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Abstract. Consider an irreducible, admissible representation π of GL(2,F) whose
restriction to GL(2,F)+ breaks up as a sum of two irreducible representations π++π−.
If π = rθ , the Weil representation of GL(2,F) attached to a character θ of K ∗ does not
factor through the norm map from K to F , then χ ∈ ̂K ∗ with (χ · θ−1)|F∗ = ωK/F

occurs in rθ+ if and only if ε(θχ−1, ψ0) = ε(θχ−1, ψ0) = 1 and in rθ− if and only
if both the epsilon factors are −1. But given a conductor n, can we say precisely how
many such χ will appear in π? We calculate the number of such characters at each given
conductor n in this work.
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1. Introduction

Let F be a nonarchimedean local field of characteristic not two and K a separable
quadratic extension. Then if K = F(x0) with x0 an element of K ∗ whose trace to F is 0
we have an embedding of K ∗ into GL(2,F) given by

a + bx0 �→
[

a bx2
0

b a

]

.

Let GL(2,F)+ be the subgroup of index 2 in GL(2,F) consisting of those matrices
whose determinant is in NK/F (K ∗) where NK/F is the usual norm map from K to F .
In [4], Prasad considered irreducible, admissible representations π of GL(2,F) whose
restriction to GL(2,F)+ breaks up as a sum of two irreducible representations π+ + π−.
There he gave a characterization of characters χ of K ∗ occurring in the restriction of π to
K ∗. It is immediate that if a character χ occurs in such a restriction then χ |F∗ must be the
central character of π . Hence if π is supercuspidal then π = rθ , the Weil representation of
GL(2,F) attached to a character θ of K ∗ which does not factor through the norm map from
K to F . He showed that χ occurs in rθ+ if and only if ε(θχ−1, ψ0) = ε(θχ−1, ψ0) = 1
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and in rθ− if and only if both the epsilon factors are −1 (θ is the Galois conjugate of θ ).
What he proved exactly is the following:

Theorem 1.1. Let rθ be an irreducible admissible representation of GL(2, F) associated
to a regular character θ of K ∗. Fix embeddings of K ∗ in GL(2, F)+ and in D∗+

F , and
choose a nontrivial additive character ψ of F , and an element x0 of K ∗ with tr(x0) = 0.
Then the representation rθ of GL(2, F) decomposes as rθ = rθ+ ⊕ rθ− when restricted
to GL(2, F)+ and the representation rθ

′ of D∗
F decomposes as rθ

′ = rθ
′+ ⊕ rθ

′− when
restricted to D∗+

F , such that for a character χ of K ∗ with (χ · θ−1)|F∗ = ωK/F , χ

appears in rθ+ if and only if ε(θχ−1, ψ0) = ε(θχ−1, ψ0) = 1, χ appears in rθ− if and
only if ε(θχ−1, ψ0) = ε(θχ−1, ψ0) = −1, χ appears in rθ

′+ if and only if ε(θχ−1, ψ0) =
1 and ε(θχ−1, ψ0) = −1, and χ appears in rθ

′− if and only if ε(θχ−1, ψ0) = −1 and
ε(θχ−1, ψ0) = 1.

Here D∗
F is the unique quarternion division algebra over F . This result was proved only

in the odd residue characteristic case in [4]. Proof in the even residue characteristic case
appeared independently in [5] and [3].

We have, by definition of central character, θ |F∗ = ωrθ ω where ωrθ is the central
character of rθ and ω = ωK/F . Since θ |F∗ 	= ωrθ the character θ cannot occur in rθ |K ∗ .
A necessary condition for a character λ of K ∗ to occur in rθ |K ∗ is that its restriction to
F∗ should be equal to the central character ωrθ . The question we would like to ask at this
point is whether θ twisted by some character λ of K ∗ can occur in rθ with λ|F∗ = ω. Note
that such a twist satisfies the said necessary condition. Making it more precise, it means,
whether there exist some λ such that λθ occurs in rθ |K ∗ . We prove some results which
give an affirmative answer to this question. In fact, we try to count at each conductor level
precisely how many characters occur in rθ+ and rθ−. It is not really surprising to see
that the necessary condition is not sufficient to guarantee the occurrence of a character.
Our computations on the local ε-factors are sometimes long, but by no means they are
complicated. We feel that we have performed all kinds of computations possible using the
ε-factors of characters. Lending the words of Tunnell [7] the results here in this exposition
are presented as an ‘entertainment’. The main results in the exposition are in the last two
sections.

2. Notations

Our notations are consistent with those used in [3] more or less because we depend heavily
on not only the results in [3], but also the computations performed there.

Throughout this paper F will be a nonarchimedian local field of characteristic 	= 2
and K a quadratic extension of F . The image of x ∈ K under the nontrivial element
of the Galois group of K over F is denoted by x . For a local field F , OF will be the
ring of integers in F , PF = πF OF the unique prime ideal in OF and πF a uniformizer,
i.e., an element in PF whose valuation is one, i.e., vF (πF ) = 1. The cardinality of the
residue field of F is denoted by q and UF = OF − PF is the group of units in OF . Let
Pi

F = {x ∈ F : vF (x) ≥ i} and for i ≥ 0 define Ui
F = 1 + Pi

F (with the proviso that
U 0

F = UF ).
Conductor of an additive character ψ of F or K is n(ψ) if ψ is trivial on P−n(ψ), but

nontrivial on P−n(ψ)−1. Fix an additive character ψ of F of conductor zero (with no loss
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of generality, as in [3]) and let ψK = ψ◦ trK/F where trK/F or simply ‘tr’ is the trace
map from K to F . By NK/F or simply N we mean the norm map from K to F and by
dK/F or simply d the differential exponent of K over F which is such that trP−d

K ⊆ OF

but trP−d−1
K 	⊆ OF . The conductor of ψK is d. For a character χ of F∗ or K ∗ by a(χ)

we mean the conductor of χ , i.e., a(χ) is the smallest integer n ≥ 0 such that χ is trivial
on U n . We say that χ is unramified if a(χ) is zero. Also, if χ1 and χ2 are two characters
of F then a(χ1χ2) ≤ max(a(χ1), a(χ2)). Equality holds if a(χ1) 	= a(χ2). Furthermore,
a(χ) = a(χ−1).

A character θ of K ∗ is regular if it does not factor through the norm map from K to
F . This guarantees that θ 	= θ . The F-valuation of 2, vF (2), will always be denoted by
t . Therefore, 2 = π t

F u, u ∈ UF . By x0 we will always denote a nonzero element of K
with trace 0. Define ψ0 by ψ0(x) = ψ(tr[−xx0/2]) for x ∈ K . Then ψ0 is an additive
character of K trivial on F .

If G is a locally compact abelian group by Ĝ we mean the group of characters of G.
Denote by ωK/F , or simply ω the character of F∗ associated to K by class field theory,
i.e., it is the unique nontrivial character of F∗/N (K ∗).

If X is a finite set, by |X | we will mean the number of elements in X .

3. Some useful results

Deligne [1] described how the epsilon factor changes under twisting by a character of
small conductor in the theorem:

Theorem 3.1. Let α, β be two characters of a local field F such that a(α) ≥ 2a(β). Let
yα be an element of F∗ such that α(1 + x) = ψ(yαx) for vF (x) ≥ a(α)

2 (if a(α) = 0, let

yα = π
−n(ψ)
F ). Then ε(αβ,ψ) = β−1(yα)ε(α,ψ).

Note that vF (yα) = −a(α) − n(ψ).
From [3] we have

Lemma 3.2. If a(χ) ≥ 2a(ω̃), χ |F∗ = ω, then

ε(χ,ψ0) = ω̃(−x0/2)ω̃−1(yχ ), (1)

where χ · ω̃−1(1 + x) = ψK (yχω̃−1 x).

Here yχ is as in Theorem 3.1.
The main theorem in [3] states the following:

Theorem 3.3. Let K be a separable quadratic extension of a local field F of charac-
teristic not two. Let ψ be a nontrivial additive character of F , and x0 ∈ K ∗ such that
tr(x0) = 0. Define an additive character ψ0 of K by ψ0(x) = ψ(tr[−xx0/2]). Then

ε(ω,ψ)
ω

(

x−x
x0−x0

)

∣

∣

∣

(x−x)2

xx

∣

∣

∣

1
2

F∗

=
∑

χ∈S

χ(x), (2)
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x ∈ K ∗ − F∗ where as is usual, the summation on the right is by partial sums over all
characters of K ∗ of conductor ≤ n.

We have the following result obtained by combining Corollary 7.2 and the calculations
given at the end of §7 in [3].

Theorem 3.4. Let x = 1 + πr−1
F πK x ′ where x ′ ∈ UF . Then

∑

χ∈ S(2r+2m)

χ(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−qr−1, if m = 0
0, if m = 1, 2, . . .

and m 	= d − 1

ω(−1)ε(ω,ψ)
ω

(

x−x
x0−x0

)

∣

∣

∣

(x−x)2
xx

∣

∣

∣

1
2

F∗

, if m = d − 1

and

∑

χ ′∈ S′(2r+2m)

χ ′(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−qr−1, if m = 0
0, if m = 1, 2, . . .

and m 	= d − 1

−ω(−1)ε(ω,ψ)
ω

(

x−x
x0−x0

)

∣

∣

∣

(x−x)2
xx

∣

∣

∣

1
2

F∗

, if m = d − 1.

Note that Namboothiri and Tandon [3] defined S to be the set {χ ∈ K ∗ : χ |F∗ = ω,

ε(χ,ψ0) = 1} and S(l) = {χ ∈ S : a(χ) = l}, analogously defined as S′ and S′(l) with
the property that ε(χ,ψ0) = −1. For computational convenience, we slightly changed
our definition of S to denote the set {χ ∈ ̂K ∗ : χ |F∗ = ω, ε(χ−1, ψ0) = 1} and S(l) =
{χ ∈ S : a(χ) = l}. Analogously, we redefined S′ and S′(l). Because of this change
in notations, we have an extra term ω(−1) in the above version compared to the one
appeared in [3]. This is due to the fact that χχ = 1 since their restriction to F∗ is ω and
so ε(χ−1, ψ0) = ω(−1)ε(χ,ψ0). We define Sl = S(l) ∪ S′(l).

When K/F is ramified, the following result can be verified trivially by applying
Lemma 5.1 in [3].

Lemma 3.5. Let χ ∈ ̂F∗ and ψ a nontrivial character of (F,+).

(1) If n < a(χ) + n(ψ), then
∑

u∈ UF

U
a(χ)
F

χ−1(u)ψ
(

π−n
F u

) = 0.

(2) If n > a(χ) + n(ψ), then
∑

u∈ UF
Un

F

χ−1(u)ψ
(

π−n
F u

) = 0.

We also have the following theorem from [3].
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Theorem 3.6. |S(l)| = |S′(l)| for each feasible l, that is when l = 2d −1 or l = 2 f with
f ≥ d.

We use Theorem 1.1 to determine whether χ ∈ S is such that χθ occurs in rθ+ or
rθ−. By this theorem, χθ occurs in rθ+ if and only if ε(θ(χθ)−1, ψ0) = ε(χ−1, ψ0) =
1 = ε(θ(χθ)−1, ψ0) = ε

(

χ−1 θ
θ
, ψ0

)

and χθ occurs in rθ− if and only if ε(χ−1, ψ0) =
−1 = ε

(

χ−1 θ
θ
, ψ0

)

. Note that a character χθ can occur in rθ if and only if it occurs in
either rθ+ or in rθ−. Also, if χ ∈ S(l) for some l then χθ can occur in rθ if and only if
it occurs in rθ+. Furthermore if χ ∈ S(l), then χθ cannot occur in rθ− since for that χ ,
ε(χ−1, ψ0) = +1. Since its multiplicity cannot exceed 1 in rθ , it is so in rθ+ and rθ−.

Now we are ready to start our counting. We divide the proof mainly into two cases:
K/F ramified and K/F unramified.

4. Counting the twists when K/F is ramified

It is known (see, for instance, §3 of [2]) that if d is odd then d = 2t + 1 and there exists
a uniformizer, denoted by πK such that tr πK = 0. Let x0 = πK . In this case π2

K is a
uniformizer of F which we denote by πF and NπK = −πF . If d is even (which can only
happen if the residue characteristic is 2), then OK = OF [πK ] where πK is a uniformizer
of K which satisfies the Eisenstein polynomial X2 − u′π s

F X − πF with s ≤ t . Again

NπK = −πF . In this case d = 2s and πK = π s
F u′
2 (1+x0) where x0 is a unit of trace 0. We

note that n(ψ0) is equal to 2 if d is odd and 2(s − t) if d is even. So n(ψ0) is always even.
Note also that if χ |F∗ = ω, then a(χ) is either 2d − 1 or it is even, say 2 f , with f ≥ d.

We know that (see [3]) if χ ∈ ̂F∗ and ψ is a nontrivial additive character of F , then

ε(χ,ψ) = χ(c)q−a(χ)/2
∑

y∈ UF

U
a(χ)
F

χ−1(y)ψ(y/c), (3)

where vF (c) = a(χ) + n(ψ). In particular, since a(ω) = d and we have chosen ψ such
that n(ψ) = 0 we have

ε(ω,ψ) = ω
(

πd
F

)

q−d/2
∑

y∈ UF
Ud

F

ω(y)ψ
(

π−d
F y

)

. (4)

This expression is obtained by normalizing the Haar measure given in the expression for
ε-factor in [6] such that the volume of OF is 1.

To start off, we have the following simple lemma.

Lemma 4.1. For a regular character θ of K ∗, a
(

θ

θ

)

is always even.

Proof. Suppose a
(

θ

θ

) = 2r + 1, r ≥ 0. Then it has to be nontrivial on
U 2r

K

U 2r+1
K

. But θ

θ
(1 +

πr
F a) = θ(1+πr

F a)

θ(1+πr
F a)

= 1, where a ∈ Fq which is a contradiction. �
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4.1 Twist by characters of odd conductor

We reserve the symbols ω̃ and ω̃K/F to denote elements of S2d−1.

Lemma 4.2. If θ

θ
= (−1)vK , then no ω̃θ can occur in rθ .

Proof. By Theorem 1.1, ω̃θ can occur in rθ+ if and only if ε
(

θ
θ
ω̃−1, ψ0

) = ε(ω̃−1, ψ0) =
1 and in rθ− if and only if ε

(

θ
θ
ω̃−1, ψ0

) = ε(ω̃−1, ψ0) = −1. Since θ
θ

unramified, we
have

ε

(

θ

θ
ω̃−1, ψ0

)

= θ

θ
(πK )a(ω̃−1)+n(ψ0)ε

(

ω̃−1, ψ0
)

= θ

θ
(πK )2d−1ε

(

ω̃−1, ψ0
)

(since n(ψ0) even)

= −ε(ω̃−1, ψ0)

which shows that ε(ω̃−1, ψ0) = −ε
(

ω̃−1 θ
θ
, ψ0

) ∀ ω̃ ∈ S(2d−1). Similarly ε(ω̃−1, ψ0) =
−ε

(

ω̃−1 θ
θ
, ψ0

)

for all ω̃ ∈ S′(2d − 1). So ω̃θ can occur neither in rθ+ nor in rθ− for any
ω̃ ∈ S2d−1. Therefore it cannot occur in rθ . �

Theorem 4.3. Let 0 	= a
(

θ

θ

)

< a(ω̃). Then among all ω̃ ∈ S(2d − 1) half and only half
will be such that ω̃θ occur in rθ+ and among all ω̃ ∈ S′(2d − 1) half and only half will
be such that ω̃θ occur in rθ−.

Remark. When d = 1, a(ω̃) = 1. Therefore, since a
(

θ

θ

) 	= 0, this theorem is not
applicable in the d = 1 case.

Proof. We show that
∑

ω̃∈S(2d−1)
ε

(

ω̃−1 θ

θ
, ψ0

)

= 0 so that half of ω̃ ∈ S(2d − 1) will

be such that ε
(

ω̃−1 θ
θ
, ψ0

) = +1 and the other half will be −1. The first half will occur in
rθ+. The remaining half will not occur either in rθ+ or in rθ−. The other part of the proof
is similar.

Note that n(ψ0) is always even irrespective of d. Also, a(ω̃−1) = a
(

ω̃−1 θ
θ

)

. Taking

c = π
d+ n(ψ0)

2
F π−1

K , in eq. (3) we have that if ω̃ ∈ S(2d − 1), then

ε

(

ω̃−1 θ

θ
, ψ0

)

= q− 2d−1
2 ω̃−1 θ

θ

(

π
d+ n(ψ0)

2
F π−1

K

)

×
∑

y∈ UK
U2d−1

K

ω̃
θ

θ
(y)ψ0

(

π
−
(

d+ n(ψ0)

2

)

F πK y

)

.
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Write y ∈ UK

U 2d−1
K

as y = y1(1 + πr−1
F πK y2), r ≥ 1, y1 ∈ UF

U d
F

, y2 = 0 or y2 ∈ UF

U d
F

. Also

note that θ

θ
is trivial on F∗. Summing over S(2d − 1), we get

∑

ω̃∈S(2d−1)

ε

(

ω̃−1 θ

θ
, ψ0

)

= q
(

− 2d−1
2

)

ω

(

π
d+ n(ψ0)

2
F

)

θ

θ
(πK )

∑

y1,y2,r,ω̃

[

ω̃(πK y1(1 + πr−1
F πK y2))

× θ

θ

(

1 + πr−1
F πK y2

)

ψ0

(

π
−(d+ n(ψ0)

2 )

F πK y1(1 + πr−1
F πK y2)

)]

.

But from the identity in Theorem 3.3 and the fact that we have to only consider char-
acters in S with odd conductor (which is equal to 2d − 1) when vK (x) = 1, it
follows that

∑

ω̃

ω̃(πK y1(1 + πr−1
F πK y2))

=
{

ω(−1)ε(ω,ψ)qtω(y1), if d = 2t + 1

ω(−1)ε(ω,ψ)qs− 1
2 ×ω(π s−t

F uu′y1(1+π s+r−1
F u′y2)), if d = 2s.

Also,

ψ0

(

π
−
(

d+ n(ψ0)

2

)

F πK y1(1 + πr−1
F πK y2)

)

=
{

ψ(−π−d
F y1) if d = 2t + 1

ψ(−π−d
F u−1u′x2

0 y1(1 + πr+s−1
F u′y2)) if d = 2s.

Let d = 2t + 1. If we keep y2 fixed,

∑

y1, ω̃

ω̃(πK y1(1 + πr−1
F πK y2))ψ0

(

π
−
(

d+ n(ψ0)

2

)

F πK (1 + πr−1
F πK y2)

)

= ε(ω,ψ)qt
∑

y1

ω(−y1)ψ
(−π−d

F y1
)

= ε(ω,ψ)qtε(ω,ψ)ω
(

πd
F

)

qd

which is a multiple of ε(ω,ψ) independent of y1 and y2. So

∑

ω̃∈S(2d−1)

ε

(

ω̃−1 θ

θ
, ψ0

)

= C
∑

r,y2

θ

θ

(

(

1 + πr−1
F πK y2

) = C × 0 = 0,
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since θ

θ
is a nontrivial character of UK

UF U
a( θ

θ
)

K

and a
(

θ

θ

) ≤ 2d − 2. Here C is a constant

independent of y1 and y2. Similarly if d = 2s, then if we again keep y2 fixed,

∑

y1, ω̃

ω̃(πK y1(1 + πr−1
F πK y2))ψ0

(

π
−
(

d+ n(ψ0)

2

)

F πK (1 + πr−1
F πK y2)y1

)

= ε(ω,ψ)qs− 1
2 ω(−π s−t

F uu′)
×

∑

y1

ω((1 + π s+r−1
F u′y2)y1)ψ(−π−d

F u−1u′x2
0 y1(1 + πr+s−1

F u′y2))

which is again a constant multiple of ε(ω,ψ) independent of y1 and y2. So

∑

ω̃∈S(2d−1)

ε

(

ω̃−1 θ

θ
, ψ0

)

= C ′ ∑

r,y2

θ

θ

(

(

1 + πr−1
F πK y2

) = C ′ × 0 = 0,

where C ′ is a constant multiple of ε(ω,ψ). This completes the proof of the theorem. �

COROLLARY 4.4

The number of ω̃ ∈ S2d−1 such that ω̃θ occurs in rθ is |S2d−1|/2 = |S(2d − 1)| =
|S′(2d − 1)|.

Proof. This is clear since occurring in rθ means occurring in either rθ+ or in rθ−. Equality
follows from Theorem 3.6. �

Lemma 4.5. If a
(

θ

θ

)

> a(ω̃) then the number of ω̃ ∈ S2d−1 such that ω̃θ occurs in rθ is
|S2d−1|/2.

Proof. This is quite easy to verify. In this case, a
(

θ

θ

) = a
(

ω̃−1 θ

θ

)

. Note that a
(

θ

θ

)

is even.
So if

ε
(

ω̃−1, ψ0
) 	= ε

(

ω̃−1 θ

θ
, ψ0

)

, (5)

consider the character μ = (−1)vK of K ∗ and take ω̃−1
2 = ω̃−1μ. If we consider the

expression for epsilon factors on both sides of eq. (5), since a
(

ω̃−1 θ
θ

)

is even, no πK is
present but only πF on the RHS of this equation. Therefore the twist by μ will not make
any difference on the RHS. But on the LHS, an extra μ(πK ) = −1 will appear changing

the sign of LHS. Similarly if ε(ω̃−1, ψ0) = ε
(

ω̃−1 θ
θ
, ψ0

)

, we can make them unequal by
the same sort of twisting. So for half of ω̃ ∈ S2d−1, the corresponding epsilon factors are
equal and for the other half they are unequal. �

4.2 Twist by characters of even conductor

Note that if a(λ) = 2 f ≥ 2d, then in the expression for ε(λ−1, ψ0) there is no πK , but
only πF .
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Theorem 4.6. Let λ ∈ S(2 f + 2d), f ≥ 0, a
(

θ

θ

) ≤ a(λ) − 2d = 2 f . Then all the
elements in {λθ : λ ∈ S(2 f + 2d)} will occur in rθ+. Similarly if λ′ ∈ S′(2 f + 2d), then
all the elements in {λ′θ : λ′ ∈ S′(2 f + 2d)} will occur in rθ−. Therefore the number of
λθ where λ ∈ S2 f +2d occurring in rθ is |S2 f +2d |.

Proof. Consider the two sums
∑

λ∈S(2 f +2d) ε(λ−1, ψ0) and
∑

λ∈S(2 f +2d) ε
(

λ−1 θ
θ
, ψ0

)

.

We have

∑

λ∈S(2 f +2d)

ε

(

λ−1 θ

θ
, ψ0

)

= q− f −dω

(

π
f +d+ n(ψ0)

2
F

)

∑

λ∈S(2 f +2d)

∑

y∈ UK

U
2 f +2d
K

× λ(y)
θ

θ
(y)ψ0

(

π
−
(

f +d+ n(ψ0)

2

)

F y

)

.

In this summation, by Theorem 3.4,
∑

λ∈S(2 f +2d)
λ(y) 	= 0 only for two types of y’s:

(1) when y = y1(1 + π
f

F πK y2), y1, y2 ∈ UF , and

(2) when y = y1(1 + π
f +d−1

F πK y2), y1, y2 ∈ UF or y2 = 0.

But since a
(

θ

θ

) ≤ 2 f and θ

θ
= 1 on F∗ we have θ

θ
trivial on these y’s. So both the sums

are independent of θ

θ
and so they are the same. That is,

∑

λ∈S(2 f +2d)

ε(λ−1, ψ0) =
∑

λ∈S(2 f +2d)

ε

(

λ−1 θ

θ
, ψ0

)

which means

ε(λ−1, ψ0) = ε

(

λ−1 θ

θ
, ψ0

)

∀λ ∈ S(2 f + 2d)

since ε(λ−1, ψ0) = 1 for each λ ∈ S(2 f + 2d). The remaining part follows similarly. �

COROLLARY 4.7

If θ

θ
= (−1)vK , then all λ ∈ S(2 f + 2d) are such that λθ occur in rθ+. Similarly all

λ′ ∈ S′(2 f + 2d) are such that λ′θ occur in rθ−.

Proof. It follows by taking a
(

θ

θ

) = 0 in the above theorem. �
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Note. The above corollary shows the difference between characters of even conductor and
characters of odd conductor. This corollary is extremely opposite to Lemma 4.2.

Let λ ∈ S(2 f + 2d), 2 f < a
(

θ

θ

)

< a(λ). Note that if d = 1, then no such θ exists. So

we have d ≥ 2 and so q is even. By definition, we have

ε

(

λ−1 θ

θ
, ψ0

)

= q− f −dω

(

π
f +d+ n(ψ0)

2
F

)

∑

λ∈S(2 f +2d)

∑

y∈ UK

U
2 f +2d
K

λ(y)
θ

θ
(y)ψ0

×
(

π
−
(

f +d+ n(ψ0)

2

)

F y

)

.

Again, by Theorem 3.4, the sum
∑

λ∈S(2 f +2d) λ(y) 	= 0 only for two types of y’s:

(1) y = y1

(

1 + π
f +d−1

F πK y2

)

, y1 ∈ UF

U f +d
F

, y2 ∈ Fq ;

(2) y = y1

(

1 + π
f

F πK y2

)

, y1 ∈ UF

U f +d
F

, y2 ∈ UF

U d
F

.

Consider the first type of y’s. θ

θ
is trivial on the these y’s. Now

∑

λ∈S(2 f +2d)

λ(y)=ω(y1)
∑

λ∈S(2 f +2d)

λ
(

1+π
f +d−1

F πK y2

)

=−q f +d−1ω(y1).

Also

ψ0

(

π
− f −d− n(ψ0)

2
F y

)

=
{

ψ
(−π−1

F y1 y2
)

, if d = 2t + 1

ψ
(−π−1

F u−1u′x2
0 y1 y2

)

, if d = 2s.

Therefore

∑

λ∈S(2 f +2d)

λ(y)ψ0

(

π
− f −d− n(ψ0)

2
F y

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−q f +d−1 ∑

y2∈Fq

∑

y1∈ UF

U
f +d

F

ω(y1)ψ
(−π−1

F y1 y2
)

if d odd,

−q f +d−1 ∑

y2∈Fq

∑

y1∈ UF

U
f +d

F

ω(y1)ψ
(−π−1

F u−1u′x2
0 y1 y2

)

if d even,

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−q f +d−1 ∑

y2∈Fq
ω(−y2)

∑

y1∈ UF

U
f +d

F

ω(y1)ψ
(

π−1
F y1

)

if d odd,

−q f +d−1 ∑

y2∈Fq
ω

(−y2x2
0 uu′) ∑

y1∈ UF

U
f +d

F

ω(y1)ψ
(

π−1
F y1

)

if d even.
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Since a(ω) = d 	= 1, by Lemma 3.5,
∑

y1∈ UF

U
f +d

F

ω(y1)ψ(π−1
F y1) = 0. So

∑

λ∈S(2 f +2d)

λ(y)
∑

y1∈ UF

U
f +d

F

λ(y)ψ0

(

π
− f −d− n(ψ0)

2
F y

)

= 0.

Consider the second type of y’s. On these, we have

∑

λ∈S(2 f +2d)

λ
(

y1

(

1 + π
f

F πK y2

))

=
⎧

⎨

⎩

ω(−1)ω(y1)ω
(

π
f

F y2
)

q f +t+ 1
2 ε(ω,ψ), if d odd

ω(−1)ω(y1 y2uu′)ω
(

π
f +s−t

F y2
)

q f +sε(ω,ψ), if d even

by Theorems 3.3 and 3.4

and

ψ0

(

π
− f −d− n(ψ0)

2
F y1

(

1 + π
f

F πK y2
)

)

=
⎧

⎨

⎩

ψ(−π−d
F y1 y2) if d odd

ψ(−π−d
F y1 y2u−1u′x2

0) if d even.

Let d = 2t + 1. Then

∑

λ∈S(2 f +2d)

∑

y1∈ UF

U
f +d

F

∑

y2∈ UF
Ud

F

λ(y)
θ

θ
(y)ψ0(π

− f −d−1
F y)

= ω(−1)ω
(

π
f

F

)

q f +t+ 1
2 ε(ω,ψ)

×
∑

y1∈ UF

U
f +d

F

∑

y2∈ UF
Ud

F

ω(y1 y2)ψ
(−π−d

F y1 y2
)θ

θ

(

1 + π
f

F πK y2
)

= q f q f +t+ 1
2 ω

(

π
f

F

)

ε(ω,ψ)

×
∑

y2∈ UF
Ud

F

θ

θ

(

1 + π
f

F πK y2
)

∑

y1∈ UF
Ud

F

ω(y1 y2)ψ
(

π−d
F y1 y2

)

= q2 f q
d
2 ω(π

f
F )ε(ω,ψ)ε(ω,ψ)ω(πd

F )q
d
2

∑

y2∈ UF
Ud

F

θ

θ
(1 + π

f
F πK y2)

= q2 f +dω(π
f +d

F )ε(ω,ψ)2
∑

y2∈ UF
Ud

F

θ

θ
(1 + π

f
F πK y2).
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If d = 2s we will get the same sum with an extra ω(−1) factor. Now if a
(

θ

θ

) ≥ 2 f + 4,
then

∑

y2∈ UF
Ud

F

θ

θ
(1 + π

f
F πK y2) = 0 and so

∑

λ∈S(2 f +2d)

ε

(

λ−1 θ

θ
, ψ0

)

= 0.

Therefore half of elements in {λθ : λ ∈ S(2 f + 2d)} will appear in rθ+. Similarly, half
of elements in {λ′θ : λ′ ∈ S′(2 f + 2d)} will appear in rθ−.

Let a
(

θ

θ

) = 2 f + 2. Then

∑

y2∈ UF
Ud

F

θ

θ
(1 + π

f
F πK y2) = qd−1

∑

a∈Fq

θ

θ
(1 + π

f
F πK a) = −qd−1.

Therefore if d = 2t + 1, then

∑

λ∈S(2 f +2d)

∑

y1∈ UF

U
f +d

F

∑

y2∈ UF
Ud

F

λ(y)
θ

θ
(y)ψ0(π

− f −d−1
F y)

= −q2 f +2d−1ω(π
f +d

F )ε(ω,ψ)2.

So

∑

λ∈S(2 f +2d)

ε

(

λ−1 θ

θ
, ψ0

)

= q− f −dω
(

π
f +d

F

)×−q2 f +2d−1ω
(

π
f +d

F

)

ε(ω,ψ)2

= −q f +d−1ε(ω,ψ)2.

Similarly we will get
∑

λ∈S(2 f +2d)
ε(λ−1, ψ0) = (q − 1)q f +d−1ε(ω,ψ)2. (This is

because in place of
∑

y2∈ UF
Ud

F

θ

θ
(1 + π

f
F πK y2), we have |UF

U d
F
|.)

But
∑

λ∈S(2 f +2d)

ε(λ−1, ψ0) = |S(2 f + 2d)| = (q − 1)q f +d−1.

So ε(ω,ψ)2 = 1. (If d = 2s, instead of this, we have ω(−1)ε(ω,ψ)2 = 1.) Therefore
number of λ such that λθ appear in rθ+ is

∑

λ∈S(2 f +2d)

(

ε(λ−1, ψ0) + ε
(

λ−1 θ
θ
, ψ0

)) =
(q−1)−1

2 q f +d−1 = q−2
2 q f +d−1. If d = 2s, we can show that the sum is q−2

2 q f +d−1.

So in rθ+, the number of λθ occurring where λ ∈ S(2 f + 2d) is q−2
2 q f +d−1. Sim-

ilarly in rθ−, the number of λ′θ occurring where λ′ ∈ S′(2 f + 2d) is q−2
2 q f +d−1. We

summarize the above computations in the following two theorems.
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Theorem 4.8. Let λ ∈ S(2 f + 2d), 2 f + 2 < a
(

θ

θ

)

< a(λ). Then among all λθ where
λ ∈ S(2 f + 2d) exactly half will occur in rθ+. Similarly, let λ′ ∈ S′(2 f + 2d), 2 f + 2 <

a
(

θ

θ

)

< a(λ′). Then among all λ′θ where λ′ ∈ S′(2 f + 2d) exactly half will occur in rθ−.
Therefore the number of λθ where λ ∈ S2 f +2d occurring in rθ is |S2 f +2d |/2.

Theorem 4.9. Let λ ∈ S(2 f + 2d), a
(

θ

θ

) = 2 f + 2 < a(λ). Then the number of λθ

appearing in rθ+ where λ ∈ S(2 f + 2d) is q−2
2 q f +d−1. Similarly, let λ′ ∈ S′(2 f + 2d),

a
(

θ

θ

) = 2 f +2 < a(λ′). Then the number of λ′θ appearing in rθ− where λ′ ∈ S′(2 f +2d)

is q−2
2 q f +d−1. The number of λθ where λ ∈ S2 f +2d occurring in rθ is therefore

(q − 2)q f +d−1.

Note. These two theorems are not valid for d = 1 since no θ

θ
satisfies the condition in the

theorem.

Theorem 4.10. Let a(λ) = 2 f + 2d < a
(

θ

θ

) = 2m < a(λ) + 2d. Then the number of λθ

with λ ∈ S2 f +2d appearing in rθ is |S(2 f + 2d)| = |S2 f +2d |/2.

Proof. Here a
(

λ−1 θ
θ

) = a
(

θ

θ

)

. Using the definition of ε-factors, we have

∑

λ∈S(2 f +2d)

ε

(

λ−1 θ

θ
, ψ0

)

= q−mω

(

π
m+ n(ψ0)

2
F

)

∑

λ∈S(2 f +2d)

∑

y∈ UK
U2m

K

λ(y)
θ

θ
(y)ψ0

(

π
−(m+ n(ψ0)

2 )

F y

)

.

Recall that, from Theorem 3.4 the sum
∑

λ∈S(2 f +2d) λ(y) 	= 0 only for three types of y’s:

(1) y = y1(1 + π
f

F πK y2), y1 ∈ UF
U m

F
, y2 ∈ UF

U m− f
F

,

(2) y = y1(1 + π
f +d−1

F πK y2), y1 ∈ UF
U m

F
, y2 ∈ UF

U m− f −d+1
F

,

(3) y = y1(1 + π
f +d

F πK y2), y1 ∈ UF
U m

F
, y2 ∈ UF

U m− f −d
F

or y2 = 0.

But on the third type of y’s, λ is just ω since a(λ) = 2 f + 2d. On the second type
of y’s,

∑

λ∈S(2 f +2d)

λ(y) = ω(y1)
∑

λ∈S(2 f +2d)

λ(1 + π
f +d−1

F πK y2)

= ω(y1)(−q f +d−1) (by Theorem 3.4).



14 K Vishnu Namboothiri

So
∑

λ∈S(2 f +2d)
λ(y) is independent of λ on these y’s. Finally consider the first type of

y’s. Let d = 2t + 1.
∑

λ∈S(2 f +2d)

λ(y1(1 + π
f

F πK y2)) = ω(y1)
∑

λ∈S(2 f +2d)

λ(1 + π
f

F πK y2)

= ω(−1)ω(y1)ε(ω,ψ)ω(π
f

F y2)q
f +t+ 1

2 ,

by Theorems 3.3 and 3.4.

Therefore
∑

λ∈S(2 f +2d)

∑

y1∈ UF
Um

F

∑

y2∈ UF

U
m− f
F

λ(y1(1 + π
f

F πK y2))
θ

θ
(y1(1 + π

f
F πK y2))

× ψ0(π
−m−1
F y1(1 + π

f
F πK y2)) = ε(ω,ψ)ω(π

f
F )q f +t+ 1

2

×
∑

y1∈ UF
Um

F

∑

y2∈ UF

U
m− f
F

ω(−y1 y2)ψ
(−π

−m+ f
F y1 y2

)θ

θ

(

1 + π
f

F πK y2
)

.

In this sum, we have
∑

y1∈ UF
Um

F

ω(y1 y2)ψ(−π
−m+ f
F y1 y2)

=
∑

y1∈ UF

U
m− f
F

ω(y1 y2)ψ(−π
−m+ f
F y1 y2)

∣

∣

∣

∣

∣

U m− f
F

U m
F

∣

∣

∣

∣

∣

.

Since a(ω) = d and m − f > d, by Lemma 3.5, the above sum is zero.
Now if d = 2s, we have n(ψ0) = 2(s − t). Also, here the trace 0 element x0 is a unit

and πK = π s
F u′
2 (1 + x0). Considering y’s first type, we have

ψ0(π
−
(

m+ n(ψ0)

2

)

F y) = ψ0(π
−m−s+t
F y1(1 + π

f
F πK y2))

= ψ

(

−π−m−s+t
F

2
y1tr x0(1 + π

f
F πK y2)

)

= ψ

(

−π−m−s+t
F

2
y1x2

0 · 2π
f

F y2
π s

F

2
u′

)

= ψ(−π
−m+ f
F u−1u′y1 y2x2

0)

and so
∑

λ∈S(2 f +2d)

λ(y1(1+π
f

F πK y2))=ω(−1)ε(ω,ψ)ω(π
f +s−t

F )q f +sω(y1 y2uu′)

by Theorems 3.3 and 3.4.
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Therefore

∑

λ∈S(2 f +2d)

∑

y1∈ UF
Um

F

∑

y2∈ UF

U
m− f
F

[λ(y1(1 + π
f

F πK y2))
θ

θ
(y1(1 + π

f
F πK y2))

× ψ0(π
−m−s+t
F y1(1 + π

f
F πK y2))] = ε(ω,ψ)ω(π

f +s−t
F )q f +s

×
∑

y2∈ UF

U
m− f
F

θ

θ
(1+π

f
F πK y2)

∑

y1∈ UF
Um

F

ω(y1 y2u−1u′)ψ(−π
−m+ f
F u−1u′y1 y2x2

0).

The sum
∑

y1∈ UF
Um

F

ω(y1 y2u−1u′)ψ(π
−m+ f
F u−1u′y1 y2) = 0 as in the d = 2t + 1 case

since m − f > d. So the sum over the first type of y’s become zero. So in both d odd

and d even cases, the sum
∑

λ∈S(2 f +2d) ε(λ−1 θ
θ
, ψ0) depends only on second and third

type of y’s and is independent of λ. Suppose this sum is n. Using similar arguments,

we have
∑

λ′∈S′(2 f +2d) ε(λ′−1 θ
θ
, ψ0) = n. So the number of +1’s in {ε(λ−1 θ

θ
, ψ0) : λ ∈

S(2 f + 2d)} = |S(2 f +2d)|+n
2 . Similarly, number of −1’s in {ε(λ′−1 θ

θ
, ψ0) : λ′ ∈ S′(2 f +

2d)} = −−|S(2 f +2d)|+n
2 . Therefore, the number of λθ appearing in rθ+ is |S(2 f +2d)|+n

2 ,

number of λ′θ appearing in rθ− is |S(2 f +2d)|−n
2 . Total number of λθ appearing in rθ is

|S(2 f + 2d)|. �

When a(λ) is too small compared to a
(

θ

θ

)

the occurrence of λθ in rθ+ or rθ− depends
only on θ .

Theorem 4.11. Suppose λ ∈ S(2m), m ≥ d and a
(

θ

θ

) = 2n ≥ a(λ) + 2d. Then either
all the elements in {λθ : λ ∈ S(2m)} will occur in rθ+ or all the elements in {λ′θ : λ′ ∈
S′(2m)} will occur in rθ− and not in both. Therefore the number of λθ where λ ∈ S2m

occurring in rθ is |S2m |/2.

Proof. We have that if χ ∈ ̂K ∗ with χ |K ∗ = ω and a(χ) ≥ 2a(ω̃) then ε(χ,ψ0) =
ω̃(−x0/2)ω̃−1(yχ ) where

yχ =

⎧

⎪

⎨

⎪

⎩

π
− f − d−1

2
F πK a0(χ)(1 + a1(χ)πK )(1 + a2(χ)πF )... if d is odd,

π
− f − d

2
F x0a0(χ)(1 + a1(χ)πK )(1 + a2(χ)πF )... if d is even.
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Here a
(

λ−1 θ
θ

) = a
(

θ
θ

) ≥ 4d > 2a(ω̃). Therefore

ε

(

λ−1 θ

θ
, ψ0

)

= ω̃(−x0/2)

× ω̃−1

(

π
− f − d−1

2
F πK a0

(

λ−1 θ

θ

) (

1 + a1

(

λ−1 θ

θ

)

πK

)

...

×
(

1 + a2d−2

(

λ−1 θ

θ

)

πd−1
F

))

,

if d odd.

But note that
(

λ−1 θ
θ

)|U 2n−2d+1
K

determines ai
(

λ−1 θ
θ

)

for i = 0, 1, . . . , 2d − 2 and on

U 2n−2d+1
K , λ−1 θ

θ
= θ

θ
. Therefore ε

(

λ−1 θ
θ
, ψ0

)

is independent of λ or ε
(

λ−1 θ
θ
, ψ0

) =
ε
(

θ
θ
, ψ0

)

. Now suppose that ε(λ−1, ψ0) 	= ε
(

θ
θ
, ψ0

) = −1 for one λ ∈ S(2m). Then for

all λ′ ∈ S′(2m), ε(λ′−1, ψ0) = −1 = ε
(

θ
θ
, ψ0

) = ε
(

λ′−1 θ
θ
, ψ0

)

. Therefore {λ′θ : λ′ ∈
S′(2m)} will occur in rθ−. On the other hand, if ε(λ−1, ψ0) = ε

(

θ
θ
, ψ0

) = 1, for one λ

it is the same for all other λ ∈ S(2m). This proves the theorem. �

COROLLARY 4.12

Suppose a(λ) = 2 f + 2d < a
(

θ

θ

) = 2m. If n = number of λθ , λ ∈ S(2 f + 2d),
appearing in rθ+ then number of λ′θ , λ′ ∈ S′(2 f + 2d), appearing in rθ− is
|S(2 f + 2d)| − n = |S′(2 f + 2d)| − n. Also, if 2m > a(λ) + 2d, then either n = 0 or
n = |S(2 f + 2d)|.

Proof. Follows easily from the above two theorems. �

Only one case is left now for us to handle in this exposition viz. a
(

θ

θ

) = a(λ). In this
case we are not giving an exact count, but still we provide a lower bound in the next
theorem. Note that our calculations deal much with a

(

θ

θ
λ
)

and it is difficult to find when
the two characters have equal conductor.

Theorem 4.13. If a
(

θ

θ

) = a(λ) = 2 f + 2d, λ|F∗ = ω then the number of λθ appearing

in rθ is greater than or equal to q f +d−1.

Proof. Note that S(2 f +2d)∪ S′(2 f +2d) = {

θ
θ
χ : χ |F∗ = ω, a(χ) = 2d −1, 2d, 2d +

2, . . . , 2 f + 2d − 2
} ∪ {

θ
θ
χ : χ |F∗ = ω, a(χ) = 2 f + 2d, χ |

U 2 f +2d−1
K

	= θ

θ
|
U 2 f +2d−1

K

}

.

Now a θ
θ
χ · θ = χθ will appear in rθ if and only if ε

(

χ−1, ψ0
) = ε

(

χ−1 θ

θ
, ψ0

)

. So the

number of χθ appearing in rθ where a(χ) = 2d − 1, 2d, . . . , 2 f + 2d is greater than or
equal to |S(2d − 1)| + |S(2d)| + S(2d + 2)| + · · · + |S(2 f + 2d − 2)| = qd−1 + (q −
1)qd−1 + (q − 1)qd + · · · + (q − 1)q f +d−2 = q f +d−1 by Corollary 4.4, Lemma 4.5
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and Theorems 4.10 and 4.11. Note that we are not considering χ ’s with conductor equal
to 2 f + 2d and that is why we are unable to claim equality. �

Remark. If q = 2, there is no χ such that χ |
U 2 f +2d−1

K
	= θ

θ
|
U 2 f +2d−1

K
. So equality holds in

the theorem.

5. The unramified case

Suppose K over F is unramified and let χ ∈ ̂F∗ be such that χ |K ∗ = ω. Let ω̃ be an
extension of ω trivial on UK and −1 on any uniformizer of K . Note that a

(

θ

θ

) 	= 0.

Otherwise, since πK = πF ∈ F in this case, θ

θ
(πK ) = 1 so that θ

θ
is trivial. Then θ = θ

contradicting the regularity of θ . So a
(

θ

θ

) ≥ 1.
We divide our counting into mainly three cases:

Case 1. a
(

θ

θ

)

< a(χ). We have ε
(

χ−1, ψ0
) = ω̃(−x0/2)ω̃−1(yχ−1) by eq. (1). Since ω̃

is trivial on units in the unramified case, let yχ−1 = π
−a(χ)
F . So we have ε

(

χ−1, ψ0
) =

(−1)a(χ)+t where t = vF (2). Since a
(

θ

θ

)

< a(χ) we have ε
(

χ−1 θ
θ
, ψ0

) = (−1)a(χ)+t =
ε
(

χ−1, ψ0
)

. So all the χ ’s are such that all χθ will occur in rθ+ or all will occur in rθ−
depending on whether a(χ) is even or odd.

Case 2. a(χ) < a
(

θ

θ

)

. In this case, a
(

χ−1 θ
θ

) = a
(

θ

θ

)

. So ε
(

χ−1 θ
θ
, ψ0

) = (−1)
a
(

θ

θ

)

+t .

Also, ε
(

χ−1 θ
θ
, ψ0

) = (−1)a(χ)+t . χθ will occur in rθ if and only if a(χ) = a( θ

θ
)(mod 2).

Case 3. a(χ) = a
(

θ

θ

)

. Here we have two possibilities:

(1) a
(

χ−1 θ
θ

)

< a(χ) or a(χ) < a
(

χ−1 θ

θ

)

: In this case, if a(χ) = a
(

θ

θ

)

(mod 2) then χθ

will occur in rθ .
(2) a

(

χ−1 θ
θ

) = a(χ): In this case χθ will occur in rθ .

Remark. Since by Theorem 1.1, λθ appears in rθ+ (respectively rθ−) if and only if λθ

does not appear in r ′
θ+ (respectively r ′

θ−). All the theorems proved in this paper have their
obvious D∗

F analogues.
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