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Abstract. Let N be a normal subgroup of a group G. The positive integers m and
n are the two longest sizes of the non-central G-conjugacy classes of N with m > n
and (m, n) = 1. In this paper, the structure of N is determined when n divides |N/N ∩
Z(G)|. Some known results are generalized.
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1. Introduction

All groups considered in this paper are finite. Let G be a group, and x an element of G.
We use xG to denote the G-conjugacy class containing x , and |xG | the size of xG . Among
all G-conjugacy class sizes, the first and the second largest sizes of conjugacy classes are
called the two longest conjugacy class sizes.

In recent years, the relationship between certain arithmetical conditions on conjugacy
class sizes and the structures of finite groups has been widely studied, see, for example,
[1–9]. Among these results, the paper [3] asserts that G/Z(G) is a Frobenius group under
the condition that the two largest sizes of conjugacy classes of the non-central elements
in G are coprime.

On the other hand, let N be a normal subgroup of a group G. It is clear that N is a
union of some conjugacy classes of a group G. So, it is interesting to explore the structure
of the normal subgroup N if G-conjugacy class sizes of N are given, see [6,7,9].

Enlightened by [3] and [6,7,9], we are interested in the following question.

Question. Let G be a group and let N be a normal subgroup of G. Suppose that the
positive integers m and n are the two largest sizes of the non-central G-conjugacy classes
of N with m > n and (m, n) = 1, is N/Z(N ) a Frobenius group?

Since there is no necessary relationship between |xG | and |x N | except the divisibility
that |x N | divides |xG | for an element x of N , it is very difficult to obtain a positive answer
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to the above question. But, by considering the relationship between n and |N |, we have
the following:

Theorem A. Let N be a normal subgroup of a group G. For a, b ∈ N , let m =
|bG | and n = |aG |. Suppose that m and n are the two longest sizes of the non-central
G-conjugacy classes of N with m > n and (m, n) = 1. If n divides |N/(Z(G)∩ N )|, then
either N/(Z(G) ∩ N ) is a prime power order group or

(i) CN (a) and CN (b) are abelian and CN (a) ∩ CN (b) = Z(G) ∩ N.
(ii) The G-conjugacy class sizes of elements in N are exactly 1, m and n.

(iii) N/Z(N ) is a Frobenius group with the kernel CN (a)/Z(N ) and complement
CN (b)/Z(N ).

So the main result in [3] is generalized.
Let π be a set of some primes. We use xπ and xπ ′ for π -component and π ′-component

of x , respectively. Moreover, Gπ denotes a Hall π -subgroup of G, Gπ ′ a Hall π ′-subgroup
of G, nπ the π -part of n whenever n is a positive integer. Apart from these, we call an
element x non-central if x /∈ Z(G), where Z(G) is the centre of G.

2. Preliminaries

We first list some lemmas that are useful in the proof of our main result.

Lemma 2.1. Let N be a normal subgroup of a group G and x an element of G. Then

(a) |x N | divides |xG |;
(b) |(N x)G/N | divides |xG |.

Proof. See Lemma 1.1 in [5]. �

Lemma 2.2. Let N be a normal of a group G and B = bG , C = cG with (|B|, |C |) = 1,
where b,c ∈ N. Then:

(a) G = CG(b)CG(c).
(b) BC = C B is a G-conjugacy class of N and |BC | divides |B||C |.

Proof. Applying Lemma 1 in [1], it is enough to prove that BC ⊆ N . In fact BC = (bc)G

by Lemma J(b) in [2], so we have that BC ⊆ N as b, c ∈ N . �

Lemma 2.3. Let N be a normal subgroup of a group G, and B0 a non-central
G-conjugacy class of N with the largest size m. Then the following properties hold:

(a) Let C be a G-conjugacy class of N with (|B0|, |C |) = 1, then |〈C−1C〉| divides |B0|.
(b) Let n, m be two largest G-conjugacy class sizes of N with m > n and (m, n) = 1,

and D a G-conjugacy class of N with |D| > 1. If (|D|, n) = 1, then |D| = m.

Proof.

(a) Lemma 2.2(b) implies that C B0 is a G-conjugacy class of N . Clearly |C B0| ≥ |B0|.
By the hypotheses, we have that |C B0| = |B0|, from which it follows that C−1C B0 =
B0, and hence 〈C−1C〉B0 = B0. Consequently |〈C−1C〉| divides |B0|.
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(b) Let A be a G-conjugacy class and |A| = n. Note that D A is a G-conjugacy class by
Lemma 2.2(b). Clearly |D A| ≥ |A|. The hypotheses of this lemma forces |D A| =
n or m. If |D A| = n, then D−1 D A is a G-conjugacy class and hence D−1 D A = A,
so 〈D−1 D〉A = A. It leads to |〈D−1 D〉| divides |A|. On the other hand, 〈D−1 D〉 ⊆
〈A−1 A〉, so |〈D−1 D〉| divides |〈A−1 A〉|. By (a), we have that |〈A−1 A〉| divides |B0|,
hence |〈D−1 D〉| divides |B0|, a contradiction. Consequently |D A| = m, that is to say
|B0| divides |A||D|, therefore |D| = |B0|. �

Lemma 2.4. Suppose that N is a normal subgroup of a group G. Let B0 be a non-central
G-conjugacy class of N with the largest size. Let

M = 〈D|D is a G-conjugacy class of N with (|D|, |B0|) = 1〉.
Then M is abelian. Furthermore, if (Z(G)∩ N ) < M , then π(M/(Z(G)∩ N )) ⊆ π(B0).

Proof. Let

K = 〈D−1 D|D is a G-conjugacy class of N with (|D|, |B0|) = 1〉.
By the definition of M and K , it is clear that K = [M, G]. Let d ∈ D, where D is a
G-conjugacy class of N with (|D|, |B0|) = 1. By Lemma 2.3(a), we have that π(K ) ⊆
π(B0), so (|K |, |D|) = 1, hence |d K | = 1. It shows that K = CK (d), so K ≤ Z(M).
Moreover, M/K ≤ Z(G/K ). It follows that M is nilpotent. Obviously, (Z(G)∩N ) ≤ M .
If (Z(G) ∩ N ) < M , let r ∈ π(M/(Z(G) ∩ N )), R ∈ Sylr (M). Then R � G. Notice
that 1 �= [R, G] ≤ [M, G] = K , we know r ∈ π(K ) ⊆ π(B0), so π(M/(Z(G) ∩ N )) ⊆
π(B0). Suppose that D is a generating class of M and d ∈ D, then |d R ||(|R|, |D|),
but (|R|, |D|) = 1, so R = CR(d). Therefore R ≤ Z(M), and consequently M is
abelian. �

3. Proof of Theorem A

In this section we are equipped to prove the main result.

Proof of Theorem A. Assume that N/Z(G) ∩ N is not a prime power order group. For
convenience, we write

M = 〈D|D is a G-conjugacy class of N with (|D|, m) = 1〉.
We will complete the proof by the following steps:

Step 1. We may assume that Np � Z(G) for every prime factor p of |N |.
Otherwise, there exists a prime factor p of |N | such that Np ≤ Z(G). Then N =

Np′ Np. Without loss of generality, we replace N with Np′ .

Step 2. If the element x ∈ Z(CG(b)) ∩ N , then either x ∈ Z(G), or CG(x) = CG(b).

Obviously, it follows that CG(b) ≤ CG(x), so |xG | divides |bG |. If x /∈ Z(G),
then |xG | divides m, so (|xG |, n) = 1 by Lemma 2.3. Therefore |xG | = m, whence
CG(x) = CG(b).
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Step 3. We may assume that b is a prime power order p-element.

Let p be a prime factor of the order of b, bp the p-component and CG(bp) �= G. It is
clear that CG(b) = CG(bpbp′) = CG(bp) ∩ CG(bp′) ⊆ CG(bp). By Step 2, we have that
CG(bp) = CG(b). Replacing b with bp, Step 3 follows.

Step 4. CN (b) = P × L , where P is a Sylow p-subgroup of CN (b), L is the p′-Hall
subgroup of CN (b) with L ≤ Z(CG(b)). If L � Z(G), then CN (b) ≤ Z(CG(b)).

Let x ∈ CN (b) be a p′-element. Then CG(bx) = CG(b) ∩ CG(x) ≤ CG(b), from
which it follows that |bG | divides |(bx)G |. Now, the maximality of |bG | implies that
|bG | = |(bx)G |, which forces that CG(bx) = CG(b) ≤ CG(x), and hence x ∈ Z(CG(b)).
Consequently, CN (b) = P × L , where P is a Sylow p-subgroup of CN (b), and L is the
p′-Hall subgroup of CN (b) with L ≤ Z(CG(b)).

Particularly, if L � Z(G), let y ∈ L be a non-central prime power order q-element.
By Step 2, one has that |yG | = m, and hence CG(y) = CG(b). By the above argument,
we have that CN (y) = Q × Lq , where Q is a Sylow q-subgroup of CN (y), and Lq is the
q ′-Hall subgroup of CN (b) with Lq ≤ Z(CG(b)). Notice that CN (b) = L Lq , we have
that CN (b) ≤ Z(CG(b)), as required.

Step 5. p � m.

Otherwise, if p|m, then p � n. In view of Lemma 2.1, we have that p � |aN |. Notice that
|aN | = |N : CN (a)| = |CN (b) : CN (a) ∩ CN (b)|. We have that P ≤ CN (a) ∩ CN (b),
which implies that a ∈ CN (b). To complete the proof, we distinguish two cases according
to whether L is contained in Z(G) or not.

(1) If L � Z(G), notice that a ∈ CN (b), so application of Step 4 yields CG(b) ≤
CG(a), which implies that |aG | divides |bG |, a contradiction to the hypotheses.

(2) If L ≤ Z(G), by the argument of the first paragraph, we have that CN (b) ≤ CN (a),
which yields |aN | divides |bN |. Notice that (|aG |, |bG |) = 1, we have that |aN | = 1
by Lemma 2.1, equivalently, N = CN (a). Obviously, we may assume that a is a p-
element since a ∈ CN (b) = P × L . For every p′-element x ∈ N = CN (a), we have
that CG(ax) = CG(a) ∩ CG(x) ≤ CG(a), so the hypotheses of the theorem imply that
CG(ax) = CG(a) ≤ CG(x), from which it follows that x ∈ Z(CG(a)) ≤ Z(N ). Of
course we have x ∈ CN (b) and hence x ∈ L . Consequently N/(N ∩ Z(G)) is a prime
power order group, a contradiction to the hypothesis.

Step 6. We may assume that a is a p′-element.

Let a = apap′ , where ap, ap′ are the p- and p′-components of a, respectively. Since
CG(a) = CG(ap) ∩ CG(a′

p) ⊆ CG(ap), it follows that ap ∈ M by Lemma 2.1. If
ap /∈ Z(G), then p ∈ π(M/(Z(G) ∩ N )) ⊆ π(m) by Lemma 2.4, a contradiction.

Step 7. CN (a)p ≤ Z(G)p.

Suppose that there exists a non-central p-element y ∈ CN (a), then CG(ay) = CG(a)∩
CG(y) ⊆ CG(a), so we have CG(ay) = CG(a) by the hypothesis of the theorem. It
follows that ay ∈ M , therefore y ∈ M as a ∈ M . Now one has that p ∈ π(M/(Z(G) ∩
N )) ⊆ π(m), a contradiction. Hence CN (a)p ≤ Z(G)p.

Step 8. CN (a) ∩ CN (b) ≤ Z(G), and therefore Z(N ) ≤ Z(G).

If there exists a non-central element y ∈ CN (a) ∩ CN (b), we distinguish two cases as
in the proof of Step 5:

(1) If L ≤ Z(G), then we may assume that y is a p-element. So y is a p-element of
CN (a), a contradiction to Step 7.
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(2) If L � Z(G), we have that y ∈ CN (b) ≤ Z(CG(b)) by Step 4, so CG(y) = CG(b).
Therefore a ∈ CN (b) = CN (y), and it follows that CG(b) ≤ CG(a) by Step 4 again, a
contradiction.

Finally, notice that Z(N ) ≤ CN (a) ∩ CN (b), and we surely have Z(N ) ≤ Z(G).

Step 9. We have that π(|aN |) = π(|aG |) and π(|bN |) = π(|bG |). Hence, if L ≤ Z(G),
|aG | is a power of p.

We begin by showing that π(|aN |) = π(|aG |). If there exists a prime q satisfying that
q||aG | but q � |aN |, then q � |bG |, and consequently q � |bN |. It follows that CN (a) and
CN (b) contain a Sylow q-subgroup of N . Notice that N = CN (a)CN (b), and we have
CN (a)∩CN (b) contains a Sylow q-subgroup of N , say Nq , hence Nq ≤ CN (a)∩CN (b) ≤
Z(G), a contradiction to Step 1. Therefore q||aN | for every q||aG |, so π(|aN |) = π(|aG |)
by Lemma 2.1. Similarly, we have that π(|bN |) = π(|bG |).

Next we show that |aG | is a power of p. Obviously, |aN | = |N : CN (a)| = |CN (b) :
CN (a) ∩ CN (b)| = |P L : Z(G) ∩ N |. If L ≤ Z(G), then |aN | is a power of p. Hence
|aG | is a power of p by π(|aN |) = π(|aG |).
Step 10. |xG | = m for any non-central p-element x ∈ N , and therefore CN (b) is abelian.

As CN (b) contains a Sylow p-subgroup of N and p � m = |bG |, without loss of
generality, we may assume that x ∈ P \ Z(G). We distinguish two cases as in the proof
of Step 5:

(1) If L � Z(G), then x ∈ CN (b) ≤ Z(CG(b)) by Step 4, so CN (b) is abelian and
|xG | = m.

(2) If L ≤ Z(G), we know that n = |aG | is a power of p by Step 9. On the other
hand, M is abelian, and Z(G)p ≤ M ≤ CN (a), so we can write M = Mp′ × Z(G)p by
Step 7. Notice that 〈x〉 acts coprimely on the abelian subgroup Mp′ , and we obtain a direct
product:

Mp′ = [Mp′ , 〈x〉] × CMp′ (x).

Denote by U = [Mp′ , 〈x〉]. As a ∈ Mp′ and Mp′ = [Mp′ , 〈x〉] × CMp′ (x), we can write
a = uw with u ∈ U and w ∈ CMp′ (x). Consider the element g = wx . We have that

CG(g) = CG(w) ∩ CG(x) ≤ CG(x).

If |gG | = m, then |xG | = m by Lemma 2.3 since |xG | divides |gG |.
If |gG | = n, then |xG | divides |gG |, namely, |xG | divides n, so x ∈ M . However,

Mp ≤ CN (a)p = Z(G)p, a contradiction.
If |gG | < n, let P0 be a Sylow p-subgroup of G such that P ≤ P0. Then Mp′ P0 is a

subgroup of G. Now we have following inequalities:

|Mp′ P0 : CMp′ P0(g)| ≤ |gG | < n = |G : CG(a)|
= |G : CG(a)|p

= |CG(b) : CG(a) ∩ CG(b)|p

= |CG(b)|p : |CG(a) ∩ CG(b)|p

= |P0| : |CG(a)|p. (3.1)
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Moreover, since Mp′ � G, Mp′ is abelian, Mp′ ∩ P0 = 1, and Mp′ ≤ CG(w). We
have that

CMp′ P0(g) = CMp′ P0(w) ∩ CMp′ P0(x)

= Mp′CP0(w) ∩ CM p′(x)CP0(x)

= CMp′ (x)(Mp′CP0(w) ∩ CP0(x))

= CMp′ (x)(CP0(w) ∩ CP0(x)) (3.2)

Set D = CP0(w) ∩ CP0(x). Combining equations (3.1) and (3.2), we have that

|P0|
|CG(a)|p

>
|Mp′ ||P0|

|CM p′(x)||D| .

This implies that |D| : |CG(a)|p > |Mp′ : CMp′ (x)| = |U |.
On the other hand, since D ≤ CG(x), and U × CMp′ (x) = Mp′ � G, we have that D

normalizes U . Also, it follows that

CD(u) = CG(u) ∩ D = CP0(u) ∩ CP0(w) ∩ CP0(x) ≤ CP0(a) ∩ CP0(x).

Thus

|CD(u)| ≤ |CP0(a) ∩ CP0(x)| ≤ |CG(a)|p.

Therefore

|u D| = |D : CD(u)| = |D| : |CD(u)| ≥ |D| : |CG(a)|p > |U |,
a contradiction.

Thus, the above arguments imply that |xG | = m.
Next, we show that CN (b) = P × L (L ≤ Z(G)) is abelian. For any non-central

element x ∈ P , we have that CMp′ (x) ≤ Z(G)p′ . Otherwise, we may replace b with x for

it is proved that |xG | = m, which leads to a contradiction that CN (a) ∩ CN (b) � Z(G).
Therefore P/P ∩ Z(G) acts on the group Mp′/Mp′ ∩ Z(G) fixed-point freely. Hence,
P/P ∩ Z(G) is a cyclic group or a generalized quaternion group. So, if P is not abelian,
then p = 2 and P/P ∩ Z(G) is a generalized quaternion group. Now b ∈ Z(P) but
b /∈ Z(G). There exists an element y ∈ P and y /∈ Z(P) such that b = y2c, where
c ∈ Z(G) ∩ P . So CG(y) ≤ CG(b), which shows that y ∈ Z(CG(b)), of course, we
have that y ∈ Z(P), a contradiction. Therefore P is abelian, so CN (b) is abelian, as
required.

Step 11. If d and t are two non-central elements of N such that |tG | �= m = |dG |, then

(11.1) CN (t) ∩ CN (d) ≤ Z(G).
(11.2) |tG | = n, consequently, the G-conjugacy class sizes of N are 1, m and n.

(11.1) Suppose that there exists a non-central element y ∈ CN (t)∩CN (d). To accomplish
the proof of (11.1), we will distinguish two cases by Step 4 for L .

(1) If L � Z(G), Step 4 implies that CN (b) ≤ Z(CG(d)), from which it follows
that y ∈ Z(CG(d)). Note that y is non-central, so CG(y) = CG(d), and hence t ∈
CN (d) ≤ Z(CG(d)). By Step 2, we have that CG(t) = CG(d), a contradiction. Therefore
CN (t) ∩ CN (d) ≤ Z(G).
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(2) If L ≤ Z(G), we know that n is a power of p. In this case, we assert that t can
be chosen as a p′-element. In fact, let tp be the p-component of t , obviously, CG(t) ≤
CG(tp) ≤ G. If tp /∈ Z(G), by Step 10, we have that |tp

G | = m, and therefore |tG | = m,
against the hypothesis of this step. Therefore, tp ∈ Z(G), so CG(t) = CG(tp′), where
tp′ is the p′-component of t . Thus, without loss of generality, we may assume that t is a
p′-element.

Now, we may assume that y is a p-element. Again by Step 10, we have that |yG | = m.
Moreover,

CG(t y) = CG(t) ∩ CG(y) ⊆ CG(y),

which implies that |(t y)G | = m by the maximality of m. Hence CG(t y) = CG(y) ≤
CG(t), and therefore (|tG |, n) = 1, from which it follows that |tG | = m by Lemma
2.3(b), a contradiction. Thus, CN (d) ∩ CN (t) ≤ Z(G).

(11.2) Consider the quotient group CN (b)/Z(N ) and the set t N . For any x̄ ∈
CN (b)/Z(N ) and y ∈ t N , without loss of generality, we may assume that x̄ = x Z(N )

where x ∈ CN (b). Define

yx̄ = yx . (3.3)

Clearly, the definition (3.3) indicates that CN (b)/Z(N ) acts as a group on the set t N .
Obviously, t N ∩ CN (b) = ∅ and CN (t) ∩ CN (b) = Z(N ), from which it follows that
the group CN (b)/Z(N ) acts on the set t N fixed-point freely. Therefore |CN (b)/Z(N )|
divides |t N |. Also |CN (b)/Z(N )| = |aN |. Since N = CN (a)CN (b), we have that |N | =
|aN ||bN ||Z(N )|. Because n divides |N/(Z(G) ∩ N )| = |N/Z(N )|, we have |aN | =
|aG | = n. Therefore |t N | = |tG | = n. Consequently, the G-conjugacy class sizes of N
are 1, m and n.

Step 12. CN (a) is an abelian group and N/Z(N ) is a Frobenius group.

For any non-central element x ∈ CN (a), we have that |xG | �= m. In fact, if |xG | = m,
then x ∈ CN (a) ∩ CN (x), a contradiction to (11.1). Hence |xG | = n by Step (11.2).
Therefore CN (a) = M is a normal abelian group. On the other hand, CN (b)/Z(N ) acts
on CN (a)/Z(N ) fixed-point freely. Since N = CN (a)CN (b), we have that N/Z(N ) is a
Frobenius group with the kernel CN (a)/Z(N ) and the complement CN (b)/Z(N ). �

COROLLARY 1

Let N be a normal subgroup of a group G. For a, b ∈ N , set m = |bG | and b = |aG |.
Suppose that m and n are the two longest sizes of the non-central G-conjugacy classes of
N with m > n and (m, n) = 1. If n is square-free, then either N/(Z(G) ∩ N ) is a prime
power order group or

(i) CN (a) and CN (b) are abelian and CN (a) ∩ CN (b) = Z(G) ∩ N ;
(ii) the G-conjugacy class sizes of elements in N are 1, m and n;

(iii) N/Z(N ) is a Frobenius group with the kernel CN (a)/Z(N ) and complement
CN (b)/Z(N ).

Proof. Suppose that N/(Z(G) ∩ N ) is not a prime power order group, by examina-
tion of the proof in Theorem A, we find that Steps 1–9 still hold. This implies that
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π(|aN |) = π(|aG |). By the hypothesis that n is square-free, we have that |aN | = |aG | = n.
Since |aN | divides |N/(Z(G) ∩ N )|, we get that n divides |N/(Z(G) ∩ N )|. The result
now follows from Theorem A. �

Now, in the following, we can see that theorem in [3] is a corollary of Theorem A.

COROLLARY 2

Let G be a finite group and n < m be the two longest sizes of the non-central conjugacy
classes of G. Let a, b ∈ G whose G-conjugacy classes have sizes n, m respectively. If
(m, n) = 1, then

(i) CG(a), CG(b) are abelian and CG(a) ∩ CG(b) = Z(G).
(ii) G/Z(G) is a Frobenius group with kernal CG(a)/Z(G) and complement

CG(b)/Z(G).

Proof. Obviously, n divides |G/Z(G)|. The corollary follows by taking N = G in
Theorem A. �

COROLLARY 3

Let N be a normal subgroup of a group G. Suppose that 1 < k1 < k2 < · · · < kr are the
G-conjugacy class sizes of N , where r ≥ 3. If N/N ∩ Z(G) is not a prime power order
group and kr−1 divides |N/N ∩ Z(G)|, then (kr−1, kr ) �= 1.

Proof. It follows straightforward from Theorem A. �

Remark. It is an interesting topic to discuss if the restriction ‘n divides |G/Z(G)|’ in
Theorem A can be removed.
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