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Regularity of the interband light absorption coefficient
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Abstract. In this paper we consider the interband light absorption coefficient (ILAC), in
a symmetric form, in the case of random operators on the d-dimensional lattice. We show
that the symmetrized version of ILAC is either continuous or has a component which
has the same modulus of continuity as the density of states.
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1. Introduction

In the theory of disordered systems, one of the quantities that is widely studied is the
integrated density of states, whose continuity properties and its behaviour near band edges
(Lifshitz tails) were of great interest. Another quantity that is of interest is the interband
light absorption coefficient (ILAC), which is an important quantitative characteristic of
semiconductors.

When photons with sufficient energy are incident on a pure semiconductor crystal
absorption of photons takes place with simultaneous creation of electron—hole pairs, which
means excitation of electrons from valance band to the conduction band. This process
is intrinsic interband absorption. The threshold electron energy required is related to the
basic band gap. The absorption coefficient increases above the threshold.

To get the absorption coefficient one considers the transition of an electron between
states in the same or a different band. The rate of absorption is then calculated using
perturbation theory and the Fermi golden rule.

The theory of interband light absorption can be found in a book such as [3].

On the other hand, the presence of impurities cause electronic states to be produced in
the forbidden band and this reduction of the band gap and the associated effect on the inter
band light absorption coefficient is discussed in [10].

In experimental studies the absorption coefficient is a means to study the band gaps at
different temperatures for a given material.

In mathematical terms this means that when there is a periodic potential (= pure crystal)
there are bands and gaps and when one adds random potential to such a periodic back-
ground, spectrum extends into the original gaps.

The literature on density of states is vast, so we refer the reader to [6-8, 12, 18] and
[21]. The continuity properties of the density of states and its Lifshitz tails behaviour in
various models is widely understood. The physics literature is abound with works on the
ILAC starting from [10] and for example [1]. On the other hand, rigorous work in this area
seem to be minimal, see for example [14—17].
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We consider a Borel probability space (2, B, P) with Z¢ acting on €2 such that P is
invariant and ergodic with respect to this action. Let V: Q — RZ (so that each V (n) is
measurable). We consider a self-adjoint operator Hy = A (given in eq. (5)) on Ez(Zd ) and
consider the family of operators,

HE = Hy £ V®, (Vu)(n) = V(m)u(n), u € £2(Z%), (1)

such that V® are covariant in the sense made precise in hypothesis (2.1) below.
We denote by 8, the elements of the standard basis of £2(Z?) in the rest of the paper.
We define the density of states measures n4 associated with Hajf by

nt = E((do, Epz=(-)d0)). 2

Suppose HiA are the restrictions of Hj to £2(A), where A C Z¢ is a finite set
(usually taken to be a lattice cube centred at the origin) and A4, u;_ are eigenvalues and
eigenfunctions of H/t e

Then the interband light absorption coefficient A for such finite volume models can
be defined by taking the measure pa 4, as given below:

1
Prw = Th7 Z g, 0280 3)
|Al n
seo(H )
AN = 04, (s A0): A + A < A)). 4)

The operators HX may be unbounded. However, the finite volume operators Hy ,, are
symmetric finite-dimensional matrices when A is a finite set, so their eigenvalues are finite
in number and the eigenfunctions {u;_ : A+ € o (H jf A)} are orthonormal (for each sign

+). These properties show that the measure pj , is a probability measure on R?, since

D0 g v P8 R = [, P =1
r_€o(H, )

and the second sum (over A, ) is normalized by the size of the set | A| which is precisely
the number of eigenvalues of HX’ o

There are several earlier works, for example, Bellissard et al [4], Bouchlet et al [5]
defining the density of states given in eq. (2) as average trace per unit volume, namely

ni() = lim ny A(), ne A () = LTr(XA Ep=()).
INV/d [A| ®
The above limit exists a.e. w, in the weak sense for measures, by using Birkoff’s ergodic
theorem and the expression in eq. (7) is arrived at using covariance of the spectral measures.
However more classical definitions of density of states involves taking the operators
H i A= X Hajf xa on £2(A), considering the average spectral measure, counting multi-

w

plicity,

. 1
nt() = lim n2 (g (O)=— Y &
AZd |A] Wy

and taking their limits. In the limit both these definitions agree with that given in eq. (2).
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It is well-known that for the models such as the one considered in eq. (1), n4+ = nt.
The trace per unit volume definition also allows one to define the limits a.e.

1
lim —Tr(xa Ay B
AlTnZld Al r(xaAwBowXA)

for a pair of covariant operators, satisfying an integrability condition, which results in the
limit being equal to E({§p, A, B»80)) and one also gets

E((d0, AwBwdo)) = E((80, BuAwdo)).

In the case of continuous models (i.e. models on L2(R?)) Kirsch—Pastur obtained in
Theorem 2.1(i) [14], limits of the finite dimensional ILAC, using sub additivity properties
of such finite dimensional quantities and they did not have to use the ‘trace per unit volume’
definition.

However in the present case the existence of such a limit is unclear for the quantities
defined in eq. (3) when A 1 Z¢. It would be nice to show such a result, which one might
need to show for nice functions f,

1 1
lim —Tr H, = lim —Tr H, ,
ANZd IA| (f(XA wXA)) AN N (XAf( W) XA)

in other words, obtain Szego type asymptotics. We do not attempt this here since this is
not the main aim of the paper.

Therefore we take directly the definition given in eq. (7) of the correlation measure in
the infinite lattice case and define the ILAC as a marginal in direct analogy with the finite
volume case; these definitions are consistent with the ones obtained in the continuous case.

The main theorems of this paper are Theorems 3.6 and 3.7. Theorem 3.6 obtains estimates
on the correlation measure of balls of radius a given in terms of the uniform modulus of
continuity of the density of states.

So taking the correlation measure p as in eq. (7) and denoting the density of states
as n, if p((a,b) x R) < |b — a|*, uniformly for all (a, b),then our theorem is that
p({x e R%: |x —b| <r}) < cr*/?. So the regularity along a line through the origin says
something for the whole measure, but not enough to conclude the regularity of marginals
along other lines. (This is a general fact valid for any finite Borel measure on R", regularity
along one line through the origin implies some regularity for the whole measure.)

As an example even if the density of states are absolutely continuous, it will only imply
that the measure p is %-Hélder continuous on R2 and this still leaves room for the measure
to be supported on some lines, which means some marginals of the measure could have
atomic components.

This is the main obstruction to obtaining regularity of the ILAC, which happens to be the
distribution function of a marginal of the measure p along a diagonal direction. However,
given that p has some modulus of continuity, it follows that, if along some direction it has
a component that is not continuous at all, such a component should have continuity along
an orthogonal direction.

This is the feature we exploit for Theorem 3.7.

In Theorem 3.7 we address the above question, observing that in the case when the
operators H have some further symmetry the marginals defined along the two orthogonal
directions {A € R%: A; = As} and {x: x; = —x2} actually agree. Therefore we take a
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symmetric definition of the ILAC and work with it. In view of the comments made above,
such a symmetric definition enables us to conclude some regularity of some components,
though at first such a theorem seems surprising.

2. The symmetric and asymmetric ILAC

In this section we define the interband light absorption coefficient in analogy with the case
of continuum models using a correlation measure. We argue that in some cases when the
spectra of the operators in question have some symmetry properties, the ILAC can be taken
to be the distribution function of the average of the marginals of the correlation measure
along two diagonal lines.

We denote by U;, i € 74 the unitary operators (Uju)(n) =u(n —i),u € 02(74).

Hypothesis 2.1.

(1) (Covariance) The potential V¢ satisfies Ul.* vey; = Ve where Tiw(n) = w(n +1).

(2) There is a bijection R of  to itself such that VRX® = —V® and P is invariant under R.

(3) The operators Hf are self-adjoint with a common dense domain for a set of full
measure in .

(4) The density of states measures n4 are continuous.

Examples 2.2. Here are two extreme examples of operators satisfying the above condi-
tions. Of course there are many more various varieties.

(1) The Anderson model.:

VOn) = o), (Au)n) = Y uln+i),u € £2(Z%) (5)
li|=1
and Rw = —w and P = xu with a probability measure ¢ on R. If  is continuous,
then the density of states is continuous. We take u to satisfy u(B) = u(—B) for all
Borel subsets of R and take Rw = —w. Then PP is invariant under R.

(2) The almost Mathieu model: Take d = 1 and Q = T, V¥®(#n) = Acos(an + w),
Rw = w + m and P the rotation invariant measure on T. The density of states of this
model is absolutely continuous, when « is not rational and for |1| # 2, see [2].

Remark 2.3. We note that, using the definition of Hwi and V¢ and the bijection R
mentioned in the Hypothesis 2.1,
H, = Hj ,H} = H,. (6)

w

Therefore if P satisfies Hypothesis 2.1(2), then for any integrable function f of @, we have
E(f (@) = E(f(Rw)).
The immediate consequence of our hypothesis is the equality of spectra of H jf
Theorem 2.4. Let Hf be as in Hypothesis 2.1. Then we have

o(HN) =0(H,), a.c. o
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Proof. Under the assumptions of Hypothesis 2.1, it is well-known that the spectrum of
the associated operators o (Hj) are constant sets almost everywhere (Proposition V.2.4 of
[6]). Hypothesis 2.1(2) implies that H} = H re and also that the support of P is invariant
under R. Therefore we have

o(H)=o(HY)=0(H)), aec. o,
proving the result. 0

We consider HwjE as in eq. (1), their spectral measures E .+ and define the measure p as
p =E((80, Epys (VE - ()80)) (7
on R?. Let
Z=RU{(a,bl:a,beR}U{(a,o0):a € R} U{(—o0,al]:a € R}.

This collection of sets forms a boolean semi-algebra on R. We then consider the boolean
semi-algebra Z x Z and there define the set function p by

k
P i x i) = Y B8, E it (INE - (J)do)), Ii, Ji € T,

i=1

where the {I; x J;i = 1, ..., k} are mutually disjoint rectangles. Then this p, takes values
in [0, 1] and satisfies p (R x R) = 1. The positivity of p follows from Proposition 2.5(2),
and since intersection of rectangles of the form considered are again rectangles of the same
form, p is also seen to be well defined. Hence it extends to a unique probability measure on
the boolean algebra generated by Z x Z (see Exercises 1.4.4—1.4.6 and Proposition 1.4.7
of [19]). The unique extension of this to a probability measure on the Borel o -algebra on
R2 is again standard (see Proposition 2.5.1 of [19]).

PROPOSITION 2.5

Consider the operators Hf, with w € supp(P) and let p be as in eq. (7). Then for any
Borel subsets B, C of R,

(1) p(B x C) =E{(do, Efy-(C)E+(B)do)),

(2) p(B x C) =EW{(do, Epy-(C)E+(B)Ep-(C)do)),
(3) p(B x C) = E((80. E s (B)E - (C) E = (B)0)).
(4) The following inequalities are valid:

p(B x C) =ny(B), p(BxC) =n_(C).

Proof. When we consider operators Hj': satisfying Hypothesis 2.1, they form a covariant

family of operators in the sense of Hypothesis 1 of [13] (taking G = L = Z%). Then the

proof of this proposition is the same as that given in Proposition 1 of [13], so we omit it.
O

To define the ILAC we need to look at the marginal of the measure p along the dia-
gonal directions {(A1, A2): A; = +X,}. We rotate the co-ordinate axes of R? so that these
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directions form the co-ordinate axes and to enable this we define the rotation 7 and look
at the measure p from this new perspective.

The marginals of p o T along the co-ordinate axes are precisely the marginals of p along
the diagonal directions.

Let T be a transformation from R to itself given by the matrix

70 4)

Then T is an orthogonal matrix with 7 = T and we have

AM+Ao

A
A2 A=2p
V2

Using these we define the following.
DEFINITION 2.6
We consider the measure p defined in eq. (7) and set the asymmetric ILAC as
Aaxs(A) = v((—o00, A]), wherev(B) =poT(B x R) ()
and the symmetric ILAC as
As(AM) = o ((—o0o, A]), where

1
0(B)=5(poT(BxR)+,ooT(]R{xB)). )

In the above definitions and in our model we have dropped all the physical constants
and also have dropped the band gap E, that customarily appears in the definition since
they play no role in the regularity properties as seen in the proofs of our theorems.

The reason we consider a symmetrized version of ILAC is that, in the case of disordered
models where the spectrum is symmetric about 0, if A is in the spectrum then —A is also in
the spectrum. Therefore given a E we can have At +1~ = E and also Ay — (A_) = E (of
course, A_ would be —X_). Therefore in the definition of the finite distribution functions
in eq. (4) we could also have taken the sum over Ay —A_ < E. The distribution functions,
however differ for these two different definitions. Therefore it might be more meaningful
to take a symmetric definition.

3. Regularity properties

In this section we show a regularity of a symmetrized ILAC. The idea behind the proofs is
the following. The ILAC is the distribution function of the marginal of a two-dimensional
measure taken along the principal diagonal, while the marginals along the co-ordinate axes
are the density of states. This measure p itself acquires a part of the regularity of the density
of states. However even if p is smooth, it is possible for marginals along some directions
to have atomic components.

This is possible only if the measure itself has its support (not the topological support)
21 U3, with 31 being a subset of a straight line which is disjoint from X,. If this happens
then restricted to the straight line containing X, the measure must be as regular as the
density of states. This is precisely our conclusion.
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Lemma 3.1. Consider Hajf satisfying Hypothesis 2.1. Then, n,. = n_ and in this case p
is symmetric, i.e. p(A X B) = p(B x A).

Proof. The hypothesis 2.1(2) says that for any integrable function f, E(f(w)) =
E(f(Rw)). Therefore taking f(w) = (o, EHJ(B)&)), for a fixed Borel set B,
we see that it is integrable and satisfies f(Rw) = (8o, E H (B)&p). Therefore
ny(B) = E(f(w)) = E(f(Rw)) = n_(B), this being valid for any Borel set B and the
measures n4 and n_ agree.

The symmetry of p follows from the following equalities, using the invariance of P
under R.

p(B x C) = E((80, E s (BYE 4 (€)50))
= E((%0, Ey, (BYE s (C)80)
= E((80, Ey; (B)E g5 (C)b0)) = p(C x B), (10)

In the following we shall denote the marginals of p o T by
1 1
V| =§poT(BxR),vz=§poT(RxB). (11

Then, clearly

Aas(h) = 2v1((—00, A]) and  Ag(A) = (v1 + 12)((—00, A]). (12)

O

Remark 3.2. The measure p is quite nice and we can say more about it. We shall denote
by B, (x) aball of radius a with centre x € R2. We denote by « the marginal p(- x R) and
note that k = n4. In the case when p(B x R) = p(R x B) for all Borel B, then we have
k(B) = ny(B) = n_(B), from the definitions of n, p and «.

DEFINITION 3.3

Given a probability measure  and a bounded continuous function A on [r, 00), positive
on (r, 00) and vanishing at r, we say that i has modulus of continuity 4 at a point x if

. ux —a,x +a)
lim sup ———
a>0 h(a+r)

We say that p is uniformly s-continuous if the above condition is valid independent of x.
Examples 3.4.

(D) Letr =0,h(x) =x40<x<1,h(x) =1,x > 1 forsome 0 < o < 1. Then
h-continuity of u for this /4 is called o-Holder continuity.

(2) Ifr = land h(x) = |[(In(x))™¥], 0 < x < 1/2 and some positive bounded continuous
function on (1/2, 00), then h-continuity for this % is called a-log Holder continuity.

(3) Letr =0.Leth(a) =t((y —a, y+a)), y € R, for a probability t, then h-continuity
with this 7 means the modulus of continuity of p at x is the same as that of 7 at y.
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Remark 3.5. In the theorems below we will only present the case when r = 0. The
theorems easily follow even when we take r 7 0 by taking i (- 4 r) to replace h.

Theorem 3.6. Consider Hajf satisfying Hypothesis 2.1. Suppose the density of states n =
ny = n_ is uniformly h-continuous for some h as in Definition 3.3 with r = 0. Then, if
B, (x) is a ball of radius a centred at x,

p(Ba(x))

limsup——= < C, forall x.
o, h(@)

Proof. We consider the function ¥ (x) = x € R2, where ||x||? = x% + x%, x =

1
I+l ))??
(x1, x2). Then 1 is integrable with respect to the probability measure p on R2. This
satisfies ¥ (x) > %, whenever ||x]| < 1. So taking § = 1 in Theorem 4.1, it is enough to
show that

llzn_fgpm/%(y x)dp(y) < oo.

To see this we note that

Valy —x) < m

so that

1 1 1
%/Wa(y—x)dp(y) =< h(a)/ (1+ (>'|—;c1)2>d’((yl)

=@ /(ba(yl —xpdn(y), (13)
where we have integrated over the variable y, on the right-hand side and used the definition
of the measure x, Remark 3.2 and have taken ¢ (y) = 1/(1 ~|—y2), . (y) =@ (y/a),y € R.

Then using Theorem 4.3, we see that the lim sup of the right-hand side is finite for all
x1 once n is uniformly A-continuous. Therefore the lim sup of the left-hand side is finite
for all x. m|

This theorem shows that p has no atoms, that is for any point x € R?, p({x}) = 0. The
marginals of p along the axes, namely p(A x R) and p(R x A) both equal the density of
states, as seen by using eq. (10) and the fact that E HE (R) = I, and hence are continuous
if the density of states has no atoms.

However it is possible that some marginal taken along other directions in R? may
have atoms. Consider, for example, a measure on R2 supported on the y-axis {(x1, x2) €
R2: x; = 0}, then the marginal of this measure along the x-axis is atomic with an atom at
the point 0.

Theorem 3.7. Consider ij satisfying Hypothesis 2.1 and suppose the density of states
n is uniformly h-continuous for some h as in Definition 3.3.

If v1 or vy defined in eq. (11) has an atom, then the function As(A) defined in eq. (12)
has a uniformly h-continuous component.
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Proof. Suppose poT (A x B) # 0 for a pair of Borel subsets A, B of R. Then po T (A x -)
and p o T (- x B) are both non-trivial finite positive measures on Borel subsets of R. We also
note that if p o T(A x R) # 0, for a given Borel set A, there must be a Borel set B C R,
such that p o T(A x B) # 0. (Otherwise if p o T(A x C) = 0 for all Borel C C R, then
taking any C # (J, we seethat p o T(A X R) = poT(A X C)+poT(A x C) =0.)
A similar statement is valid when p(R x B) # 0.)

Therefore if the marginal p o T (A x R) has an atom at a point x, then we can decompose
the other marginal measure p o T(R x B) as

poTMRx B)y=poT(R\{x}) x B)+ poT({x} x B).
Let S, denote a finite subset of the set of atoms of p o T(A x R). Then we can write
poTRxB)=poTMR\S, x B)+poT(S, x B)
= p1(B) + p2(B). (14)

Similarly if S, is some finite subset of the set of atoms of p o T(R x B), then we can
write
PoT(AXR)=poT(AXR\S;)+poT(A X Ss)
= 01(A) + 02(A). (15)

We have for each A, B, the following relations, which is easy to see from the above
argument.

p(B) =) poT(x}x B),

X€ES,

02(A) =) poT(Ax {x). (16)

X€ESy

Using the definition of A from eq. (12), decomposition in equations (15) and (16), we can
write

1 1
As(A) = E(Pl +o1)((—00, A]) + E(m + 02)((—00, A])

= As,l()‘) + As,2()\)’ (17)

where Ag 1, Ag 2 are non-zero functions, as seen by the preceding arguments.
Now the result follows from Lemma 3.8 below. O

Lemma 3.8. Assume the conditions of Theorem 3.71. Consider the function As 2 defined in
eq. (17). Ifthe density of states n is uniformly h-continuous for some h (as in Definition 3.3),
then As » is uniformly h-continuous for the same h.

Proof. We will prove that p» is uniformly /-continuous, the proof for o is similar. From
these two statements the uniform /-continuity of A (1) is clear. Let the cardinality of S,
be N and let Ey, ..., Ey be the elements of S,. Then
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! d
m/‘i’a(y—x) p2(y)

N
= ; m/%(y —x)dp o T(Ej,y)

_y L fuw - <x+E)>d< 2 ZE) (1)
T Hh@ ‘ )

Since T({E;} x R) C R x R, the right-hand side is bounded by

T({E;}xR)

N

RxR

N
:ZL/ $a(V2w — (x + E;))dn(w),
o h@) Jr

where we used the fact that p(- x R) = n(-). The uniform A-continuity of the density of
states n shows that the right-hand side is bounded uniformly in x, proving the lemma. O

4. Appendix

We present here some results that we use in the main part, whose proofs are essentially
available elsewhere.

We have an abstract theorem that extends the theorem of Jensen—Krishna in [9]. In the
following, let (X, || - ||) be anormed vector space over complex numbers and p a probability
measure on X with respect to the Borel o-algebra. Denote by B, (x) the ball with centre
x of radius a. Let ¥ be a positive bounded continuous function on X taking value 1 at 0.
Denote by ¥, (x) = ¥ (x/a),a > 0.

Theorem 4.1. Let h be a function as in Definition 3.3. Suppose

11I21>S(;1pm / Va(y — x)dp(y) < oo.

Then, there are constants C, § > 0, depending upon , such that
p(Bgs(x)) < Ch(a),a > 0,x € X.

Proof. Since v is continuous and is 1 at 0, there is a § > 0 such that ¥ (y) > 7, whenever
x| < 8. So we have

1 1
— d > B .
o) /I/fa(y x)dp(y) = e )p( as (X))
We have used the fact that ||x||/a <8 <= | x| < aéd. Taking sup first on the left-hand
side, which is finite since the lim sup of the left-hand side is finite by assumption, and then
taking sup over a, for a fixed § on the right-hand side shows that the right-hand side is
finite for all x. ]
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Consider a function i satisfying:

Hypothesis 4.2. Let y be a continuous function on R with ¥(0) = 1 and Ay =
f Y (x)dx # 0. Further assume that

(1) ¢ is bounded and positive.
(2) v is differentiable, even and satisfies

[V ()| + |x¢'(x)] < (x)7°, forsome &> 1,

where (x) = (1 4+ x2)1/2.
(3) Let i be as in Definition 3.3. Let K (y

[¥'(MIdy < oo.

In most cases the assumption (3) on i above follows from (2), but we include it for
generality.
We set, given a ¥/,

n((x —a, x +a))

_ Va * _
oy ) = timsup J058 (0. Dy (00 = limswp E i)

Theorem 4.3. Let u be a probability measure and let v satisfy Hypothesis 4.2. Then C Z v
is finite for any x, iﬁ’DZ (x) is finite for the same Xx.

Proof. We note that as in eq. (1.3.4) [9], we have by integration by parts,

k() = 1 /00 w/(y)h(a)’) O, (x +ay) — D, (x — ay)dy,
h(a) Jo

1
h(a) h(a) h(ay)
where @, is the distribution function of . Then taking limsup as a — 0, using the
condition that K (y)v/'(y) is integrable by assumption we see that the finiteness of Dﬁ,w (x)

implies that of C h (x)
To see the other dlrectlon note that since 1 is a positive continuous function on R, it
attains a positive minimum on [—1, 1], say 8. Then we have the estimate

1
h(a)

pu(x —a,x+a))
h(a)

)

1 a
Ya * u(x) > h—/ Ya(y)dux +y) > B
((1) —a

from which we conclude that finiteness of Cz’w(x) implies that of DZ,W (x). O
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