
nm(n − m)

H x − n(c + H2). (1.1)

Suppose that c + H2 > 0, and let Bm,ε(H) be the square of the positive root of
Pm,ε(H, x) = 0, i.e.,

√
Bm,ε(H) = n(n − 2m)εH + n

√
n2 H2 + 4m(n − m)c

2
√

nm(n − m)
. (1.2)

Our second result provides a characterization for Clifford hypersurfaces in terms of �.

Theorem 1.3. Let M be a complete hypersurface immersed in N
n+1(c), n ≥ 4 with

two distinct non-simple principal curvatures λ,μ of multiplicities m, n − m. Suppose in
addition that inf |λ − μ| > 0, c + H2 > 0 and � ≥ Bm,ε(H), here ε = sgn(λ − μ),
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then H is constant, � = Bm,ε(H), and M is isometric to the Clifford hypersurface as
described in Example 1.1.

Especially, for hypersurfaces in spheres and Euclidean space, we have the following
two results.

Theorem 1.4. Let M be a compact hypersurface immersed in S
n+1(c), n ≥ 4 with two

distinct non-simple principal curvatures λ,μ of multiplicities m, n − m. If one of the
following three conditions holds, then M is isometric to the Clifford hypersurface as
described in Example 1.1.

(1) M has nonnegative sectional curvature;
(2) � ≥ Bm,ε(H);
(3) � ≤ Bm,ε(H).

Theorem 1.5. The only complete noncompact hypersurfaces in R
n+1, n ≥ 4 with two

distinct bounded non-simple principal curvatures λ,μ satisfying inf |λ − μ| > 0 are
Clifford hypersurfaces in R

n+1 as described in Example 1.1.

Remark.

(1) Under the additional assumption that the mean curvature H is constant, (2) and (3) of
Theorem 1.4 has been verified by Chang [2].

(2) The basic idea of the present paper can be used to study space-like hypersurfaces in
Lorentzian space forms and we can obtain the Lorentzian versions of the main results
of this paper (see [7]).

2. Preliminaries

Let M be an n-dimensional hypersurface in a space form N
n+1(c) of constant curvature

c. For any p ∈ M , we choose a local orthonormal frame e1, . . . , en, en+1 in N
n+1(c)

around p such that e1, . . . , en are tangent to M . Take the corresponding dual coframe
ω1, . . . , ωn, ωn+1 with the connection 1-forms ωAB, 1 ≤ A, B ≤ n + 1. We make the
convention on the range of indices that 1 ≤ A, B, . . . ≤ n + 1, 1 ≤ i, j, . . . ≤ n. The
structure equations of N

n+1(c) are

dωA = −
∑

B

ωAB ∧ ωB, ωAB + ωB A = 0, (2.1)

dωAB = −
∑

C

ωAC ∧ ωC B + 1

2

∑

C,D

K ABC DωC ∧ ωD, (2.2)

K ABC D = c(δACδB D − δADδBC ), (2.3)

where K ABC D is the curvature tensor of N
n+1(c). When restricted to M , we have

ωn+1 = 0, and thus 0 = dωn+1 = −∑
i ωn+1 i ∧ ωi . By Cartan’s lemma, there exist

local functions hi j such that

ωn+1 i =
∑

j

hi jω j , hi j = h ji . (2.4)



438 Bing Ye Wu

The second fundamental form is h = ∑
i, j hi jωi ⊗ ω j . We also write h = (hi j )n×n and

call the eigenvalues of matrix (hi j ) the principal curvatures of M . The mean curvature
of M is given by H = 1

n tr(h) = 1
n

∑
i hii . From (2.1)–(2.4) we obtain the structure

equations of M ,

dωi = −
∑

j

ωi j ∧ ω j , ωi j + ω j i = 0, (2.5)

dωi j = −
∑

k

ωik ∧ ωk j + 1

2

∑

k,l

Ri jklωk ∧ ωl (2.6)

and the Gauss equations

Ri jkl = c(δikδ jl − δilδ jk) + hikh jl − hil h jk, (2.7)

where R is the Riemannian curvature tensor of M . The covariant derivative of hi j is
defined by

∑

k

hi jkωk = dhi j −
∑

k

(
hkjωki + hikωk j

)
. (2.8)

Thus, by exterior differentiation of (2.4), we obtain the Codazzi equation

hi jk = hik j . (2.9)

3. Conformal structure for hypersurfaces

Now, let M be a (connected) hypersurface in N
n+1(c) with two distinct non-simple prin-

cipal curvatures with multiplicities m, n − m, here 1 < m < n − 1. In this situation, we
can choose local frame field e1, . . . , en such that

hi j = λiδi j , (3.1)

where

λ1 = · · · = λm = λ, λm+1 = · · · = λn = μ. (3.2)

By means of (2.8) and (3.1), we obtain
∑

k

hi jkωk = δi j dλi + (λ j − λi )ωi j . (3.3)

In the following we shall use the convention on the ranges of indices: 1 ≤ a, b, c, . . . ≤
m, m + 1 ≤ r, s, t, . . . ≤ n. From (2.9), (3.2) and (3.3) we easily get

habi = 0, ∀a 
= b, i, (3.4)

hrsi = 0, ∀r 
= s, i, (3.5)

λ,a = μ,r = 0, ∀a, r, (3.6)

haar = λ,r , hrra = μ,a, ∀a, r. (3.7)
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Here λ,i = ei (λ), μ,i = ei (μ). Combining (2.9), (3.3)–(3.7), we have
∑

i

hariωi = (λ − μ)ωra = λ,rωa + μ,aωr ,

and consequently,

ωra = λ,r

λ − μ
ωa + μ,a

λ − μ
ωr = (λ − μ),r

λ − μ
ωa − (λ − μ),a

λ − μ
ωr . (3.8)

Now we consider a new Riemannian metric ds̄2 on M by

ds̄2 =
∑

i

ω̄2
i , ω̄i = (λ − μ)ωi . (3.9)

Clearly, (M, ds2) is conformal to (M, ds̄2). In the following we are going to prove that
locally (M, ds̄2) is isometric to the Riemannian product of two constant curved manifolds
of dimensions m and n−m. For smooth function f on M , let f,i and f,ī be the components
of the first covariant derivative of f with respect to the metric ds2 and ds̄2, respectively.
By definition, we have

d f =
∑

i

f,iωi =
∑

i

f,ī ω̄i ,

and thus

f,i = (λ − μ) f,ī . (3.10)

Let ω̄i j be the connection 1-forms of ds̄2. Then by the structure equations of ds2 and ds̄2,
it is easy to see that

ωi j = ω̄i j + (λ − μ),ī

λ − μ
ω̄ j − (λ − μ), j̄

λ − μ
ω̄i

= ω̄i j + (λ − μ),i

λ − μ
ω j − (λ − μ), j

λ − μ
ωi . (3.11)

Combining (3.6), (3.8), (3.10) and (3.11) we have

ωab = ω̄ab − μ,ā

λ − μ
ω̄b + μ,b̄

λ − μ
ω̄a, (3.12)

ωrs = ω̄rs + λ,r̄

λ − μ
ω̄s − λ,s̄

λ − μ
ω̄r , (3.13)

ωar = − μ,ā

λ − μ
ω̄r − λ,r̄

λ − μ
ω̄a, ω̄ar = 0. (3.14)

Since ω̄ar = 0, (M, ds̄2) is locally isometric to the Riemannian product
(
Mm

1 , ds̄2
1

) ×
(
Mn−m

2 , ds̄2
2

)
of two manifolds of dimensions m and n − m, and λ and μ can be viewed

as a function on
(
Mn−m

2 , ds̄2
2

)
and

(
Mm

1 , ds̄2
1

)
, respectively. Here ds̄2

1 = ∑
a ω̄2

a, ds̄2
2 =
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∑
r ω̄2

r . Taking exterior differentiation on the first equality of (3.14) and using (2.6), (2.7)
and (3.12)–(3.14) yields

dωar = −
∑

b

ωab ∧ ωbr −
∑

s

ωas ∧ ωsr + 1

2
Rari jωi ∧ ω j

=
∑

b

(

ω̄ab − μ,ā

λ − μ
ω̄b + μ,b̄

λ − μ
ω̄a

)

∧
(

μ,b̄

λ − μ
ω̄r + λ,r̄

λ − μ
ω̄b

)

+
∑

s

(
μ,ā

λ − μ
ω̄s + λ,s̄

λ − μ
ω̄a

)

∧
(

ω̄sr + λ,s̄

λ − μ
ω̄r − λ,r̄

λ − μ
ω̄s

)

+ c + λμ

(λ − μ)2
ω̄a ∧ ω̄r = −d

(
μ,ā

λ − μ

)

∧ ω̄r + μ,ā

λ − μ

∑

s

ω̄rs ∧ ω̄s

−d

(
λ,r̄

λ − μ

)

∧ ω̄a + λ,r̄

λ − μ

∑

b

ω̄ab ∧ ω̄b. (3.15)

Note that as a function on (Mm
1 , ds̄2

1), the second covariant derivative of μ is defined by
∑

b

μ,āb̄ω̄b = dμ,ā −
∑

b

μ,b̄ω̄ba, (3.16)

Similarly, as a function on
(
Mn−m

2 , ds̄2
2

)
, the second covariant derivative of λ is given by

∑

s

λ,r̄ s̄ω̄s = dλ,r̄ −
∑

s

λ,s̄ω̄sr . (3.17)

Substituting (3.16) and (3.17) into (3.15), after simplifying we reach at

1

(λ − μ)2

(
c + λμ + |∇̄λ|2 + |∇̄μ|2)ω̄a ∧ ω̄r

= − 1

λ − μ

(
∑

b

μ,āb̄ω̄b ∧ ω̄r +
∑

s

λ,r̄ s̄ω̄s ∧ ω̄a

)

,

where |∇̄λ|2 = ∑
r λ2

,r̄ , |∇̄μ|2 = ∑
a μ2

,ā . By comparison we get

c + λμ + |∇̄λ|2 + |∇̄μ|2 + (λ − μ)(μ,āā − λ,r̄ r̄ ) = 0, ∀a, r, (3.18)

λ,r̄ s̄ = 0, ∀r 
= s; μ,āb̄ = 0, ∀a 
= b. (3.19)

From (3.18) it is clear that

λ,r̄ r̄ = λ,s̄ s̄, ∀r, s; μ,āā = μ,b̄b̄, ∀a, b. (3.20)

Let R̄abcd be the curvature tensor of (Mm
1 , ds̄2

1), it is determined by the structure equation

dω̄ab = −
∑

c

ω̄ac ∧ ω̄cb + 1

2

∑

c,d

R̄abcd ω̄c ∧ ω̄d . (3.21)
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Similarly, the curvature tensor R̄rstw of
(
Mn−m

2 , ds̄2
2

)
is determined by

dω̄rs = −
∑

t

ω̄r t ∧ ω̄ts + 1

2

∑

t,w

R̄rstwω̄t ∧ ω̄w. (3.22)

Differentiating (3.12) and (3.13) and using (2.6), (2.7) and (3.20)–(3.22), after simplifying
we get

R̄abcd = c1(δacδbd − δadδbc), R̄rstw = c2(δr tδsw − δrwδst ). (3.23)

Here

c1 = 1

(λ − μ)2

(
c + λ2 + |∇̄λ|2 + |∇̄μ|2 + 2(λ − μ)μ,āā

)
, (3.24)

c2 = 1

(λ − μ)2

(
c + μ2 + |∇̄λ|2 + |∇̄μ|2 − 2(λ − μ)λ,r̄ r̄

)
. (3.25)

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By (3.23)–(3.25), we need only to prove that c1, c2 are constant
with c1 + c2 = 1. By (3.18) it is easy to see that c1 + c2 = 1. On the other hand, by (3.18)
and (3.19) we see that

(c1),r̄ = 1

(λ − μ)2
(2λλ,r̄ + 2λ,r̄λ,r̄ r̄ + 2λ,r̄μ,āā)

− 2λ,r̄

(λ − μ)3

(
c + λ2 + |∇̄λ|2 + |∇̄μ|2 + 2(λ − μ)μ,āā

) = 0.

Similarly, (c2),ā = 0. Since c1 + c2 = 1, we have (c1),r̄ = (c1),ā = (c2),ā = (c2),r̄ = 0,
namely, c1, c2 are constant. Hence we have proved the Theorem. �

4. Auxiliary lemmas

In order to prove Theorems 1.3–1.5, we need some auxiliary lemmas. At first we have the
following:

Lemma 4.1 (Euler’s lemma) [1]. Let f : R
k → R be a smooth function defined on

a Euclidean k-space. If f is positively homogeneous of degree s, namely, f (t · x) =
t s · f (x),∀t > 0, then

k∑

A=1

x A ∂ f

∂x A
= s · f.

Lemma 4.2. Let f : N
m(c) → R, m ≥ 2 be a smooth function, and f,āb̄,1 ≤ a, b ≤ m

be the components of the second covariant derivative of f with respect to the local
orthonormal frame of N

m(c). If f satisfies

f,āb̄ = g · δab. (4.1)
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Here g : N
m(c) → R is a smooth function, then

(1) when c > 0, N
m(c) = S

m(c) ↪→ R
m+1, there is a constant vector p ∈ R

m+1 and a
constant b such that f (x) = 〈x, p〉 + b, g(x) = −c〈x, p〉,∀x ∈ S

m(c);
(2) when c = 0, N

m(0) = R
m , there are two constants a, b and a vector p ∈ R

m such
that f (x) = a〈x − p, x − p〉 + b, g(x) = a,∀x ∈ R

m ; consequently, f is constant
if it is bounded;

(3) when c < 0, N
m(c) = H

m(c) ↪→ R
m+1
1 , there is a constant vector p ∈ R

m+1
1

and a constant b such that f (x) = 〈x, p〉1 + b, g(x) = −c〈x, p〉1,∀x ∈ H
m(c).

Consequently, if f has upper bound or lower bound, then p is time-like or p = 0;
and f is constant if it is bounded.

Proof. It should be noted that this lemma has been verified in [7], here we include the
proof for readers’ convenience. We shall only prove (3), and (1) and (2) can be proved
similarly. Without loss of generality, we assume that c = −1. Let x1, . . . , xm+1 be the
global co-ordinates of R

m+1
1 so that the Lorentzian inner product on R

m+1
1 is given by

〈x, y〉1 =
m+1∑

A=1

εAx A y A, ∀x = (x1, . . . , xm+1), y = (y1, . . . , ym+1).

Here ε1 = · · · = εm = 1 = −εm+1. Let C+ = {x ∈ R
m+1
1 : 〈x, x〉1 < 0, xm+1 > 0}, then

r = √−〈x, x〉1 : C+ → R is a smooth function, and the hyperbolic m-space of constant
sectional curvature −1 is defined by H

m(−1) = r−1(1). We choose the local orthonormal
frame e1, . . . , em, em+1 = ∂

∂r = x
r of C+, then when restricted on H

m(−1), e1, . . . , em

are tangent to H
m(−1), and the standard orthonormal basis ∂

∂x1 , . . . , ∂

∂xm+1 of R
m+1
1 can

be expressed by

∂

∂x A
=

∑

a

ca
Aea − εAx A

r
em+1. (4.2)

From (4.2) it is clear that

εAδAB =
〈

∂

∂x A
,

∂

∂x B

〉

1
=

∑

a

ca
Aca

B − εAεB x Ax B

r2
. (4.3)

By the definition of r we have

∂2r

∂x A∂x B
= Hr

(
∂

∂x A
,

∂

∂x B

)

= −1

r

(

εAδAB + εAεB x Ax B

r2

)

. (4.4)

Here H denotes the Hessian operator on R
m+1
1 . Let D be the Levi-Civita connection of

R
m+1
1 . Then

Dea eb = ∇̄ea eb + 1

r
δabem+1, Dea em+1 = ea

r
, Dem+1em+1 = 0. (4.5)

Here ∇̄ea eb is the component of Dea eb which is orthogonal to em+1. It is clear that when
restricted on H

m(c), ∇̄ is the Levi-Civita connection of H
m(c), here c < 0. Let f be



Principal curvatures in space forms 443

the function given by the lemma. We can extend it to a function f̃ which is positively
homogeneous of degree zero on C+ by f̃ (x) = f ( x

r ),∀x ∈ C+. Let H̄ f̃ (ea, eb) =
eaeb f̃ − ∇̄ea eb f̃ . Then H̄ f̃ (ea, eb) is positively homogeneous of degree −2, and it is the
component of the Hessian of f̃ when restricted on H

m(c) for any c < 0. Therefore, by
(4.1) we have

H̄ f̃ (ea, eb) = g̃ · δab

r2
. (4.6)

Here g̃ is defined in the same way as f̃ . Now we define a function F on C+ by F = r · f̃ .
It is clear that ea(r) = em+1( f̃ ) = 0, em+1(r) = 1. By (4.5) we have

H F(ea, eb) = eaeb(F) − Dea eb(F) = r · H̄ f̃ (ea, eb) − δab · f̃

r
,

which together with (4.6) yields

H F(ea, eb) = G · δab, G = g̃ − f̃

r
. (4.7)

By (4.6) we also have

H F(ea, em+1) = H F(em+1, em+1) = 0. (4.8)

Combining (4.2)–(4.4), (4.7) and (4.8) we get

∂2 F

∂x A∂x B
= H F

(
∂

∂x A
,

∂

∂x B

)

=
∑

a

ca
Aca

B G = − ∂2r

∂x A∂x B
· rG. (4.9)

It is clear from (4.9) that

∂2r

∂x A∂x B
· ∂(rG)

∂xC
= ∂2r

∂x A∂xC
· ∂(rG)

∂x B
,

which together with (4.4) implies that

(

δAB + εB x Ax B

r2

)
∂(rG)

∂xC
=

(

δAC + εC x AxC

r2

)
∂(rG)

∂x B
. (4.10)

It is clear that rG = g̃ − f̃ is positively homogeneous of degree zero, thus by Lemma 4.1
we have

∑

A

x A ∂(rG)

∂x A
= 0. (4.11)

Letting A = C in (4.10) and then taking the sum, by using (4.11) it is easy to get

(m − 1)
∂(rG)

∂x B
= 0.
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Since m ≥ 2, we see that ∂(rG)

∂x B = 0,∀B. As the result, rG = a1 (a constant). Now
(4.9) shows that the function F + a1r is a linear function on C+, namely, there is a con-
stant a2 and a constant vector p ∈ R

m+1
1 such that F(x) + a1r(x) = 〈p, x〉1 + a2, and

consequently, f (x) = 〈p, x〉1 + b,∀x ∈ H
m(−1). Here b = a2 − a1. Now it is clear that

f,āb̄ = 〈p, x〉1 · δab, and this implies that g(x) = 〈p, x〉1,∀x ∈ H
m(−1), and thus we

are done. �

By Lemma 4.2 we can prove

Lemma 4.3. Let M be a complete hypersurface immersed in N
n+1(c)(n ≥ 4) with two

distinct non-simple principal curvatures λ,μ with inf |λ−μ| > 0. If c +λμ ≤ 0, then M
is isometric to the Clifford hypersurface as described in Example 1.1.

Proof. Let ds2 be the original Riemannian metric on M . By assumption, ds2 is complete,
and inf|λ − μ| > 0, it is clear that the new metric ds̄2 = (λ − μ)2ds2 is also complete,
and thus by Theorem 1.2, (M, ds̄2) is isometric to Mm

1 (c1) × Mn−m
2 (c2), where m is the

multiplicity of λ. We shall prove the lemma when λ − μ > 0, the case when λ − μ < 0
can be shown similarly. In this situation, since λ and μ can be viewed as functions on
Mn−m

2 (c2) and Mm
1 (c1), respectively, we conclude that λ has lower bound while μ has

upper bound. Now we claim that if λ is not a constant, then it attains its minimum at
some point v0 ∈ Mn−m

2 (c2), and λ,r̄ r̄ > 0 for any r at v0. To prove this claim, we
can assume that Mn−m

2 (c2) ∼= N
n−m(c2) without loss of generality (we may consider

the lift of function λ to the universal covering space if necessary). By (3.19) and (3.20),
λ satisfies λ,r̄ s̄ = ν · δrs , here ν is a smooth function on N

n−m(c2). If c2 > 0, then
N

n−m(c2) = S
n−m(c2), and by Lemma 4.2, λ(v) = a〈v, p〉 + b,∀v ∈ S

n−m(c2) for
some constants a, b and p ∈ S

n−m(c2). Since λ is not a constant, we have a 
= 0, and
without loss of generality, we assume that a > 0. In this situation, λ attains its minimum
at v0 = −p, and since λ,r̄ r̄ = −ac2〈v, p〉, one has λ,r̄ r̄ > 0 at v0 = −p for any r .
When c2 = 0 or c2 < 0, we can show that the claim still holds, by using Lemma 4.2.
Similarly, if μ is not a constant, then it attains its maximum at some point u0 ∈ Mm

1 (c1),
and μ,āā < 0 for any a at u0. Now let (u0, v0) ∈ Mm

1 (c1) × Mn−m
2 (c2) be the point such

that λ attains its minimum and μ attains its maximum, then since c + λμ ≤ 0, by (3.18)
and the maximum principal we have

0 ≥ c + λμ = (λ − μ)(λ,r̄ r̄ − μ,āā) ≥ 0

at (u0, v0). Noting that inf(λ − μ) > 0, we must have λ,r̄ r̄ = μ,āā = 0,∀a, r . Thus
by the above discussion, λ,μ are both constants, and consequently M is isometric to the
Clifford hypersurface, and the lemma is proved. �

5. The proof of the main results

In this last section we shall complete the proof of Theorems 1.3–1.5.

Proof of Theorem 1.3. By assumption, the second fundamental form (hi j ) has two non-
simple eigenvalues λ and μ with multiplicities m and n − m, thus (φi j ) = (hi j − Hδi j )
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has two eigenvalues λ̃ = λ − H and μ̃ = μ − H of multiplicities m and n − m, and
consequently,

0 = trace(φi j ) = mλ̃ + (n − m)μ̃, (5.1)

� = mλ̃2 + (n − m)μ̃2. (5.2)

By (5.1) and (5.2) it is easy to see that

λ̃ = ε

√
n − m

mn
�, μ̃ = −ε

√
m

(n − m)n
�. (5.3)

Here ε = sgn(λ̃ − μ̃) = sgn(λ − μ). From (5.3) we have

c + λμ = c + (λ̃ + H)(μ̃ + H) = c + H2 + n − 2m√
nm(n − m)

εH
√

� − 1

n
�,

and thus

−n(c+λμ) = �−ε
n(n − 2m)√
nm(n − m)

H
√

�−n(c+H2) = Pm,ε(H,
√

�). (5.4)

Notice that � ≥ Bm,ε(H). We see that n(c + λμ) = −Pm,ε(H,
√

�) ≤ 0, thus by
Lemma 4.3 we conclude that M is isometric to the Clifford hypersurface as described in
Example 1.1. �

Proof of Theorem 1.4. Note that Case (2) is the special case of Theorem 1.3. We need
only to prove Cases (1) and (3). By (3.20), (3.18) can be re-written as

c + λμ + |∇̄λ|2 + |∇̄μ|2
λ − μ

+ 1

m
�̄μ − 1

n − m
�̄λ = 0.

Here �̄ denotes the Laplace operator on (M, ds̄2). Since M is compact, by Stokes theorem
we get

∫

(M,ds̄2)

c + λμ + |∇̄λ|2 + |∇̄μ|2
λ − μ

= 0. (5.5)

If M has nonnegative sectional curvature, by Gauss equation it is equivalent to c+λμ ≥ 0,
which together with (5.5) yields |∇̄λ| = |∇̄μ| = 0, namely, λ and μ are constants, and
thus M is isometric to the Clifford hypersurface. If � ≤ Bm,ε(H), then by (5.4) one
has n(c + λμ) = −Pm,ε(H,

√
�) ≥ 0, again by (5.5) M is isometric to the Clifford

hypersurface. �

Proof of Theorem 1.5. Since inf |λ − μ| > 0, by Theorem 1.2, (M, ds̄2 = (λ − μ)2ds2)

is isometric to Mm
1 (c1) × Mn−m

2 (c2) with c1 + c2 = 1. Here by (3.24) and (3.25), c1 and
c2 are given by

c1 = 1

(λ − μ)2

(
λ2 + |∇̄λ|2 + |∇̄μ|2 + 2(λ − μ)μ,āā

)
, (5.6)
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c2 = 1

(λ − μ)2

(
μ2 + |∇̄λ|2 + |∇̄μ|2 − 2(λ − μ)λ,r̄ r̄

)
. (5.7)

Note that M is noncompact, and we must have c1 ≤ 0 or c2 ≤ 0. Without loss of gen-
erality, we assume that c1 ≤ 0. Since μ is bounded, by (3.19), (3.20) and Lemma 4.2,
μ is constant, which together with (5.6) yields λ = c1 = 0, namely, both λ and μ are
constants, and consequently M is isometric to the Clifford hypersurface. �
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