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Abstract. For a harmonic map f from a Riemann surface into a complex
Grassmann manifold, Chern and Wolfson [4] constructed new harmonic maps ∂ f and
∂̄ f through the fundamental collineations ∂ and ∂̄ respectively. In this paper, we study
the linearly full conformal minimal immersions from S2 into complex Grassmannians
G(2, n), according to the relationships between the images of ∂ f and ∂̄ f . We obtain var-
ious pinching theorems and existence theorems about the Gaussian curvature, Kähler
angle associated to the given minimal immersions, and characterize some immersions
under special conditions. Some examples are given to show that the hypotheses in our
theorems are reasonable.
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1. Introduction

The complex Grassmannian manifold G(k, n) is the set of all k-dimensional complex lin-
ear subspaces of C

n , and G(1, n) is the complex projective space CPn−1. When k ≥ 2,
the geometrical structure of G(k, n) is much more complex than the complex projec-
tive space. For a harmonic map f from a Riemann surface into complex Grassmannians,
Chern and Wolfson [4] defined two fundamental transforms ∂ and ∂̄ , through which one
can get two new harmonic maps ∂ f and ∂̄ f . If the given immersion is isometric, then
harmonicity condition is equivalent to minimality. A minimal immersion from a Riemann
surface into complex Grassmannians is obtained by holomorphic immersion through
∂-transforms and is called pseudo-holomorphic. In this paper, we are interested in study-
ing the geometrical properties of minimal two-spheres immersed in G(2, n), according to
the two fundamental transforms ∂ and ∂̄ .

It is known that a harmonic map from S2 into CPn is determined by a holomorphic
map from S2 into CPn , which was first proved by Din and Zakrzewski [7] and also by
Eells and Wood in [8]. However, this beautiful result is not true when ambient manifold
is the general Grassmannian, which enhances the difficulty in studying minimal surfaces
in the general Grassmannians. The geometrical properties of conformal minimal two-
spheres immersed in complex projective space were studied by Bando and Ohnita [1]
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and by Bolton et al [2]. They classified the minimal two-spheres immersed in CPn and
proved the rigidity theorems of conformal minimal two-spheres in CPn , but some of
these properties are not inherited when the ambient space is G(k, n), k ≥ 2. The pseudo-
holomorphic two-spheres in G(k, n) were studied by Jiao and Peng [10], Jiao [11] and
Zheng [16]. They got various pinching theorems about the Gaussian curvature and Kähler
angle.

Let f be a minimal isometric immersion from S2 into G(k, n). If f is pseudo-
holomorphic with constant curvature K, then K = 4

N for some positive integer N (c.f.
[10, 16]). Li [12] has studied the minimal constant curved two-spheres into G(2, 4). For
k ≥ 2 and n > 4, there is no more information about value distributions of Gaussian
curvature of the constant curved minimal two-spheres in G(k, n). So, studying the value
distributions of Gaussian curvature of the minimal (non-pseudoholomorphic) constant
curved two-spheres in G(k, n) is an interesting problem. In our paper, the existence the-
orems (Theorem 4.3, Theorem 5.3, etc.) give an estimation of the upper-bound of the
constant curvature.

Our method is moving frames, which is inspired from Chern and Wolfson’s early paper
[4]. The conjugate transformations ∂∗, ∂̄∗ (see [4]) of the fundamental collineations ∂

and ∂̄ play an important role in choosing a suitable frame. We will treat G(2, 4) and
G(2, 5) separately, because their understanding is basic, and also the minimal maps of S2

to G(2, 4), G(2, 5) exhibit many special features not present in the general case, which
is explained in §3 and §4 respectively. In §5, we investigate the holomorphic and general
minimal two-spheres in G(2, n), where the various pinching theorems with respect to
curvature and Kähler angle are obtained.

Throughout this paper we will use the following ranges of indices:

1 ≤ A, B ≤ · · · ≤ n; 1 ≤ i, j ≤ · · · ≤ k; k + 1 ≤ α, β, γ ≤ · · · ≤ n.

And also, we use the summation convention, and the convention āi ᾱ = aīα , etc. Some of
the notations used here are as follows:

[Zi ] := the space spanned by the vectors Z1, Z2, similarly, for [Zα];
∂ f ⊥ ∂̄ f := ∂ f (x) and ∂̄ f (x) are perpendicular under the standard Hermitian inner

product of C
n for all x ∈ S2. Similar understandings for ∂̄ f ⊂ ∂ f , ∂̄ f � ∂ f , etc.

2. Preliminaries

In this section we recall some basic formulas of minimal surfaces into complex
Grassmannians, and prove some propositions with respect to the Frenet frame associated
to a holomorphic two-sphere immersed into complex projective space CPn .

The complex Grassmannian manifold G(k, n) is the set of all k-dimensional complex
linear subspaces of C

n , or equivalently, G(k, n) ∼= U (n)
U (k)×U (n−k)

, here U (n) is the unitary
group. Particularly, G(1, n + 1) is the complex projective space CPn .

Let Z = (Z1, Z2, . . . , Zn) be the elements of U (n), with

dZ A = ωAB̄ Z B, (2.1)

here ωAB̄ are the Maurer–Cartan forms of U (n). They are skew-Hermitian, i.e.

ωAB̄ + ωB̄ A = 0. (2.2)
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Taking the exterior derivative of (2.1), we get the Maurer–Cartan equations of U (n) as

dωAB̄ =
∑

C

ωAC̄ ∧ ωC B̄, (2.3)

which play an important role in the following computations. The form

ds2
G =

∑

i,α

ωi ᾱωīα, (2.4)

defines a positive definite Hermitian metric on G(k, n), which is Kählerian.
Let f : S2−→G(2, n) be a conformal immersion. Locally, the metric ds2 on S2 induced

by f can be written as

ds2 = f ∗ds2
G = φφ̄, (2.5)

where φ is a local complex-valued one-form of type (1, 0) on S2, which is defined up
to a complex factor of absolute value 1.

To express the situation analytically we choose, locally, a field of unitary frame Z A,
such that Zi span f (x) and Zα span f ⊥(x) respectively. We set

f ∗ωAB̄ = aAB̄φ + bAB̄ φ̄. (2.6)

For convenience, we denote by A := (ai ᾱ)2×(n−2), B := (bi ᾱ)2×(n−2), C := AB∗, where
B∗ is the conjugate transpose of the matrix B. The geometric meanings of A and B are
very clear, i.e., ∂ f (x) = [a1ᾱ Zα, . . . , akᾱ Zα], ∂̄ f (x) = [b1ᾱ Zα, . . . , bkᾱ Zα]. By the
well-known vanishing theorem 3.1 in [4] we know that rank(C) < k. Clearly, the matrix
C reflects the relationship between ∂ f (x) and ∂̄ f (x) in f ⊥(x) as shown below.

∂ f (x)

∂̄ f (x)

rank(C) = 0

��������

�
�
�
�
�
�
�
��

∂ f (x)

∂̄ f (x)

k > rank(C) ≥ 1

It is known that f is holomorphic if and only if bi ᾱ = 0 for all i and α. From (2.4),
(2.5) and (2.6), one has

∑

i,α

ai ᾱbīα = 0, (2.7)

∑

i,α

ai ᾱaīα + bi ᾱbīα = 1. (2.8)

If f is minimal, recalling the definition of Kähler angle θ ∈ [0, π ] associated to a given
immersion from a Riemann surface into Kähler manifold (c.f. [6]), and through direct
computation we obtain

∑

i,α

ai ᾱaīα = 1 + cos θ

2
,

∑

i,α

bi ᾱbīα = 1 − cos θ

2
. (2.9)
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The structure equations of S2 with respect to the induced metric are

dφ = −ρ ∧ φ, (2.10)

dρ = K

2
φ ∧ φ̄, (2.11)

where the purely imaginary one-form ρ (i.e. ρ̄ = −ρ) is the connection form with respect
to the co-frame φ, and K is the Gaussian curvature.

Taking the exterior derivatives of (2.6) – here we take A = i and B = α, together with
(2.3) and (2.10), one gets

Dai ᾱ ∧ φ + Dbi ᾱ ∧ φ̄ = 0, (2.12)

where

Dai ᾱ = dai ᾱ − ωi j̄ a j ᾱ + ai β̄ωβᾱ − ai ᾱρ, (2.13)

Dbi ᾱ = dbi ᾱ − ωi j̄ b j ᾱ + bi β̄ωβᾱ + bi ᾱρ. (2.14)

Set

Dai ᾱ = pi ᾱφ + qi ᾱ φ̄, Dbi ᾱ = qi ᾱφ + ri ᾱ φ̄. (2.15)

Then the immersion f : S2 −→ G(k, n) is minimal if and only if qi ᾱ = 0, equivalently

Dai ᾱ ≡ 0 mod φ, or Dbi ᾱ ≡ 0 mod φ̄. (2.16)

The quadratic form

�C
iα = Dai ᾱφ + Dbi ᾱ φ̄ = pi ᾱφφ + 2qi ᾱφφ̄ + ri ᾱ φ̄ φ̄, (2.17)

is called complex second fundamental form of the immersion f with respect to the co-
frames ωi ᾱ .

Let ϕ : S2 −→ CPn be a linearly full holomorphic immersion. The phrase ‘linearly full’
means that the tautological bundle

⋃
x∈S2 f (x) is not contained in any trivial subbundle

of S2 × C
n+1. It is known that there exists a Frenet frame ϕ0, ϕ1, . . . , ϕn (see [15]) along

ϕ such that ϕA defines a minimal map ϕA : S2 −→ CPn , where ϕ0 = ϕ, ∂ϕA = ϕA+1 if
A < n and ∂ϕn = 0.

There is a well-known example of Frenet frame, the so-called Veronese sequence
ϕn

0 , . . . , ϕn
n , which is defined as follows:

ϕn
k : S2 −→ CPn, (z0, z1) 
−→ (ϕn

k,0, . . . , ϕ
n
k,n),

in terms of homogeneous coordinate, and where

ϕn
k,l =

√
l!(n − l)!
k!(n − k)!

∑

i+ j=l

(
k
i

) (
n − k

j

)
zn−k− j

0 z̄i
0z j

1(−z̄1)
k−i .

For more details about the Veronese sequence one can refer to [1], [2].
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The following two propositions and a lemma will be repeatedly used in the following
proofs.

PROPOSITION 2.1

Let ϕ0, ϕ1, . . . , ϕn be the Frenet frame along the linearly full holomorphic immersion
ϕ = ϕ0 : S2 −→ CPn. If the immersion ϕi ∧ ϕ j : S2 −→ G(2, n + 1) has constant
Gaussian curvature for any 0 ≤ i < j ≤ n, then ϕ0, ϕ1, . . . , ϕn is the Veronese sequence
ϕn

0 , ϕn
1 , . . . , ϕn

n .

Proof. It is similar to the case j = i + 1, which is implied in Shen’s paper [13]. �

PROPOSITION 2.2

Let ϕ1, ϕ2 : S2 −→ CPn be the non-constant holomorphic and anti-holomorphic immer-
sion respectively, with ϕ1 and ϕ2 the orthogonals under the standard Hermitian inner
product of C

n+1. If ϕ1 ∧ ϕ2 : S2 −→ G(2, n) is minimal with constant curvature K and
constant Kähler angle θ, then θ ∈ [0, π

2 ) and there exist positive integers n1 and n2 such
that ϕ1 = ϕ

n1
0 , ϕ2 = ϕ

n2
n2 , up to U (n + 1)-transformations.

Proof. We write ϕ1 and ϕ2 in the homogenous coordinate as follows:

ϕ1 : S2 −→ CPn, z = (z0, z1) 
−→ (
ϕ1

0(z), . . . , ϕ1
n(z)

);

ϕ2 : S2 −→ CPn, z = (z0, z1) 
−→ (
ϕ2

0(z), . . . , ϕ2
n(z)

)
.

It is well-known that ϕ1
i (z) (resp, ϕ2

i (z)) are homogeneous polynomials of degree d1
(resp. d2) with respect to the variables z0, z1 (resp. z̄0, z̄1) since ϕ1 (resp. ϕ2) is holomor-
phic (resp. antiholomorphic).

Since the metric on S2 induced by ϕ1 ∧ϕ2 has constant curvature, there exists a positive
number α such that the Kähler form of G(2, n) restrict to S2 satisfying

−√−1∂∂̄ log |ϕ1|2|ϕ2|2 = −√−1α cos θ∂∂̄ log |z|2, (2.18)

where θ is the Kähler angle and |z|2 = |z0|2 + |z1|2. Therefore, log |ϕ1|2|ϕ2|2
|z|2α cos θ is a har-

monic function on S2, which is a constant by the maximum principle. Then we obtain
|ϕ1|2|ϕ2|2 = c|z|2α cos θ , c > 0. It is clear that cos θ > 0, |ϕ1|2 = c1|z|2α1 and
|ϕ2|2 = c2|z|2α2 for some positive constants c1, c2, α1 and α2, since ϕ1

i (z) (resp. ϕ2
i (z))

are homogeneous polynomials with respect to the variables z0, z1 (resp. z̄0, z̄1) and the
irreducibility of |z|2. Then we know that ϕ1 and ϕ2 have constant curvature according to
the fact that |ϕ1|2 = c1|z|2α1 and |ϕ2|2 = c2|z|2α2 . So the result follows from the rigidity
theorem of Calabi [3]. �

Remark. There exists a result which is similar to this proposition when ϕ1 and ϕ2 are
holomorphic immersions.

Lemma 2.3. Let U be an open subset of Riemannian surface M, and g be a complex-
valued smooth function defined on U, and ds2 = φφ̄ on U. Suppose that g satisfies

dg ≡ gψ, mod φ,
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where ψ is a purely imaginary valued one-form (i.e. ψ̄ = −ψ), then

�M log |g| φ ∧ φ̄ = 2dψ

away from its zeros, and �M is the Laplace–Beltrami operator with respect to ds2.

Proof. The proof can be found in [14]. �

3. Minimal immersions of S2 into G(2, 4)

In this section, we study the minimal (not ±holomorphic) 2-spheres immersed in the
complex Grassmann manifold G(2, 4). According to the known vanishing theorem 3.1 in
[4], we have that one of rank(A), rank(B) is equal to 1 and tr(C) = 0. Without loss of
generality, assuming rank(A) = 1, we can study the following cases.

(a) rank(∂) = 1 and rank(∂̄) = 2. We choose a field of unitary frame Z A such that
f (x) = [Zi ], f ⊥(x) = [Zα], ker(∂) = [Z1] and ∂[Z2] = [Z3]. This field is defined up to
U (1) × U (1) × U (1) × U (1), under which we have

a1ᾱ = 0, a24̄ = 0, a23̄ �= 0. (3.1)

So, one has b23̄ = 0 by the fact that tr(C) = 0 and a23̄ �= 0. Since rank(B) = 2, we have
b13̄ �= 0 and b24̄ �= 0. It is easily seen that |b13̄| and |b24̄| are globally defined functions
on S2. The minimality of f gives ω12̄ = a12̄φ and ω34̄ = a34̄φ by the equations (2.16).

Through direct computation one gets the following relations:

db1̄3 ≡ b1̄3(ω33̄ − ω11̄ + ρ), (3.2)

db2̄4 ≡ b2̄4(ω44̄ − ω22̄ + ρ), mod φ, (3.3)

by (2.16), which give

�M log |b13̄| = K + 2
(|a23̄|2 − 2|b13̄|2 − |b14̄|2 + |a12̄|2 − |a34̄|2

)
, (3.4)

�M log |b24̄| = K + 2
(|a23̄|2 − 2|b24̄|2 − |b14̄|2 − |a12̄|2 + |a34̄|2

)
, (3.5)

by Lemma 2.3. Here K is the Gaussian curvature. The summation of (3.4) and (3.5) is

�M log |b13̄b24̄| = 2(K + 2 cos θ). (3.6)

Here we use the identities (2.9). Applying the E. Hopf’s maximum principle to (3.6), we
have proved the following theorem.

Theorem 3.1. Let f be a linearly full minimal immersion from S2 into G(2, 4) with
rank(∂) = 1 and rank(∂̄) = 2, K and θ its curvature and Kähler angle respectively. Then
K = −2 cos θ if K ≥ −2 cos θ or K ≤ −2 cos θ .

Example. The map

(z0, z1) 
−→
(

−√
3z2

0 z̄1 z0
(|z0|2 − 2|z1|2

)
z1

(
2|z0|2 − |z1|2

) √
3z̄0z2

1

−z̄3
1

√
3z̄0 z̄2

1 −√
3z̄2

0 z̄1 z̄3
0

)
,
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is a minimal immersion from S2 into G(2, 4) which satisfies the rank hypothesis in the
theorem, with cos θ = − 1

5 and K = 2
5 . Indeed, if we set z = z1

z0
, in terms of local

coordinate, the map is given by

z 
−→
( −√

3z̄ 1 − 2zz̄ z(2 − zz̄)
√

3z2

−z̄3
√

3z̄2 −√
3z̄ 1

)
.

Set

Z1 = u(z)
( −√

3z̄, 1 − 2zz̄, z(2 − zz̄),
√

3z2
)
,

Z2 = u(z)
( −z̄3,

√
3z̄2, −√

3z̄, 1
)
,

Z3 = u(z)
( √

3z̄2, z̄(zz̄ − 2), 1 − 2zz̄,
√

3z
)
,

Z4 = u(z)
(
1,

√
3z,

√
3z2, z3

)
,

where u(z) = 1√
(1+|z|2)(1+2|z|2+|z|4) . It is clear that f (x) = [Z1, Z2] and f ⊥(x) =

[Z3, Z4]. Through direct calculations, we obtain

ω13 = (dZ1, Z3) = 2

1 + |z|2 dz, ω14 = (dZ1, Z4) = −
√

3

1 + |z|2 dz̄,

ω23 = (dZ2, Z3) = −
√

3

1 + |z|2 dz̄, ω24 = (dZ2, Z4) = 0.

By (2.5), the induced metric is ds2 = 10
(1+|z|2)2 |dz|2, which implies the Gaussian curvature

K = 2
5 . Note that φ =

√
10

1+|z|2 dz, so we have

A =
( √

10
5 0
0 0

)
, B =

(
0 −

√
30

10

−
√

30
10 0

)
,

from which we obtain cos θ = − 1
5 by (2.9).

(b) rank(∂) = rank(∂̄) = 1. One can show that f is not linearly full when ∂ f = ∂̄ f , so
we just need to consider following cases.

(b.I) ∂ f ⊥ ∂̄ f . We choose a field of unitary frame Z A such that f (x) = [Zi ], f ⊥(x) =
[Zα], ker(∂) = [Z1], ∂ f = [Z3] and ∂̄ f = [Z4], so this field is defined up to U (1) ×
U (1) × U (1) × U (1). Under such a frame, we obtain

ai 4̄ = 0, a13̄ = 0, bi 3̄ = 0, a23̄ �= 0. (3.7)

The minimality equation (2.16) implies ω12̄ = a12̄φ and ω34̄ = a34̄φ.

Lemma 3.2. P = ω23̄ω34̄ω42̄ is a holomorphic symmetric (3, 0)-form on S2, and P = 0.

Proof. Since Z A is defined up to a transformation of group U (1)× U (1)× U (1)× U (1),
P is globally defined. To show P is holomorphic, we choose a complex coordinate ζ on
S2, and write

ω23̄ = xdζ, ω34̄ = ydζ, ω42̄ = zdζ, (3.8)
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so that P = xyzdζ 3. By differentiating (3.8), we obtain

dx ≡ x(ω22̄ − ω33̄),

dy ≡ y(ω33̄ − ω44̄),

dz ≡ z(ω44̄ − ω22̄), mod dζ,

from which we conclude d(xyz) ≡ 0, mod dζ , i.e. xyz is a holomorphic function. It is
known that there are non-zero holomorphic forms on S2, so the statement holds. �

(b.I.I) ∂ f ⊥ ∂̄ f and ker(∂) = ker(∂̄). Since ker(∂) = ker(∂̄), we have b14̄ = 0, b24̄ �= 0.
Thus

ω12̄ = b12̄φ̄, (3.9)

by (2.16), however, we have known that ω12̄ = a12̄φ, so ω12̄ = 0. Therefore, Z1 is a
constant vector in C

4, up to a rigid motion, for ω12̄ = ω1ᾱ = 0. In other words, f is not
linearly full and we discard this situation.

(b.I.II) ∂ f ⊥ ∂̄ f and ker(∂) ⊥ ker(∂̄). Since ker(∂) ⊥ ker(∂̄), we have b24̄ = 0, b14̄ �= 0.
Equation (2.16) gives

da23̄ ≡ a23̄(ω22̄ − ω33̄ + ρ),

db14̄ ≡ b1̄4(ω44̄ − ω11̄ + ρ), mod φ,

which imply

�M log |a23̄| = K + 2
(|a12̄|2 + |a34̄|2 − 2|a23̄|2

)
, (3.10)

�M log |b14̄| = K + 2
(|a12̄|2 + |a34̄|2 − 2|b14̄|2

)
, (3.11)

by Lemma 2.3. Subtracting equation (3.11) from (3.10), we get

�M log |b14̄||a23̄|−1 = 4 cos θ, (3.12)

by (2.9).

Lemma 3.3. P = ω12̄ω23̄ω34̄ω41̄ is zero on S2.

Proof. The proof is similar to Lemma 3.2. �

It is easily seen that a12̄, a34̄ are functions of analytic type [5, 15], which are either
identically zero or with isolated zeros. Therefore, at least, one of a12̄, a34̄ is zero by
Lemma 3.3.

Firstly, we assume that one of a12̄, a34̄ is zero but the other is nonzero. Without loss of
generality, a12̄ = 0, a34̄ �= 0. Computating as before, one can obtain

�M log |a34̄| = K + 2
(|a23̄|2 − 2|a34̄|2 + |b14̄|2

)
. (3.13)

The summation of (3.10), (3.11) and (3.13), together with a12̄ = 0 gives

�M log |a23̄a34̄b14̄| = 3

(
K − 2

3

)
, (3.14)

away from some isolated zeros of |a34̄|.
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Secondly, assuming that both a12̄ and a34̄ are zeros, the identities (3.10) and (3.11)
become

�M log |a23̄| = K − 2(1 + cos θ), (3.15)

�M log |b14̄| = K − 2(1 − cos θ). (3.16)

Theorem 3.4. Let f be a linearly full minimal immersion from S2 into G(2, 4) with
rank(∂) = rank(∂̄) = 1, ∂ f ⊥ ∂̄ f and ker(∂) ⊥ ker(∂̄), K and θ be its curvature and
Kähler angle respectively. Then f = ϕ1 ∧ ϕ2 or (ϕ1 ∧ ϕ2)

⊥, here ϕ1, ϕ2 are antiholo-
morphic and holomorphic immersions from S2 into CP3 respectively; f is totally real if
the Kähler angle θ ∈ [0, π

2 ] or [π
2 , π ] everywhere on S2. If f has constant curvature and

constant Kähler angle, then there exists positive integers n1, n2 ≤ 3 such that f1 = ϕ
n1
n1

and f2 = ϕ
n2
0 , up to a rigid motion. And also, f satisfies one of the following:

(1) The curvature K = 2
3 if K ≥ 2

3 everywhere on S2;
(2) K = 2(1 + cos θ) (resp. 2(1 − cos θ)) if K ≥ 2(1 + cos θ) or K ≤ 2(1 + cos θ)

(resp. K ≥ 2(1 − cos θ) or K ≤ 2(1 − cos θ)) everywhere on S2.

Proof. The first part of this theorem follows from the fact that one of |a12̄|, |a34̄| is zero
by Lemma 3.3 and identity (3.12). The statement (1), (2) are implied in (3.14), (3.15) and
(3.16) respectively. �

Examples. The maps

(z0, z1) 
−→
(

z3
0

√
3z2

0z1
√

3z0z2
1 z3

1

−z̄3
1

√
3z̄0 z̄2

1 −√
3z̄2

0 z̄1 z̄3
0

)
,

(z0, z1) 
−→
(

z0 0 z1 0
0 z̄0 0 z̄1

)
,

satisfy the conclusions (1), (2) in Theorem 3.4 respectively, which are both totally real
(i.e. cos θ = 0). Their curvatures are 2

3 and 2 respectively.

(b.I.III) ∂ f ⊥ ∂̄ f , ker(∂) �= ker(∂̄), ker(∂) and ker(∂̄) are not perpendicular. Since ker(∂)

and ker(∂̄) are not perpendicular, b14̄ �= 0 and b24̄ �= 0. Similarly, one can get

�M log |a23̄b24̄| = 2(K − 1) + 4|a34̄|2. (3.17)

Here |a23̄b24̄| and |a34̄| are globally defined functions on S2.

(b.II) ∂ f and ∂̄ f are not perpendicular in f ⊥(x). It is clear that rank(C) = 1 when ∂ f
and ∂̄ f are not perpendicular in f ⊥(x). Note that ∂̄∗|∂ f (x) : ∂ f (x) −→ f (x), so one can
choose Z1 in f (x) such that ci 2̄ = 0, then c21̄ �= 0 and c11̄ = 0 for tr(C) = 0. Taking
[Z3] = ∂ f (x), [Z4] is the orthogonal complement of [Z3] in ∂ f (x)∧ ∂̄ f (x), and we have

ai 4̄ = 0, a23̄ �= 0.

Then c22̄ = 0, c21̄ �= 0 and rank(∂∗|∂̄ f (x)) = 1 imply that b2ᾱ = 0, b13̄ �= 0 and also
a13̄ = 0 by c11̄ = 0, b13̄ �= 0. Under such a field of unitary frame, one can get

�M log |a23̄b13̄| = 2(K − 1) + 4|a12̄|2. (3.18)
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Theorem 3.5. Let f be a linearly full minimal immersion from S2 into G(2, 4) with
rank(∂) = rank(∂̄) = 1, ∂ f and ∂̄ f are not perpendicular in f ⊥(x) (or ∂ f ⊥ ∂̄ f, ker(∂)

and ker(∂̄) are not perpendicular). If the Gaussian curvature K ≥ 1 everywhere on S2,

then K = 1.

Proof. Applying the maximum principle of subharmonic functions to (3.17), (3.18). �

4. Minimal immersions of S2 into G(2, 5)

In this section, we study the minimal (not ±holomorphic) 2-spheres immersed in the
complex Grassmann manifold G(2, 5) by the method of moving frames.

(a) rank(∂) = rank(∂̄) = 2. In this case, we choose the unitary frame Z A as Chern and
Wolfson did in p. 316 of [4]. Thus we have

ai 5̄ = 0, a14̄ = 0, a13̄ �= 0, a24̄ �= 0,

bi 3̄ = 0, b24̄ = 0, b14̄ �= 0, b25̄ �= 0,

ω12̄ = a12̄φ, ω34̄ = a34̄φ, ω45̄ = a45̄φ, ω35̄ = 0.

The minimality of f , i.e. eqs (2.16), gives

da13̄ ≡ a13̄(ω11̄ − ω33̄ + ρ),

da24̄ ≡ a24̄(ω22̄ − ω44̄ + ρ),

db1̄4 ≡ b1̄4(ω44̄ − ω11̄ + ρ),

db2̄5 ≡ b2̄5(ω55̄ − ω22̄ + ρ), mod φ,

and therefore

�M log |b14̄||b25̄|2|a13̄|−2|a24̄|−1 = 10 cos θ, (4.1)

by Lemma 2.2, in which, |b14̄|, |b25̄|, |a13̄| and |a24̄| are globally defined on S2, since the
frames we choose is defined up to U (1) × · · · × U (1).

Theorem 4.1. Let f be a linearly full minimal immersion from S2 into G(2, 5) with
rank(∂) = rank(∂̄) = 2. Then f is totally real if its Kähler angle θ ∈ [0, π

2 ] or [π
2 , π ]

everywhere on S2.

Proof. Applying the E. Hopf’s maximum principle to identity (4.1). �

Example. The map ϕ4
1 ∧ ϕ4

3 (see the definition of Veronese sequence) is totally real with
rank(∂) = rank(∂̄) = 2. To calculate the curvature and the Kähler angle of ϕn

i ∧ ϕn
j for

i �= j is not simple, so one can refer to [9].

(b) rank(∂) = 2 and rank(∂̄) = 1.
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(b.I) ∂̄ f ⊂ ∂ f . In this case, we choose frames Z A so that f (x) = [Zi ], f ⊥(x) = [Zα],
∂ f = [Z3, Z4], ∂̄ f = [Z4] and ker(∂̄) = [Z2]. Thus, we have

ai 5̄ = 0, a13̄ �= 0, a24̄ �= 0, (4.2)

b2ᾱ = 0, b13̄ = 0, b15̄ = 0, b14̄ �= 0, (4.3)

which imply a14̄ = 0 for c22̄ = 0 and tr(C) = 0. Using (4.2), (4.3) and (2.16), we obtain

ω12̄ = a12̄φ, ω34̄ = a34̄φ, ω35̄ = a35̄φ, ω45̄ = 0. (4.4)

and

da13̄ ≡ a13̄(ω11̄ − ω33̄ + ρ), (4.5)

da24̄ ≡ a24̄(ω22̄ − ω44̄ + ρ), (4.6)

db1̄4 ≡ b1̄4(ω44̄ − ω11̄ + ρ), mod φ, (4.7)

Taking the exterior derivative of ω35̄ = a35̄φ, we have

da35̄ ≡ a35̄(ω33̄ − ω55̄ + ρ), mod φ. (4.8)

Thus a35̄ is a function of analytic type (c.f. [5, 15]) by (4.8). Since f is a linearly full
immersion, we conclude that a35̄ �= 0 except for some isolated zeros, by reading the pull
back of the Maurer–Cartan forms (see the definition below (4.13)) and since a35̄ is of
analytic type.

According to Lemma 2.3, equations (4.5), (4.6), (4.7) and (4.8) give

�M log |a13̄|2|a24̄|
3
2 |a35̄||b14̄|

1
2 = 5(K − cos θ), (4.9)

away from the zeros of |a35̄|. Applying the maximum principle of subharmonic function
to (4.9), we have proved the following.

Theorem 4.2. Let f be a linearly full minimal immersion from S2 into G(2, 5) with
rank(∂) = 2, rank(∂̄) = 1 and ∂̄ f ⊂ ∂ f, K and θ be its curvature and Kähler angle
respectively. Then K = cos θ if K ≥ cos θ everywhere on S2.

Example. The minimal immersion ϕ4
0 ∧ ϕ4

2 from S2 into G(2, 5) has K = cos θ = 1
4 .

(b.II) ∂ f ⊥ ∂̄ f . Choosing the unitary frames Z A so that f (x) = [Zi ], f ⊥(x) = [Zα],
∂ f = [Z3, Z4], ker(∂̄) = [Z1] and ∂[Z1] = [Z3], these frames are defined up to U (1) ×
· · · × U (1). Thus we have

ai 5̄ = 0, a14̄ = 0, a13̄ �= 0, a24̄ �= 0, (4.10)

bi 3̄ = 0, bi 4̄ = 0, b15̄ = 0, b25̄ �= 0, (4.11)

Using eq. (2.16), together with (4.10) and (4.11), we obtain

ω12̄ = b12̄φ̄, ω34̄ = a34̄φ, ω35̄ = a35̄φ, ω45̄ = a45̄φ. (4.12)
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From (4.10), (4.11) and (4.12), we have the equations

d

⎛

⎜⎜⎜⎜⎜⎝

Z1

Z2

Z3

Z4

Z4

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

ω11̄ b12̄φ̄ a13̄φ 0 0

−b1̄2φ ω22̄ a23̄φ a24̄φ b25̄φ̄

−a1̄3φ̄ −a2̄3φ̄ ω33̄ a34̄φ a35̄φ

0 −a2̄4φ̄ −a3̄4φ̄ ω44̄ a45̄φ

0 −b2̄5φ −a3̄5φ̄ −a4̄5φ̄ ω55̄

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

Z1
Z2
Z3
Z4
Z5

⎞

⎟⎟⎟⎟⎠
, (4.13)

in which, the matric of forms is called the pull-back of Maurer–Cartan forms.
Therefore, through direct computation as before, we obtain

�M log |a13̄a24̄b25̄| = 3

(
K − 3 + cos θ

3

)
+ δ2, (4.14)

by eq. (2.16) and Lemma 2.3, where δ2 = |b12̄|2 + |a23̄|2 + |a24̄|2 + 2
(|a35̄|2 + |a45̄|2

)
.

Theorem 4.3. Let f be a linearly full minimal immersion from S2 into G(2, 5) with
rank(∂) = 2, rank(∂̄) = 1 and ∂ f ⊥ ∂̄ f, K and θ be its curvature and Kähler angle
respectively. Then there exists a point x ∈ S2 such that K (x) <

3+cos θ(x)
3 .

Proof. If not, we assume that K ≥ 3+cos θ
3 on S2. Then the identity (4.14) becomes

3(K − 3+cos θ
3 ) + δ2 = 0 by the maximum principle of subharmonic functions. Hence,

a23̄ = a24̄ = 0, which implies that rank(∂) = 1 by reading the pull-back of Maurer–
Cartan forms in (4.13). It is a contradiction. So, the statement is true. �

Example. The map ϕ4
0 ∧ ϕ4

3 has K = 2
7 and cos θ = 1

7 , which satisfies the inequality in
Theorem 4.3.

(b.III) ∂̄ f � ∂ f and ∂̄ f is not orthogonal to ∂ f in f ⊥(x). Choosing the unitary frames
Z A such that f (x) = [Zi ], f ⊥(x) = [Zα]. Since ∂̄ f and ∂ f are not perpendicular we
know that rank(C) = 1. Note that ∂∗|∂̄ f (x) : ∂̄ f (x) −→ f (x), we can choose Z1 in
f (x) such that c2ī = 0, so c11̄ = 0 for tr(C) = 0. We can further specify the frame by
demanding that ∂[Z2] = [Z3], ∂̄ f = [Z4]. Under these unitary frames, we have

a24̄ = a25̄ = 0, a23̄ �= 0, bi 3̄ = bi 5̄ = 0. (4.15)

Since rank(∂∗|∂̄ f (x)) = 1 and dim ∂̄ f (x) = 1, we have

b14̄ = 0, (4.16)

thus b24̄ �= 0, a14̄ �= 0 by c12̄ �= 0.
According to the minimality equation (2.16), together with (4.15) and (4.16), we obtain

ω12̄ = b12̄φ̄, ω34̄ = a34̄φ, ω35̄ = a35̄φ, ω45̄ = b45̄φ̄,

and

da14̄ ≡ a14̄(ω11̄ − ω44̄ + ρ),

da23̄ ≡ a23̄(ω22̄ − ω33̄ + ρ),

db2̄4 ≡ b2̄4(ω44̄ − ω22̄ + ρ), mod φ,
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which imply

�M log |a14̄a23̄b24̄| = 3

(
K − 2

3
(1 + cos θ)

)
+ δ2, (4.17)

where δ2 = |b12̄|2 + |a14̄|2 + |a15̄|2 + |a23̄|2 + |a34̄|2 + |a35̄|2.

Theorem 4.4. Let f be a linearly full minimal immersion from S2 into G(2, 5) with
rank(∂) = 2, rank(∂̄) = 1, ∂̄ f � ∂ f and ∂̄ f is not orthogonal to ∂ f in f ⊥(x). Then there
exists a point x ∈ S2 such that the Gaussian curvature K (x) < 2

3 (1 + cos θ(x)).

Proof. It is similar to Theorem 4.3 by identity (4.17). �

(c) rank(∂) = rank(∂̄) = 1. This case, like the case of minimal maps of S2 to G(2, n)

with n ≥ 5, exhibits many features present in the general case. One can find the results in
Theorem 5.5.

5. Minimal immersions of S2 into G(2, n)

In this section, we firstly study the holomorphic immersions from S2 into G(2, n). Later,
we investigate the minimal immersions of S2 into G(2, n), which are neither holomorphic
nor antiholomorphic.

5.1 Holomorphic 2-spheres into G(2, n)

Let f be a linearly full holomorphic immersion from S2 into G(2, n). According to
the theory of harmonic sequence (c.f. [4, 16]), f can generate an orthogonal harmonic
sequence f1, f2, . . . , fm through ∂-transforms, where fi : S2 −→ G(ki , n) is minimal
with ki ≤ 2, and f1 = f , ∂ fi+1 = fi for i < m, ∂ fm = 0, and

∑m
i=1 ki = n. If

k1 = k2 = · · · = kr = 2 and ki = 1 for r < i ≤ m, we say that f degenerates at posi-
tion r . In special cases, f degenerates at position 1 means that rank(∂| f (x)) = 1, and f
degenerates at position m means that ki = 2 for all i = 1, . . . , m.

Since any member of f1, f2, . . . , fm are orthogonal, we can choose the unitary frames
Z A so that fi = [Z2i−1, Z2i ] for i ≤ r , fi = [Zr+i ] for i > r , ∂[Z2r−1] = 0 and
∂[Z2r ] = fr+1. Under these frames, the pull back of the Maurer–Cartan forms are

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�11̄ A1φ

−A∗
1φ̄ �22̄ A2φ

−A∗
2φ̄ �33̄

. . .

�rr̄ Arφ

−A∗
r φ̄ �r+1 r+1

. . .

ωn−1 n−1 an−1 n̄φ

−an−1 nφ̄ ωnn̄

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.1)
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where �i ī =
(

ω2i−1 2i−1 ω2i−1 2i−ω 2i−1 2i ω2i 2i

)
for i ≤ r , Ai =

(
a2i−1 2i+1 a2i−1 2i+2
a2i 2i+1 a2i 2i+2

)
for

i < r , Ar =
(

0 0
a2r 2r+1 0

)
and �r+1 r+1 =

(
ω2r+1 2r+1 a2r+1 2r+2φ

−a 2r+1 2r+2φ̄ ω2r+2 2r+2

)
. Using the

Maurer–Cartan equations (2.3), and taking the exterior derivative of ω2r−1 2r+1 = 0, we
obtain ω2r−1 2r = a2r−1 2rφ.

Note that the frames we choose is determined to a transformation of the group
U (2) × · · · × U (2)︸ ︷︷ ︸

r−1

× U (1) × · · · × U (1)︸ ︷︷ ︸
n−2(r−1)

, so |det Ai | (i ≤ r −1) and |ap p+1| (2r ≤ p ≤

n − 1) are globally defined functions on S2.
By the Maurer–Cartan forms (5.1) and through direct computations, one has

d detA1 = det A1(ω11̄ + ω22̄ − ω33̄ − ω44̄ + 2ρ), mod φ,

which implies

�M log |det A1| = 2K + 2(δ2 − 2δ1), (5.2)

by Lemma 2.3.
Similarly,

�M log |det Ai | = 2K + 2(δi−1 − 2δi + δi+1), 2 ≤ i < r, (5.3)

�M log |a2r 2r+1| = K + 2
(
δ − 2|a2r 2r+1|2 + |a2r+1 2r+2|2

)
, (5.4)

�M log |ap p+1| = K + 2
(|ap−1 p̄|2 − 2|ap p+1|2 + |ap+1 p+2|2

)
, (5.5)

for 2r + 1 ≤ p < n − 1, and

�M log |an−1n̄| = K + 2
(|an−2 n−1|2 − 2|an−1 n̄|2), (5.6)

where δi := tr(Ai A∗
i ) and δ:= |a2r−3 2r |2 + |a2r−2 2r |2 + |a2r−1 2r |2. The identities (5.2)–

(5.6) are called the Plücker formulas in [2].

Theorem 5.1. Let f be a linearly full holomorphic immersion from S2 into G(2, n), K
be its Gaussian curvature. Then

(1) If f degenerates at position 1 and has constant curvature, then K = 2
n−2 and

f = ϕn−1
0 ∧ ϕn−1

1 up to rigid motion;
(2) If f degenerates at position r with 1 < r and n − 2r ≥ 1, then there exists a point

x ∈ S2 such that K (x) < 4r
n+2r2−4r

;
(3) If n ≡ 0 mod 2, f degenerates at position n

2 and K is a constant, then K = 4
n−2 .

Proof.

(1) Choosing the frames as we do at the beginning of this subsection, essentially means
that f is spanned by the first and second elements in a Frenet frame. So, the results follow
from Proposition 2.1.
(2) From the Plücker formulas (5.2)–(5.6) and the fact that δ1 = 1, we obtain

�M log

⎛

⎝
n−2r∏

p=1

|an−p n−p+1|p
r−1∏

q=1

|det Ar−q |q
⎞

⎠ = c

(
K − 4r

n + 2r2 − 4r

)
+ δ, (5.7)

where c = (n−2r+1)(n+2r2−4r)
2 and δ is the positive functions in (5.4).
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We assume that K ≥ 4r
n+2r2−4r

everywhere on S2. Applying the maximum principle of
subharmonic functions to (5.7), we get δ = 0, which implies that |a2r−3 2r | = |a2r−2 2r | =
0. In other words, f degenerates at position r−1 by reading the pull back of Maurer–
Cartan forms in (5.1). It is a contradiction, so the statements is true.
(3) For this case, utilizing the corresponding Plücker formulas, one has

�M log

⎛

⎜⎝

n−4
2∏

i=1

|det A n−2
2 −i |i

⎞

⎟⎠ = n2 − 6n − 8

4

(
K − 4

n − 2

)
,

which implies the result. �

Remark. Some of the functions in log(·) probably have isolated zeros, however, we assume
them to have no zeros in the proof. The result (3) was proved by Jiao in his recent paper
[11], and also by Zheng in [16] using different methods.

5.2 Minimal 2-spheres into G(2, n)

In this subsection, we agree on the following ranges of indices:

λ, μ = 3, 4; σ, τ = 5, 6; ξ, η = 7, 8, . . . , n.

(a) rank(∂) = rank(∂̄) = 2. Firstly, we investigate a special case that ∂ f and ∂̄ f
are perpendicular. In this case, choosing the unitary frames Z A so that f (x) = [Zi ],
∂ f (x) = [Zλ], ∂̄ f (x) = [Zσ ], [Zξ ] is orthogonal to ∂ f and ∂̄ f in f ⊥(x). Therefore, one
has

ai σ̄ = ai ξ̄ = 0, bi λ̄ = bi ξ̄ = 0. (5.8)

Since rank(∂) = rank(∂̄) = 2, we have det(ai λ̄) �= 0, det(bi σ̄ ) �= 0.
Utilizing the minimality of f , i.e. eq. (2.16), together with (5.8), we obtain

ai λ̄ωλσ̄ ≡ 0, mod φ, (5.9)

and therefore

ωλσ̄ = aλσ̄ φ, (5.10)

by the fact that det(ai λ̄) �= 0. Similarly,

ωλξ̄ = aλξ̄ φ, ωσ ξ̄ = bσ ξ̄ φ̄. (5.11)

Thus, under such a frame, the pull back of the Maurer–Cartan forms are
⎛

⎜⎜⎜⎝

�11̄ A1φ B1φ̄ 0

−A∗
1φ̄ �22̄ A2φ A3φ

−B∗
1 φ −A∗

2φ̄ �33̄ B2φ̄

0 −A∗
3φ̄ −B∗

2 φ �44̄

⎞

⎟⎟⎟⎠ , (5.12)

where A1 = (ai λ̄), A2 = (aλσ̄ ), A3 = (aλξ̄ ), B1 = (bi σ̄ ), B2 = (bσ ξ̄ ), �11̄ = (ωi j̄ ),
�22̄ = (ωλμ̄), �33̄ = (ωσ τ̄ ) and �44̄ = (ωξη̄).

By the Maurer–Cartan equation (2.3), we have

d det A1 ≡ det A1(ω11̄ + ω22̄ − ω33̄ − ω44̄ + 2ρ),

d det B̄1 ≡ det B̄1(ω55̄ + ω66̄ − ω11̄ − ω22̄ + 2ρ), mod φ,
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which implies

�M log |det A1| = 2K + 2(δB1 − 2δA1 + δA2 + δA3), (5.13)

�M log |det B1| = 2K + 2(δA1 − 2δB1 + δA2 + δB2), (5.14)

where δAi = tr(Ai A∗
i ), δBi = tr(Bi B∗

i ). The summation of (5.13) and (5.14) is

�M log |det A1 det B1| = 4

(
K − 1

2

)
+ 2δA2 + δA3 + δB2 , (5.15)

by the fact that δA1 + δB1 = 1.

Theorem 5.2. Let f be a linearly full minimal immersion from S2 into G(2, n) with
rank(∂) = rank(∂̄) = 2 and ∂ f ⊥ ∂̄ f . Then

(1) If n > 6, then there exists a point x ∈ S2 such that K (x) < 1
2 ;

(2) For n = 6, f is totally real if the Kähler angle θ ∈ [0, π
2 ] or [π

2 , π ] everywhere on
S2. The curvature K = 1

2 if K ≥ 1
2 everywhere on S2, at this time, f is generated by

a holomorphic immersion through the ∂-transform.

Proof.

(1) By (5.15), if K ≥ 1
2 everywhere on S2, then we have δA3 = δB2 = 0, i.e. A3 =

B2 = 0, according to maximum principle of subharmonic functions. Its contradiction to
f is linearly full by reading the pull back of the Maurer–Cartan forms (5.12). Hence, our
statement is valid.
(2) For n = 6, there are no terms δA3 , δB2 in the identities (5.13), (5.14) and (5.15), so we
have

�M log |det B1||det A1|−1 = 6 cos θ, (5.16)

�M log |det A1det B1| = 4

(
K − 1

2

)
+ 2δA2 (5.17)

by (2.9). The statements follow from (5.16) and (5.17) respectively. Moreover, f =
∂[Z5 ∧ Z6] if the curvature K = 1

2 . �

Remark. For the case where ∂ f and ∂̄ f are not perpendicular, we have the same statement
(1) as in Theorem 5.2.

Example. The map ϕn−1
1 ∧ ϕn−1

4 has constant curvature K = 2
6n−23 < 1

2 when n > 6.

For n = 6, the map ϕ5
1 ∧ ϕ5

4 is totally real. Both of them satisfy the rank condition in the
theorem.

(b) rank(∂) = 2 and rank(∂̄) = 1. Studying this case is similar to the corresponding case
in §4. We write down these results in the following.

Theorem 5.3. Let f be a linearly full minimal immersion from S2 into G(2, n) with n ≥ 6,

rank(∂) = 2 and rank(∂̄) = 1, K and θ be its curvature and Kähler angle respectively.
Then there exists a point x ∈ S2 such that
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(1) K (x) <
3+cos θ(x)

3 if ∂ f ⊥ ∂̄ f ;
(2) K (x) <

2(1+cos θ(x))
3 if ∂̄ f � ∂ f, ∂ f and ∂̄ f are not perpendicular;

(3) K (x) <
2(1+cos θ(x))

3 if ∂̄ f ⊂ ∂ f .

Proof. The proof of (1) and (2) are the same as Theorems 4.3 and 4.4 respectively, we
only need to prove (3).

If ∂̄ f ⊂ ∂ f , we choose the unitary frames Z A so that f (x) = [Zi ], ∂ f (x) = [Z3, Z4],
ker(∂̄) = [Z2] and ∂̄ f = [Z4]. Thus, under such frames we have

a14̄ = a1σ̄ = a1ξ̄ = 0, a2σ̄ = a2ξ̄ = 0, a13̄ �= 0, (5.18)

a24̄ �= 0, b1σ̄ = b1ξ̄ = 0, b2ᾱ = 0, b14̄ �= 0, (5.19)

which gives b13̄ = 0 for c11̄ = 0.
By the minimality equation (2.16), and together with (5.18) and (5.19), we have

ω12̄ = a12̄φ, ω34̄ = a34̄φ, ω3σ̄ = a3σ̄ φ, (5.20)

ω3ξ̄ = a3ξ̄ φ, ω4σ̄ = ω4ξ̄ = 0. (5.21)

Using the identities (5.18), (5.19), (5.20) and (5.21) by direct computation as we have
done before, we obtain

�M log |a13̄a24̄b14̄| = 3

(
K − 2(1 + cos θ)

3

)
+ δ2,

where δ2 = 2{|a12̄|2 + |a13̄|2 + |a24̄|2 + ∑
p≥4 |a3 p̄|2}. If K ≥ 2(1+cos θ)

3 everywhere on

S2, we conclude that |a13̄| = |a24̄| = 0, i.e., rank(∂) ≤ 1, which is a contradiction. Hence,
our statement is valid. �

Example. The map ϕn−1
0 ∧ ϕn−1

3 (resp. ϕn−1
0 ∧ ϕn−1

2 ) satisfies the conditions in (1) (resp.
(3)), whose curvature and Kähler angle are 2

4n−13 (resp. 2
3n−7 ) and n−4

4n−13 (resp. n−3
3n−7 )

respectively. Both of them satisfy the corresponding inequality.
The results in Theorem 5.3 give an estimation of the upper-bound of the curvature if f

has constant curvature. Hence, we have

COROLLARY 5.4

Let f be a linearly full minimal immersion from S2 into G(2, n) which satisfies the
conditions in Theorem 5.3, if f has constant curvature K , then K < 4

3 .

(c) rank(∂) = rank(∂̄) = 1. In this case, the method of choosing unitary frames is similar
to the corresponding case (b.I) in §3. Economically, we write down the results without
explicit proofs.

Theorem 5.5. Let f be a linearly full minimal immersion from S2 into G(2, n) with
rank(∂) = rank(∂̄) = 1, n ≥ 5, K and θ be its curvature and Kähler angle respectively.

(1) If ∂ f ⊥ ∂̄ f, ker(∂) and ker(∂̄) are not perpendicular, then there exists a point x ∈ S2

such that K (x) < 1.
(2) If ∂ f ⊥ ∂̄ f and ker(∂) ⊥ ker(∂̄), then f satisfies one of the following:
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(i) There exists a point x ∈ S2 such that K (x) < 2
3 .

(ii) The curvature K = 2
3 if K ≥ 2

3 on S2, or there exists a point x ∈ S2 such that
K (x) < 2. The immersion f = ϕ1 ∧ ϕ2, where ϕ1, ϕ2 are antiholomorphic and
holomorphic immersions from S2 into CPn−1 respectively. Furthermore, if f has
constant curvature and constant Kähler angle, then there exist positive integers
n1, n2 ≤ n−1 such that ϕ1 = ϕ

n1
n1 and ϕ2 = ϕ

n2
0 , up to rigid motion.

(3) If ∂ f and ∂̄ f are not perpendicular in f ⊥(x) and K ≥ 1 on S2, then the
curvature K = 1 and f = ϕ1 ∧ ϕ2, where ϕ1, ϕ2 are antiholomorphic and holomor-
phic immersions from S2 into CPn−1 respectively. At this time, if f has constant
Kähler angle, then there exist positive integers n1, n2 ≤ n−1 such that ϕ1 = ϕ

n1
n1 and

ϕ2 = ϕ
n2
0 , up to rigid motion.

Proof. The existence arguments are similar to Theorem 4.3. One also can construct cor-
responding examples to satisfy the conditions and conclusions in Theorem 5.5, from the
Veronese sequence. �

Finally, we give some comments on this paper. Our method is moving frames and we
study the given immersion according to the relationships between the images of ∂ f and
∂̄ f . Due to limitation of the method some conditions of the theorems are technically nec-
essary, which probably will be reduced or replaced by equivalent geometric conditions.
However, to our knowledge, so far, there is no better method to study the geometry of
general minimal 2-spheres in G(k, n). In this paper, the results we obtained reflect the
fact that the geometric properties of minimal 2-spheres in general Grassmannians are
restricted by the relative position of ∂ f (x) and ∂̄ f (x) in f ⊥(x), which make one believe
that it is better to study the general minimal 2-spheres in G(k, n) from the viewpoint of
algebraic geometry. We wish to focus on this subject in our later study.
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